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Background modeling algorithms are commonly used in camera setups for foreground object detection.
Typically, these algorithms need adjustment of their parameters towards achieving optimal performance
in different scenarios and/or lighting conditions. This is a tedious process requiring considerable effort by
expert users. In this work we propose a novel, fully automatic method for the tuning of foreground detec-
tion parameters in calibrated multicamera systems. The proposed method requires neither user interven-
tion nor ground truth data. Given a set of such parameters, we define a fitness function based on the
consensus built from the multicamera setup regarding whether points belong to the scene foreground
or background. The maximization of this fitness function through Particle Swarm Optimization leads
to the adjustment of the foreground detection parameters. Extensive experimental results confirm the
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effectiveness of the adopted approach.
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1. Introduction

As digital cameras become cheaper, multicamera setups or
camera networks are becoming commonplace. Calibrated multi-
view setups are associated with some strong assumptions and
their intrinsic/extrinsic calibration is a tedious process. Neverthe-
less, their ability to reduce occlusion effects and appearance ambi-
guities leads to more robust performance of computer vision
algorithms, a fact that typically outweighs their disadvantages.
Several multicamera-based applications such as semi-automated
surveillance [8], target tracking [17], 3D video recording [18,23],
human motion modeling [4,28] and sports analysis [9] perform
object detection, most commonly using some background model-
ing-based foreground detection method. Thus, such methods con-
stitute important ingredients of modern multiview computer
vision systems.

A common drawback of several existing foreground detection
methods is that their performance critically depends on several
parameters that require considerable expertise in order to be ad-
justed properly. Unfortunately, there is no universal parameter
set that can generalize optimally across the different conditions
that may be encountered. In the typical case, different scenarios
that exhibit variable degree of occlusions (e.g., crowded scenes),
stopped targets, clutter motion (e.g., flowing water) and global or
local illumination changes, require different tuning of the algo-
rithm towards high quality results. Despite its great importance,
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proper parameter tuning is often overlooked resulting in subopti-
mal foreground detection output. The need for adaptive parameter
tuning is even more pronounced when dealing with online, real-
time applications that capture endless video streams (e.g., auto-
mated surveillance) where the environmental and other conditions
might change considerably over time.

One of the few approaches that deal with this problem is the
one adopted by White and Shaw [27], which presents a method
that optimizes background subtraction with respect to given
ground truth. More specifically, the goal is to optimize two basic
parameters of a background subtraction algorithm [24] that is ap-
plied to an image sequence acquired by a single camera. The re-
quired ground truth consists of manually defined foreground
silhouettes. The F measure [22] between the silhouettes calculated
by the background subtraction algorithm and the ground truth sil-
houettes constitutes the fitness function of a given parameter set.
Finally, Particle Swarm Optimization (PSO) is employed to maximize
this fitness function by searching over the space of possible back-
ground subtraction parameters.

In this work, we propose a novel method for automatically tun-
ing the foreground detection parameters, utilizing information
taken by a multicamera setup. In contrast to White and Shaw
[27], the proposed method does not require user intervention at
any point of the process and does not assume the availability of
ground truth measurements. Thus, it can be applied to the auto-
matic tuning of foreground detection performed on any system
that captures endless video streams where ground truth informa-
tion is not available. Similar to White and Shaw [27], we employ
PSO to optimize a fitness function that is defined over a multidi-
mensional foreground detection parameter space.
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Instead of using ground truth silhouette images, we employ
confidence maps that are calculated through the fusion of the fore-
ground images estimated by the multicamera setup. At each step,
one such map is produced for every camera of the configuration.
Each confidence map consists of scores that represent the cumula-
tive confidence in the multicamera setup regarding whether a pixel
belongs to the foreground or not. For each and every camera, the
fitness function measures the similarity of the foreground estimate
to the confidence map. The fundamental idea behind the definition
of the fitness function is that if several cameras agree that a certain
point in the scene belongs to the foreground, then this is likely to
be so. False positives and false negatives may exist in the process.
Nevertheless, it is very unlikely that a consensus will be build
around them. As in [27], PSO is used to maximize the fitness func-
tion. PSO suggests foreground detection parameters that produce
new confidence maps which, in turn, suggest new parameters.
The termination of this iterative process provides the parameter
vector found to achieve the greatest fitness. Through a series of
experiments, we show that both the defined fitness function and
optimization process are very suitable for effectively solving the
problem of unsupervised adjustment of foreground detection
parameters.

The main contributions of this work are (1) the definition of
multicamera consensus and the resulting confidence maps in the
optimization of the foreground detection parameters, (2) the unsu-
pervised solution of the problem of parameter tuning as opposed
to the previous supervised methods requiring ground truth infor-
mation, and (3) a thorough experimental study of the behavior of
the proposed approach with a detailed investigation of various fac-
tors that may affect its performance.

