MatWare:

Constructing and Exploiting Domain Specific Warehouses by Aggregating Semantic Data

Y. Tzitzikas^{1,2}, N. Minadakis¹, Y. Marketakis¹, P. Fafalios^{1,2}, C. Alloca¹, M. Mountantonakis^{1,2}, I. Zidianaki^{1,2}

¹ Institute of Computer Science, FORTH-ICS
 ² Computer Science Department, University of Crete, GREECE

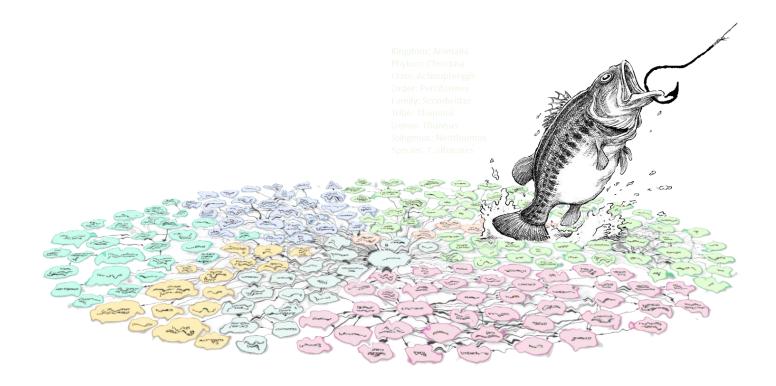
11th Extended Semantic Web Conference (ESWC'14), Heraklion, Crete, Greece, 25-29 May 2014

Outline

- Motivation
- Context & Requirements
- The Warehouse Construction Tool MatWare

 The Process, Scope Control, Connectivity, Provenance, Architecture
- Applications of MatWare-constructed warehouses
- Concluding Remarks

Motivation


In many applications one has to fetch and assemble pieces of information coming from more than one sources (including SPARQL endpoints.)

Def: We use the term **Semantic Warehouse** (for short warehouse) to refer to a **read-only set of RDF triples fetched (and transformed) from different sources that aims at serving a particular set of query requirements**.

Key Questions

- How to define the objectives and the scope of such a warehouse
- How to connect the fetched pieces of information?
- How to test that its contents meet the objectives?
- *How to measure the quality of the warehouse?*
- How to tackle the various issues of provenance that arise?
- *How to automate the construction/maintenance process?*

Context

Context: iMarine

Id: It is an FP7 Research Infrastructure Project (2011-2014)

Final goal: launch an initiative aimed at establishing and operating an einfrastructure supporting the principles of the Ecosystem Approach to fisheries management and conservation of marine living resources.

Partners:

stitute of Computer Science

Marine Information: in several sources

WoRMS: World Register of Marine Species Registers more than 200K species

ECOSCOPE- A Knowledge Base About Marine Ecosystems (IRD, France)

itute of Computer Science

FLOD (Fisheries Linked Data) of Food and Agriculture Organization (**FAO**) of the United Nations

FishBase: Probably the largest and most extensively accessed online database of fish species.

DBpedia

Marine Information: in several sources Storing complementary information

Ecosystem information (e.g. which fish eats which fish)

stitute of Computer Science

Commercial codes

General information, occurrence data, including information from other sources

General information, figures

Marine Information: Using and action in several sources different t

Using and accessed through

different technologies

Web services (SOAP/WSDL)

stitute of Computer Science

SPARQL Endpoint

RDF + OWL files

Relational Database

SPARQL Endpoint

How to integrate

Main approaches for Integration

In general there are two main approaches for integration

Warehouse approach (materialized integration)

- Design Phase: The underlying sources (and their parts) have to be selected
- Creation Phase: Process for getting and creating the warehouse
- Maintenance Phase: Ability to create the warehouse from scratch, and/or ability to update parts of it
- Mappings are exploited to extract information from data sources, to transform it to the target model and then to store it at the central repository

Mediator approach (virtual integration)

• The mediator receives a query formulated in terms of the unified model/schema. The **mappings** are used to enable **query translation**. The derived sub-queries are sent to the wrappers of the individual sources, which transform them into queries over the underlying sources. The results of these sub-queries are sent back to the mediator where they are assembled to form the final answer

