Time-Aware and Corpus-Specific Entity Relatedness

Nilamadhaba Mohapatra^{1,2}, Vasileios Iosifidis¹, Asif Ekbal², Stefan Dietze¹, Pavlos Fafalios

¹L3S Research Center, University of Hannover, Germany ²Indian Institute of Technology, Patna, India

Introduction

- Entity Relatedness
 - Determining the degree of relatedness between two entities
- Useful in a variety of applications
 - IR
 - Search Recommendations
 - Entity Linking

- Approaches:
 - Structural similarity in graphs
 - Using lexical characteristics
 - Wikipedia-based entity distributions and embeddings

Introduction

- Temporality of entity context
 - Entity popularity often changes across time [Fang et al. 2014]
 - Entity recommendations are time-dependent [Zhang et al. 2016] [Tran et al. 2017]
 - Exploiting different KB versions can advance entity relatedness [Prangnawarat and Hayes, 2017]
- What about the corpus-context?

Introduction

- What about the corpus-context?
- Example:
 - Input entity: 2014 FIFA World Cup
 - Related entities:

German news articles	Greek news articles
Germany national football team	Greece national football team
Argentina national football team	Costa Rica national football team
Mario Götze	Sokratis Papastathopoulos

Approach overview

- Entity relatedness depends on both:
 - Time-context
 - Corpus-context
- Method:
 - Train time- and corpus-specific word embeddings (using Word2Vec)
 - Not using general-purpose corpora like Wikipedia!
 - Exploit entity annotations for transforming word embeddings to entity embeddings
 - Relax the time boundaries (optionally)

Problem Modeling

- Corpus of documents D covering a time period T
 - E.g., German sport articles of 2015
- Entities E mentioned in the documents (persons, locations, events, ...)
 - Extracted using an entity linking system
 - Each entity is associated with a unique URI in a KB

Problem Modeling

- Modeling: ranking problem
 - 1. Generate a list of candidate entities
 - Exploiting Wikipedia links, DBpedia, and entity co-occurrences in the corpus [Zhang et al. 2016]
 - 2. Rank the candidate entities based on their relevance to the query entities

Time-Aware Word Vector Similarity

Time-Aware Word Vector Similarity

t5

Making the embeddings entity-aware

- Limitations of word embeddings:
 - Handling of multi-word entity names, e.g. "United Nations"
 - Same entity name may refer to different entities, e.g. "Kobe"
- Solution: exploit entity annotations
 - Each entity mention in a document is associated with a unique URI in a KB
- Replace entity mentions with unique IDs
 - As done in [Mikolov et al. 2013] for phrases
- Train Word2Vec models on the modified corpora
- Use entity IDs for computing entity relatedness

3844878080843 was elected president in a surprise victory over **8798729506352** nominee **1365985456623**.

MAPPINGS:

3844878080843 → <u>https://en.wikipedia.org/wiki/Donald_Trump</u> 8798729506352 → <u>https://en.wikipedia.org/wiki/Democratic_Party_(United_States)</u> 1365985456623 → <u>https://en.wikipedia.org/wiki/Hillary_Clinton</u>

Making the embeddings entity-aware

Relaxing the time boundaries

- Problem
 - Entity embeddings built on specific time periods (e.g., November 2017)
 - An important event related to the query entity may happened very close to the boundaries of the query time period
 - The query entity may correspond to an event spanning a longer time period
- Two entities might be highly related some time before or after the query time period!
- Consider the Word2Vec models before & after the model of the query time period
 - But with smaller weight
- This can increase the ranking of an important candidate entity that co-occurs frequently with a query entity some time before of after the query time period
 - But can also decrease the ranking of an entity co-occurring with the query entity during the query time period

Relaxing the time boundaries

- Objective:
 - Evaluate the effectiveness of the proposed approach
 - Compare it with similar but time and entity agnostic models
- Dataset and Ground Truth:
 - Provided in [Zhang et al. 2016]
 - Different task: Time-aware **entity recommendation** (for keyword queries)
 - Candidate entities and relevance judgements for 22 keyword queries (July 2014 January 2015)
 - Each query corresponds to a particular date range (month)
 - Adapted for our problem (time-aware entity relatedness)
 - Keyword query \rightarrow query entities
 - Remove query entities from list of candidate entities
 - Example: "Tour de France Nibali" (07/2014)
 - Query entities: {Wikipedia:Tour_de_France, Wikipedia:Vincenzo_Nibali}

- Setup
 - 7 CBOW models (one per month)
 - Using default Word2Vec setting (300 dimensions, 5 words window size, 5 min word count)
 - Compare our approach on ranking the candidate entities with two baselines:
 - 1) entity-agnostic, time agnostic
 - 2) entity-agnostic, time-aware

• Results

nDCG@k	Time+Entity Agnostic	Entity Agnostic	Time+Entity Aware
k=5	0.3210	0.3653	0.4999 ‡
k=10	0.3748	0.4113 ‡	0.5402 ‡
k=20	0.4546	0.4971 ‡	0.6115 ‡
k=30	0.5092	0.5704 ‡	0.6562 ‡

• Relaxing the time boundaries

nDCG@k	$w_1 = 1.0$	$w_1 = 0.9$	$w_1 = 0.8$	$w_1 = 0.7$	$w_1 = 0.6$
k=5	0.4999	0.5017	0.4990	0.4933	0.4890
k=10	0.5402	0.5332	0.5358	0.5296	0.5291
k=20	0.6115	0.6039	0.5971	0.5932	0.5893
k=30	0.6562	0.6517	0.6451	0.6403	0.6371

- Examples of positive impact
 - "2014 FIFA World Cup" (July 2014): nDCG@5 increases from 0.45 to 0.51 (w1=0.8)
 - "Tim Cook" (October 2014): nDCG@5 increases from 0.58 to 0.62 (w1=0.8)

Conclusion

- Flexible model for entity relatedness
 - Considers the underlying corpus
 - Time- and Entity-aware
 - Outperforms similar but time and entity agnostic models
- Future work
 - Support of arbitrary time intervals (join results of several models)
 - Identify cases where time boundaries relaxation should be applied
 - Extensive evaluation using a variety of corpora (of different contexts and time periods)

Thank you

Comments / Questions?

Indian Institute of Technology Patna

L3S Research Center, Leibniz Universität Hannover

ALEXANDRIA Project (ERC Nr. 339233)