The remainder of this paper is organized as follows. In Section 2
the foreground detection algorithm that is used throughout this
work is presented. It has to be noted that the selection of the par-
ticular method is based on its popularity and performance [3]. Nev-
ertheless, the proposed method can, in principle, be applied to any
other background subtraction/foreground detection method. Sec-
tion 3 defines the confidence maps that guide the optimization
process. Section 4 presents the employed optimization algorithm.
Section 5 provides a detailed description of the proposed algo-
rithm. Experiments and results are presented in Section 6. Finally,
a brief summary and conclusions is given in Section 7.

2. Background modeling and foreground detection

Background modeling and foreground detection is a way to de-
tect moving objects in views acquired by static cameras. The great
importance of such methods has given rise to several approaches.
According to Piccardi [21], such methods typically operate at the
pixel level. The simplest ones directly subtract the average, median
or running average of a number of frames from the current view.
Other methods use kernel density estimators and mean-shift based
estimation [10,12]. In [20], the notion of eigen-background is
defined.

One of the best performing methods is the one proposed by
Stauffer and Grimson [24] that models the appearance of each
image pixel as a mixture of Gaussians. Because of its effectiveness
and popularity [3], our work considers this method as the basis of
the proposed, unsupervised parameter optimization approach.
More specifically, we employ the variant proposed by Zivkovic
[29]. For the sake of self completeness, an introduction to this
method is provided.

Given a sequence of images, let ¥ be a pixel of image I at time
t in some colorspace (i.e., RGB). The background model is estimated
from a training set X7 = {x{9,...,x("" 7} where T determines the time
period for which the model’s history is extended. Each pixel is

modeled as a M component Gaussian Mixture Model (GMM) given
by

M A

PEXr, fb) = tuN(F; fim, G3]), (1)
m=1

where ﬁl, ... ,ﬁM are the estimates of the means and 64,..., 6y are

the estimates of the variances of the GMM components. fb denotes
the fact that the recent history contains observed values belonging
to both the foreground (f) and the background (b). Given a new data
sample X at time t, the recursive update equations of mixing
weights, means and variances are:

Tn — Ttm + 010 — ftm) — o, (2)
ﬁm — Ijm + Og)(a/ﬁm)gmv (3)
G2 6%+ 0 (/o) (815 — 62, (4)

where §,, = X0 — ﬁm, o is the constant that represents an exponen-
tially decaying envelope utilized to attenuate the effect of past data
and cr a small bias factor, typically set to 0.01 (see Zivkovic [29] for
details). A sample is close to a GMM component if its Mahalanobis
distance from the mode is smaller than a certain threshold, typically
set equal to three standard deviations. Based on this, the ownership
oY) for a newly arrived sample is set to 1 for the GMM component
with the larger mixing weight among all the components that their
distances from the sample is less than the predefined threshold and
0, otherwise. The squared distance from the mth component is com-
puted by D2 () = 6! 5,,/62. Updates of 7,,s must be followed by a
normalization so that they add up to one.

Background modeling starts with one GMM component cen-
tered on the first sample. While the new samples that arrive are
not within three standard deviations from the existing modes of
the GMM, new components are generated with 7ty = o, [y =
X® and 6,1 = 6o where oy is the initial variance. During updates,
if a mixing weight 7, becomes negative, the corresponding mix-
ture component is removed from the GMM and the mixing weights
of the remaining components are normalized to sum to one. More-
over, if a newly imported component forces the total number of
components to increase beyond a certain threshold, the compo-
nent with the smallest mixing weight assigned to it is excluded
from the mixture.

Given that the components of the mixture are sorted in a
descending order of their mixing weights, it is assumed that the
background can be modeled by the set B of the largest GMM com-
ponents as:

B ~
P(RXr.fb) ~ > TN (% fim, 521, (5)
m=1
where
i
B= indj > ftn>(1- 6
argmjln{llmz;ﬂ > ( Cf)} (6)

and ¢; is the maximum allowable sum of mixing weights of the
GMM components modeling the foreground.

Following the above analysis, an observed pixel is part of the
background, if it is found to be close to one of these B Gaussian
components. Otherwise, this pixel is assigned the foreground label.
An example outcome of this foreground detection method is
shown in Fig. 1.

3. Multiview camera setup

The foreground detection method presented in Section 2 oper-
ates on an image sequence acquired by a single, static camera.
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(a)

Fig. 1. (a) A frame of Inria’s Dancer sequence and (b) foreground detection output.

The straightforward approach to performing foreground detection
in a multicamera setup is to employ it independently in each of the
acquired views. A basic idea behind this work is that the joint
observation of a given 3D space by a set of cameras can be used
to provide information that may guide the joint optimization of
the foreground detection parameters. A given observed 3D point,
either belongs to the scene foreground or scene background. Thus,
the visual hull [15] estimated through volume intersection [16] can
be used to compute the multiview configuration consensus regarding
the foreground of a given scene.