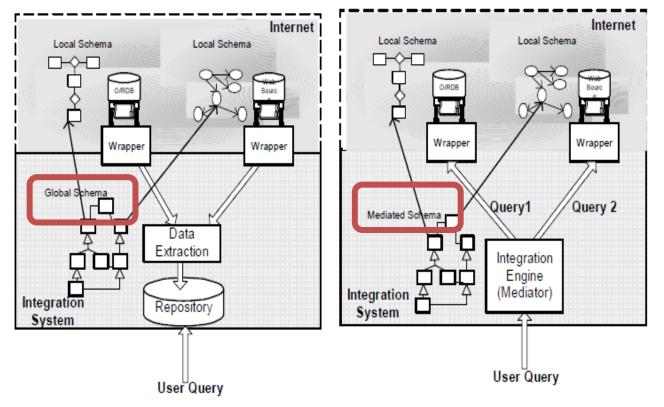
Main approaches for integration (cont.)

<u>Warehouse</u>

titute of Computer Science

- Benefit: Flexibility in transformation logic (including ability to curate and fix problems)
- Benefit: Decoupling of the release management of the integrated resource from the management cycles of the underlying sources
- Benefit: Decoupling of access load from the underlying sources.
- Benefit: Faster responses (in query answering but also in other tasks, e.g. if one wants to use it for applying an entity matching technique).
- Shortcomings You have to pay the cost for hosting the warehouse. You have to refresh periodically the warehouse

Mediator


- Benefit: One advantage (but in some cases disadvantage) of virtual integration is the real-time reflection of source updates in integrated access
- Comment: The higher complexity of the system (and the quality of service demands on the sources) is only justified if immediate access to updates is indeed required.

Main approaches for integration (cont.)

In both cases we need a unified model/schema

Materialized views

Virtual views

The Top Level Ontology: MarineTLO

MarineTLO aims at being a global core model that

- provides a common, agreed-upon and understanding of the concepts and relationships holding in the marine domain to enable knowledge sharing, information exchanging and integration between heterogeneous sources
- covers with suitable abstractions the marine domain to enable the most fundamental queries, can be extended to any level of detail on demand, and
- allows data originating from distinct sources to be adequately mapped and integrated
- MarineTLO is not supposed to be the single ontology covering the entirety of what exists

Benefits:

- reduced effort for improving and evolving : the focus is given on one model, rather than many (the results are beneficial for the entire community)
- reduced effort for constructing mappings: this approach avoids the inevitable combinatorial explosion and complexities that results from pair-wise mappings between individual metadata formats and/or ontologies

It allows formulating complex queries, e.g.:

1. Given the scientific name of a species, find its predators with the related taxon-rank classification and with the different codes that the organizations use to refer to them.

2. Given the scientific name of a species, find the ecosystems, waterareas and countries that this species is native to, and the common names that are used for this species in each of the countries

The MarineTLO currently contains around 90 classes and 40 properties. More in www.ics.forth.gr/isl/MarineTLO