More specifically, each camera of the configuration votes in a
common voxel space for occupied voxels by projecting an estima-
tion of its own foreground image on this space. The voxel space de-
scribes a discretization of the actual space. A voxel can be
considered, by a single view, as being occupied by some object or
not. This occupancy information is all that is required to calculate
the multicamera consensus regarding the objects present in the
scene. After the occupancies are calculated, the voxel space can
be back-projected to every view to calculate a set of confidence
maps, one per view. The use of voxel occupancies as a way to com-
bine information from multiple views has been proposed at [11]
where a probabilistic framework for fusing silhouette cues is
presented.

What follows, is a detailed presentation of how the multicam-
era consensus and the individual confidence maps are built.

3.1. Multicamera consensus

To calculate the multicamera consensus, a 3D voxel space of the
actual scene is defined. This space is sampled to create a 3D grid,
G={G%G!,...,G"} where each G = (X,,Y.Z.) is a 3D point. General
perspective projection of a 3D point (X.Y.,Z,1) to a 2D point
(Xe.Yofc) on the ith view plane can be calculated given the corre-
sponding projection matrix P; = G[R;|T;] through

(Xf7yc7ff)T :Ci[Ri‘Ti](XOYCaZCa])Ta (7)

where C; is the camera calibration matrix, R; the rotation matrix and
T; the translation vector with respect to a world-centered coordi-
nate system. In the general case, the cameras of a multiview config-
uration cannot be fully aligned on a common field of view (FOV), so
a number of 3D points will fall outside the FOV of some cameras.
For the view plane of camera i with dimensions w; x h; we define
the function Lix,y) that labels the projections falling inside the
camera FOV as

1 1<x<wialg<y<h;,
0 otherwise.

Liey) = ®)

Furthermore, we denote by S; the silhouette image (as the one
shown in Fig. 1b) taken from camera i, where Si(x,y)=1 for

(b)

White and black pixels correspond to foreground and background, respectively.

foreground pixels and Si(x,y) = 0 for background pixels. Occupancy
scores O(Xy, Yi,Z) of 3D points of G are computed as

1 s=1>4

2, Vkel0,n]. 9)
0 otherwise

O(Xx, Yk, Zk) = {

In Eq. (9), |C| is the number of cameras used. [ is termed the visibility
factor (see Fig. 2a) and s the intersection factor (see Fig. 2b). These
factors are defined as

Xi yi Xi yi
I=>"L k,'s), s = s(k,k),
;'(&& ;'ﬁlfk’

where (xi /fi,yi /fi) are the projections of (X, Yi,Zi) at view plane i.

(10)

3.2. Confidence maps

Confidence maps %;(x,y) are computed for every view i by accu-
mulating the occupancy scores of the back-projections of the view
planes on every slice of the grid G. Slices are considered to be 3D
point sets of fixed Z., with Z. taking discrete values in the range
of [ZminZmax)- Therefore, confidence maps are calculated through:

Gxy)= Y.  0X.Y.2) (11)

Zin<Z<Zmax

for every (x,y) such that 1 < x <w; A1 <y < h;. Given the 3 x 4 pro-
jection matrix P; = [pi,,] of view i the projections X' and Y’ of x and y
are calculated analytically as
v — 2P = ypis + m(ypl; — pis))
VP = X5, — M(ypl; — ph)
n M(yPss — Pha) +XPhs — YPla

. . 24— J% 12
ypi, — Xph, — m(ypl, — ph,) (12)
and
s Y (P = Pho) +2(yPl; — Phs) +YPsa — Pl (13)
Py — ¥P5 ’
where
i i
m = P2 = VP (14)

Doy — P
After their calculation, the values of the confidence maps are nor-
malized to the range [0,1]. The closer a value is to 1, the higher
the estimated confidence that the corresponding pixel belongs to
a foreground object.

Fig. 3 shows examples of computed confidence maps. As can be
verified, confidence maps attenuate the holes in the silhouettes but
also the noise in the background. The intuition behind this result is
that although false positives and false negatives may exist in indi-
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Fig. 2. (a) A slice of the grid G for Z. = 0 cm. Different gray level values denote scene regions of variable visibility from a multiview configuration of eight cameras. Dark
regions are visible from one view while bright regions are visible from all the cameras. (b) A slice of the grid G is shown (for Z. = 100 cm). Each view projects on this slice its
captured silhouette. White areas correspond to silhouette intersections from all the views of the configuration.

view 0

view 4

(a)

(b)

Fig. 3. (a) The confidence maps and silhouette images for a single frame across all views of an 8-camera configuration. In (b), the confidence map obtained in view 4 is shown

in greater detail. Brighter colors correspond to higher confidence values.

vidual camera foreground detections, it is very unlikely that a
strong consensus is built around them. Thus, confidence maps rep-
resent more robustly the segmentation of a scene into foreground
and background, compared to the single view silhouette estimates.

4. Particle Swarm Optimization

Classical approaches on solving optimization problems are of-
ten based on the evaluation of the derivatives of the defined objec-
tive function. In real-world optimization problems, the analytical
expression of the objective function is not known or it is multi-
modal, i.e., has several local minima. Additionally, its derivatives
may not-even be defined at certain points of the parameter space.
To cope with such problems, derivative-free optimization algo-
rithms have been proposed. One such approach is Particle Swarm
Optimization (PSO) [14]. PSO is a population based stochastic opti-
mization method that utilizes swarm intelligence to find extrema
of nonlinear continuous functions (a.k.a. objective or fitness func-
tions). It is similar to other evolutionary techniques like Genetic
Algorithms [13] with the major difference of having no crossover
and mutation operators. PSO exhibits better performance com-
pared to several other optimization methods [1] and is very
efficient in terms of computational cost.

Particle Swarm Optimization is an attractive optimization
method for the problem at hand for several reasons. It performs
well with non-smooth, multimodal objective functions and re-
quires a relatively low number of objective function evaluations
[1]. It depends on a very few parameters and it scales well with
the number of parameters to be optimized. Finally, it is inherently
parallel, leaving room for parallel implementations that can drasti-
cally reduce the computation time required for optimization, espe-
cially when this is intended to be performed on-line.

4.1. Social optimization

PSO is based on social interactions between the atoms of a pop-
ulation in order to optimize a problem modeled with a specific fit-
ness function. The method is inspired by the social behavior
exhibited in flocks of birds and schools of fishes. As such, it handles
populations of particles that are defined in the optimization space.
A social network between individuals (i.e., particles) is defined.
The particles are candidate solutions that are initialized randomly.
The social network determines the interactions that can take place
(e.g., particles can only interact with their neighbors). During the
execution of the PSO algorithm, particles evaluate the fitness of
the candidate solutions that represent and store in memory the
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parameters achieving the optimum fitness values. Moreover, they
adjust their velocities through predefined update equations. Finally,
they move in the parameter space, i.e.,, update their positions
according to a random linear blending performed upon two velocity
vectors. One of these vectors points towards the particle’s local best
solution and the other towards the best solution in a neighborhood
of particles. This process evolves iteratively, where each iteration is
called a generation, until a termination criterion is met. Such criteria
include the convergence of the whole or of a portion of the particle
population to a single solution, the execution of an upper bound of
iterations, the achievement of a specific fitness score, etc.

A great number of PSO variants have been proposed. In this
work, the simplest form of the PSO algorithm, called canonical
PSO [7] has been employed. Other popular variants include the
fully informed PSO [19] as well as variants that define dynamic
neighborhood topologies [25] and those that utilize enhanced
diversity at updating [2]. Variants have also been defined by using
heuristic velocity update rules or by explicitly handling discrete
optimization problems [6].

4.2. Canonical PSO

In canonical PSO, the topology of the population reduces to only
one neighborhood. Following the notation introduced in [27], every
particle holds its current position (current candidate solution, set of
parameters)in a vector x; and its current velocity in a vector ;.. More-
over, each particle stores in vector p; the position at which it
achieved, up to the current generation t, the highest fitness score. Fi-
nally, the swarm as a whole, stores in vector p, the best position
encountered across all particles of the swarm. p, is broadcasted to
the entire swarm, so every particle is aware of the current global
optimum. The update equations that are applied in every generation
t to reestimate the particle velocities and positions are

Ve = K(vrq + 111 (D; — Xe1) + C2T2(Pg — Xe1)) (15)
and
Xt = Xe-1 + U, (16)

where K is a constant constriction factor [5] defined as

2
]2—¢—\/¢2—4w

In Egs. (15) and (17), c; is called the cognitive component, c; is
termed the social component and ry,r, are random samples of a uni-
form distribution in the range [0,1]. Finally, ¢; + ¢, > 4 must hold [5].
In all performed experiments the values c; = 2.8 and ¢, = 1.3 were
used.

As mentioned earlier, the particles are initialized at random
positions and their velocities are initialized to zero. Each dimen-
sion of the multidimensional parameter space is bounded in some
range. If, during the position update, a velocity component forces
the particle to move to a point outside the bounded search space,
this component is zeroed and the particle doesn’t perform any
move at the corresponding dimension.

K= L =0 +0 (17)

5. Optimization of foreground detection parameters

The proposed algorithm is an iterative procedure that utilizes
canonical PSO to search for the optimal parameter vector across
the parameter space of the foreground detection algorithm pre-
sented in Section 2. The optimal parameter vector is defined to
be the one that maximizes the similarity between silhouettes
and confidence maps across all available views. Each particle posi-
tion corresponds to a set of foreground detection parameter values.

During particle evaluation, a foreground detection instance is ini-
tialized using the particle’s position and applied to an image sub-
sequence to produce a set of silhouette estimates. The use of
sequences instead of single frames is mandatory because, by defi-
nition, the foreground detection algorithm requires a history of
observations in order to produce reliable results.

The proposed iterative optimization process consists of the fol-
lowing steps (a) calculation of the confidence maps based on the
current silhouette estimates, (b) optimization of the foreground
segmentation parameters using the computed confidence maps,
and (c) calculation of new silhouette estimates using the optimized
parameters. By iterating the above steps in a closed loop, both the
estimated parameters and the quality of the produced silhouettes
get improved. A similar idea in the field of Machine Learning is em-
ployed in the principle of generalized policy iteration [26]. The de-
fined fitness function measures the similarity between
confidence maps and silhouette estimates across a given image se-
quence and for every view. Silhouette estimates are computed as
reported in Section 2 from an instance of the foreground detection
algorithm that is initialized by the position vector of a given parti-
cle. Confidence maps are produced by the silhouette estimates and
the additional calibration information of the multiview configura-
tion, as detailed in Section 3.2.

More specifically, let S;(x,y) denote a point of the silhouette im-
age of frame t captured by camera i. Let also ! (x, y) denote the va-
lue of the confidence map for the same point. The distance Dg;,
between silhouettes and confidence maps for a set of points A is
calculated as:

Dpir = Z |5$(Xp~,}’p) - (gf(xpvyp”' (18)
(%p.yp)eA

If we denote with Pf,; the set of silhouette pixels of frame t of view i
(i.e., foreground pixels) and with Pf,g_,- the set of the background pix-
els, then the fitness function is defined as

F— el1-r/2(Ch, (19)

where

=y it + it ). (20)
jec ’P}g-j‘ ‘Plzg»j‘

Algorithm 1 provides a summary of the computation of the fitness
function while Algorithm 2 provides a summary of the full optimi-
zation process.

Algorithm 1. Computation of the fitness function

Input: Particle 2, T, N

Output: Fitness score F

F=0

foreach [=1,2,...,Tdo
Compute silhouettes S;,Vi € [1,N.] (as described in Sec. 2);
Compute confidence maps %;,Vi € [1,N¢] (Eq. (11));
Compute Pfgj, Ppgin, Vi€ [1,Nc];

Dy, Dy .
r = Sienng (P24 + pit) (Eq. (20));
F = F + e(1-1/2(C)):
return (F);

6. Experiments

The goal of the performed experiments is (a) to show whether
the proposed method can be applied successfully to image se-
quences acquired by a calibrated multiview configuration in order
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to automatically tune the foreground detection parameters and
produce optimal silhouette images in a totally unsupervised man-
ner and (b) to investigate the influence of several factors (i.e., PSO
parameters, noise level, camera number and topology, etc.) on the
quality of the obtained results.

6.1. Parameter selection

The performance of foreground detection is governed by the
learning rate parameter o (Eqs. (2)-(4)) that determines the speed
of the adaptation. A uniform update speed is enforced by setting
a=1/T.

Algorithm 2. Optimization of the
parameters.

foreground detection

Input: Number of PSO generations N,, length of frame
sequence T, PSO population size N, number of cameras N
Outpur: Optimal foreground detection parameter vector 2*
Frnax = 0;
Initialize N¢ x N, particles p; randomly (random x; z; = 0);
foreachn=1,2,...,N, do
Perform particle p; flight, Vi € [1,Nc x N,] (Eq. (15));
Compute fitness F; of p;,Vi € [1,N¢ x Np] (through Algorithm
1);
if F; > F,.x then
Fmax = Fi:
7" =pi;
Update velocity of p;, Vi € [1,N: x Np] (Eq. (16));
return (7°)

Another important parameter is the threshold T, on the squared
Mahalanobis distance upon which it is decided if a given sample is
close to a background GMM component or not. It must be noted
that T, is different from the threshold T, that specifies whether a
sample belongs to any of the mixture components modeling either
background or foreground. According to Zivkovic [29], typical val-
ues are T, = 160 and T, = 35 for the mth component at time
step t.

In general, it is proposed that a total of four Gaussian compo-
nents are sufficient for the purposes of foreground detection.
Therefore, in our experiments this parameter did not vary. More-
over, let T, =1 — ¢; where it holds that 0 < T, < 1. The threshold
T, determines (see Egs. (5) and (6)) the number of mixture compo-
nents that model the background. In order for the background
modeling to be valid, T, must have a value that allows for the back-
ground to be modeled by at least one Gaussian component. Typi-
cally, ¢;=0.1 which leads to T, =0.9. Finally, the initial variance
oo of the newly imported components in the mixture, influences
the speed of adaptation. A typical value for this parameter is
O = 10.

As the parameters {o, Ty, Tg, 00} have a great impact on the final
result of the foreground detection process, they were selected as
the target variables of the proposed optimization process.

6.2. Experimental setup

The experimental validation of the proposed method was based
on two datasets. The first is the “Dancer” dataset! of Inria’s 4D
repository. This dataset captures the movements of a female dancer
through a configuration of eight calibrated cameras. Each view cap-
tures 251 synchronized frames of size 780 x 582. The first 50 frames
contain only scene background and are provided for proper initiali-

1 Available for download at http://charibdis.inrialpes.fr/public/viewgroup/1.

zation of the background modeling process. From those, 49 frames
were omitted, so the resulting sequence starts with a single frame
showing the scene background in isolation. On top of the actual data,
the dataset comes with a set of preprocessed silhouettes (one per
frame). These data are not used in the optimization process but form
a basis for the quantitative evaluation of the non-supervised fore-
ground detection algorithm.

The second dataset? is a synthetic, noise-free dataset, showing a
3D rendered model of a Kung-Fu girl in action. This has been ac-
quired by a virtual multiview setup of 25 cameras and contains
201 synchronized frames of image size 320 x 240. There is a single
frame showing the scene background in isolation. This dataset also
comes with a ground truth set of silhouettes that is produced auto-
matically by rendering the 3D model with no lights, resulting in a
white silhouette on a black background.

The description of the foreground detection method in [29] sug-
gests a parameter set that performs relatively well in the general
case. We refer to these parameters as typical parameters. Through-
out our experiments, we evaluate the typical parameters and the
parameters suggested by our methodology against the available
ground truth. This evaluation involves a comparison of the silhou-
ette images produced by a set of parameters against the available
ground truth silhouettes. More specifically, let 2 be the set of all
image pixels for all cameras and time instances. Then the measure
used for comparing the resulting silhouette images to ground truth
is:

Do
=1-= 21
q Q (21)
where
Dy = IS'(x,y) = T'(x,¥)] (22)
te0.T] (x.y)eQ

and T(x,y) denotes the ground truth available for point (x,y) at time t.
A value of q =1 signifies silhouette images identical to the ground
truth and, therefore, perfect foreground detection parameters.

6.3. Dancer dataset

We present quantitative and qualitative results obtained from
the application of the proposed method on the dancer dataset. As
detailed in Section 6.1, the most critical foreground detection
parameters are o, Tp, Ty and op. In a first experiment, we used a
population of 15 particles running PSO for 50 generations on the
4D parameter space {o,Tp,Tg00}. Each particle is evaluated on
the entire dancer sequence. We call this the exhaustive or the
all-frames experiment.

In a second experiment, the self-evaluation of each particle con-
sidered only the first 10 frames of the entire sequence. We call this
experiment the 10-frames experiment. In this case, a population of
eight particles run PSO for 20 generations on the 3D parameter
space of {Ty,Tg,00}. The reason for excluding parameter o is that
a value of « that is optimal on the small, 10-frames time window,
cannot generalize well in a sequence of extended length. Therefore,
o was fixed to the typical value while PSO was set to jointly opti-
mize parameters Ty, T, and oq.

The parameter vectors estimated in the two experiments were
evaluated on the entire sequence. The typical parameter vector
as well as the initialization parameter vector of the second exper-
iment were also evaluated. These four parameter vectors are listed
in Table 1. Table 1 also reports the mean fitness values across the
whole frame range of the sequence achieved by each parameter

2 Available for download at http://www.mpi-inf. mpg.de/departments/irg3/kungfu/.
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Table 1
Evaluation of foreground detection parameters on the dancer sequence.

Parameter set Ty Ty go o Mean fitness value
Typical 16.0 9.0 11.0 0.0001 2283.29
Initialization 33 13.2 2.7 0.0001 211.71
10-frames best 18.6 19.0 37.0 0.0001 6389.85
All-frames best 11.9 16.7 41.6 0.0004 6613.91

set. The detailed fitness graph for all parameter sets in all sequence
frames is shown in Fig. 4.

From these results, it can be verified that the parameter set re-
turned from the exhaustive experiment was the best, followed by
the parameter set resulting from the 10-frames experiment. Those
two sets achieved far better fitness scores than the typical param-
eters, having a marginal difference between them. Fig. 5 shows
how those fitness scores translate to ground truth similarity.

Two important conclusions can be drawn from these results.
First, there is a consistency between fitness function scores and
ground truth similarity scores, thus the fitness function is well de-
fined. Second, the results of the exhaustive experiment are very
similar to the results of the 10-frames experiment, leading to the
conclusion that the parameters found on the small training set
generalize very well for the rest of the sequence assuming that
there are no major changes in the environment. This is an impor-
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tant observation that can be exploited to avoid the significant addi-
tional computational overhead of optimizing a large population of
particles across many generations on the whole sequence at a
small quality pay-off. This also demonstrates that the proposed
method can be used for the automatic tuning of parameters on
streaming sequences using just a small number of frames to esti-
mate the proper parameters. Examples of the silhouette images
produced by applying the four different instances of foreground
detection on a specific view and frame together with the ground
truth are shown in Fig. 6. As it can be verified, the noise patterns
appearing in the images corresponding to the initialization and
typical parameter sets are missing from the image corresponding
to the optimal parameter set.

We furthermore isolated the particle that returned the optimal
position for the 10-frames experiment and we recorded its route
to this solution. The fitness of this particle as a function of gener-
ations is illustrated in Fig. 7. The plot indicates that the proposed
method requires approximately 15 generations to optimize the
parameters.

6.4. Kung-Fu girl dataset

We also conducted the 10-frames experiment on the Kung-Fu
girl dataset (8 particles, 20 generations, training set of 10 frames,
{Tp,Tg,00} parameter space). Following the same approach as in
the case of the dancer dataset, we evaluated the three parameter
vectors shown in Table 2. The corresponding fitness graphs are
shown in Fig. 8a. Similarity to ground truth was computed as
shown in Fig. 8b. Finally, examples of silhouette images from the
three detection instances that correspond to the parameter sets
of the experiments are shown in Fig. 9.

6.5. Noise effects

The presence of noise in the input image is responsible for
increasing the number of detected foreground pixels. This is be-
cause color variations due to noise are more likely to manifest
themselves as foreground rather than as a significantly varying
background. This can be observed on the output of the typical
parameters for the dancer dataset (Fig. 6) where foreground pixels
are distributed, following a certain camera dependent noise pat-
tern, across the entire image area. Thus, in the dancer sequence
experiments, the proposed optimization seeks the optimal param-
eter set that also compensates for image noise. In the case of the
experiment with the synthetic, noise-free Kung-Fu girl dataset,
the algorithm just optimizes the similarity to the ground truth.
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Fig. 5. (a) Comparison of the silhouettes produced by each parameter vector to the ground truth, (b) the performance of the 10-frames and exhaustive experiments, isolated.
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Fig. 6. Example silhouettes calculated by the foreground detection algorithm for frame #110 of the dancer sequence as shown from camera #3 and for the four different

parameter sets. The ground truth silhouette is also provided as a reference.
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Table 2
Evaluation of foreground detection parameters on the Kung-Fu girl dataset.

Parameter Ty Ty a0 Mean fitness value
Typical 16.00 9.00 11.00 4322.30
Initialization 39.50 14.20 27.40 805.99
10-frames best 3.05 2.60 1.30 10489.90

As it is shown in Fig. 9, the silhouette image produced with the best
parameter set is almost identical to the ground truth, without any
holes. On the contrary, the corresponding result for the dancer se-
quence contains some holes, as a result of the presence of noise.
A series of experiments were conducted to systematically mea-
sure the behavior of the proposed algorithm to various noise levels.
In these experiments we contaminated the original Kung-Fu girl
dataset with three different levels of Gaussian noise (i, =0,

0% =0.0001), (4, = 0,02 =0.00025), (4; = 0,03 = 0.0005). Next,
we conducted the 10-frames experiment on the resulting datasets
and evaluated the results. Finally, we compared the results against
the typical parameters. Mean fitness values for the various noise
levels are shown in Table 3. Fitness and similarity graphs are shown
in Fig. 10, while silhouette examples with the corresponding ground
truth are shown in Fig. 11.

As it can be verified, although parameter optimization is
affected by noise, in all three cases the suggested parameters result
in silhouettes closer to the ground truth than those produced by
the typical parameter set. Moreover, for the case where
0% = 0.0001, we found that the typical parameters were very close
to the optimal parameters returned by the optimization procedure
(see Table 4). This might serve as an indication that the typical
parameters are tuned to deal with this particular level of image
noise. Another interesting observation is that as the noise level
increases, the optimization method automatically, but also reason-
ably, increases the parameter oy.

6.6. Camera placement and number of cameras

Another interesting problem dimension is the variability of the
obtained results with respect to the placement of the available
cameras and their number. The topology of the camera network
highly influences the results. More specifically, the method fails
to optimize the foreground detection parameters if the cameras
arrangement does not permit the accurate voting in the voxel
space. As an example, consider a configuration where cameras
are placed in one side of the foreground object, only. The fact that
large parts of the foreground object are not visible by any of the
cameras results in a voxel space that does not accurately represent
the object’s 3D structure. This produces inaccurate confidence
maps which, in turn, leads the parameter optimization process
far from its optimal values.

Provided that the cameras are placed in a way that surrounds
the foreground objects, the increase of the number of cameras does
not improve considerably the obtained results. In order to examine
the effects of the number of cameras on the performance of the
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Fig. 9. Silhouettes calculated by the foreground detection algorithm for frame #127 of the Kung-Fu sequence (camera #14) for the three parameter vectors. The ground truth

silhouette is also provided.

Table 3
Mean fitness values for various levels of noise contamination of the Kung-Fu girl
sequence.

Parameter set a% o'% a§

3661.52
3725.85

Typical
10-frames best

412.25
1473.76

231.62
859.30

method, we conducted experiments on the Kung-Fu girl dataset,
each time utilizing a different camera subset of the original 25-
camera configuration. Sixteen out of the 25 views have nodal
points arranged on a circle and optical axes pointing towards the
center of this circle. We considered 11 different camera subsets
with a number of cameras ranging between 6 and 16. In each case,

cameras were distributed as evenly as possible over the entire cir-
cle. For all the 11 configurations tested, the resulting fitness value
remained practically unchanged and equal to the one reported in
the full 25 cameras experiment presented in Section 6.4. Analogous
experiments with the dancer data set led to exactly the same
performance.

6.7. Optimization of individual camera parameters

In previous experiments a single parameter vector is optimized
and used for the entire camera set. This vector defines a low
dimensional search space for the optimization algorithm. It is
known that the canonical PSO algorithm performs very efficiently
in such low dimensional spaces where it only needs to utilize a
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Fig. 10. Fitness graphs for the 10-frames and the typical parameters experiments on the Kung-Fu girl dataset for various noise levels (left) and comparison with the ground
truth (right). Blue curves correspond to the 10-frames experiments and red curves to the typical parameters set.

small population of particles for few generations. We have further
examined the behavior of the proposed method on larger search
spaces. In a series of experiments the optimization method was
employed to optimize individual camera parameters. More specif-
ically, for an n camera setup, the parameter vectors had a dimen-
sion of 3n.

On the dancer dataset the total number of parameters to opti-
mize formed a vector of 24 dimensions (i.e., 8 cameras, 3 parame-
ters per camera). The optimization procedure for this experiment,
utilized 8 particles for 20 generations. The fitness and similarity-
to-ground-truth curves found to be identical to the ones produced
by the 10-frames experiment that was described in Section 6.3. A
similar experiment was also conducted for the Kung-Fu girl dataset
where 16 cameras were utilized resulting in a total parameter vec-
tor of 48 dimensions. For this experiment, the optimization algo-
rithm required 200 generations of an 8-particle population to
converge to results similar to the ones presented in Section 6.4.

6.8. Implementation and computational performance issues

The experiments were conducted on a PC with 6GB RAM, Intel
920 core i7 CPU and a Nvidia GTX 295 GPU. Confidence map com-
putation and multiview silhouette estimates were implemented on
GPU, using Nvidia’s CUDA framework.? For the dancer dataset con-
fidence maps were calculated at a rate of roughly 250 frames per
second while on the Kung-Fu girl dataset we reached a rate of
800 frames per second. For foreground detection we employed
the publicly available* CPU implementation of the method de-
scribed in [29]. Foreground detection calculations for one generation
of 8 particles and for the 10-frames experiment on the dancer data-
set took 62 s. On the Kung-Fu girl dataset the corresponding time
was 23 s.

3 http://developer.nvidia.com/object/cuda_2_3_downloads.html.
4 http://staff.science.uva.nl/zivkovic/Publications.
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Fig. 11. The silhouettes returned by the typical and and 10-frames best foreground detection instances for the three noise levels of the conducted experiments. Results

correspond to frame #138, view 8 of the Kung-Fu girl dataset.

Table 4
Parameter vectors estimated for the Kung-Fu dataset at various
noise levels.

Parameter set Ty Ty go
Typical 16 9 11
2 =0.00010 16.8 19.5 11.0
a2 =0.00025 335 23.7 13.0
a4 =0.00050 34.8 30.2 28.0

7. Conclusions

We presented a novel algorithm for optimizing, in an unsuper-
vised manner, the foreground detection parameters of a calibrated
multicamera configuration. The proposed method successfully ex-
ploits information regarding the consensus of the setup on what
constitutes foreground in an observed scene. By encoding this infor-
mation in a fitness function, Particle Swarm Optimization optimizes
the foreground detection parameters. Results showed a strong cor-
relation of the fitness curve with the similarity-to-ground-truth
curve, leading to the conclusion that the proposed definition of
the fitness function is a good choice for the specific task. It was also
shown that this method can be used, provided an efficient fore-
ground detection implementation, for online applications.

The most important advantage of the proposed algorithm is that
it does not require prior ground truth information or other kind of
supervision. As such, it can be used as a tool for automatically
adjusting the foreground detection parameters in frequently
changing environments. The data used to evaluate our method
have been captured in laboratory conditions. This has been moti-
vated by the availability of ground-truth for these data sets, which
is required for the quantitative evaluation of the proposed ap-
proach. It is expected that the benefits from the application of
the proposed method in uncontrolled environments (i.e. outdoors
surveillance) will be much greater due to the fact that, in such con-
ditions, there is no single parameter set that performs well on aver-
age. Current and future work includes the extension of this
approach to other interesting problems where multiview consen-
sus can be exploited towards relaxing the requirement for ground
truth data and/or supervision.
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