The MarineTLO-based semantic warehouse

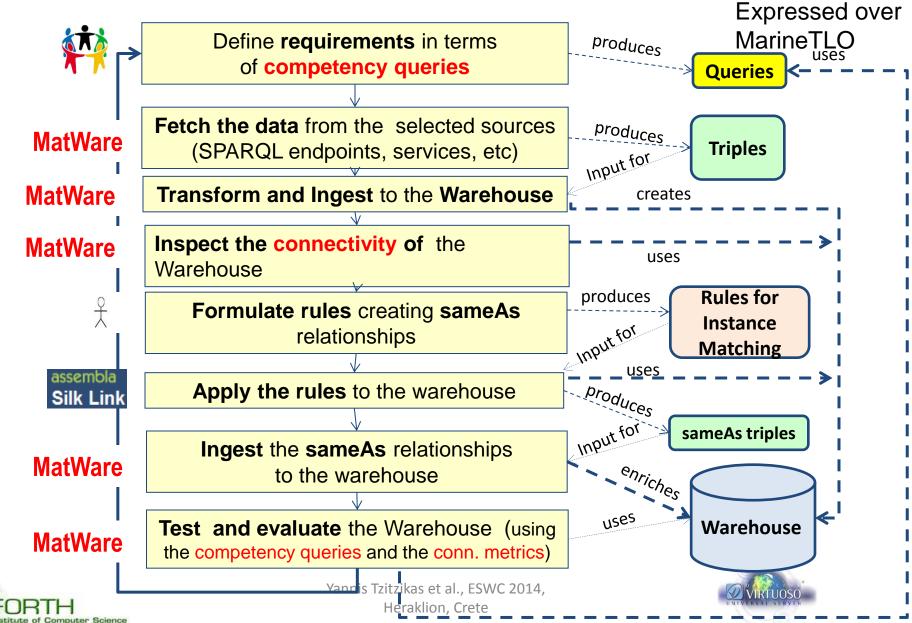
Requirements

Functional Requirements

- •F1:Multiplicity Of Sources
- •F2:Mappings, Transformations and Equivalences
- •F3:Reconstructibility

Non Functional Requirements

- N1:Scope control
- N2:Connectivity assessment
- N3:Provenance
- N4:Consistency and Conflicts


Related Systems (for creating domain specific semantic warehouses)

- ODCleanStore [T. Knap et al. 2012]
 - Downloading of RDF graphs
 - Deduplication
 - Conflict Resolution
 - Two sources (subjects) have different object values for a certain predicate
 - Rules for selecting one or more values (ANY, MAX, ALL, etc.)
 - Quality metrics for a) scoring a source based on conflicts, and b) assessing the overall outcome [T. Knap and J. Michelfeit, 2012]
- Sieve [P. N. Mendes et al. 2012]
 - Part of the Linked Data Integration Framework (LDIF)
 - Metrics for schema completeness and conciseness

The warehouse construction tool MatWare

The warehouse construction and evolution process (as supported by MatWare)

N1: Scope Control

- We use the notion of competency queries.
 - A competency query is a query that is useful for the community at hand, e.g. for a human member , or for building applications for that domain
- Indicative competency queries for the warehouse of iMarine:

#Query	For a scientific name of a species (e.g. Thunnus Albacares or Poromitra Crassiceps), find/give me:
Q1	the biological environments (e.g. ecosystems) in which the species has been introduced and more general descriptive information of it (such as the country)
Q2	its common names and their complementary info (e.g. languages and countries where they are used)
Q3	the water areas and their FAO codes in which the species is native
Q ₄	the countries in which the species lives
Q ₅	the water areas and the FAO portioning code associated with a country
Q ₆	the presentation w.r.t Country, Ecosystem, Water Area and Exclusive Economical Zone (of the water area)
Q ₇	the projection w.r.t. Ecosystem and Competitor, providing for each competitor the identification information (e.g. several codes provided by different organizations)
Q ₈	a map w.r.t. Country and Predator, providing for each predator both the identification information and the biological classification
Q ₉	who discovered it, in which year, the biological classification, the identification information, the common names - providing for each common name the language and the countries where it is used in.

N2: Connectivity Assessment

- **Connectivity** has two main aspects: Schema and Instance
- Regarding Schema Connectivity we use a top level ontology (MarineTLO) and schema mappings in order to associate the fetched data with the schema of the top level ontology.
 - Based on these MatWare transforms and then ingests the fetched data
- As regards Instance Connectivity one has to inspect and test the connectivity of the "draft" warehouse through the competency queries, and a number of connectivity metrics that we have defined and then formulate rules for instance matching

N2: Connectivity Metrics

- Motivation: Why it is useful to measure Connectivity
 - For assessing how much the aggregated content is connected
 - For getting an overview of the warehouse
 - For quantifying the value of the warehouse (query capabilities)
 - Poor connectivity affects negatively the query capabilities of the warehouse.
 - For making easier its monitoring after reconstruction
 - For measuring the contribution of each source to the warehouse, and hence deciding which sources to keep or exclude (there are already hundreds of SPARQL endpoints). Identification of redundant or unconnected sources

MatWare supports the connectivity metrics introduced in :

- Y. Tzitzikas, et al, *Quantifying the Connectivity of a Semantic Warehouse*, 4th International Workshop on Linked Web Data Management (LWDM'14@ EDBT'14
- M. Mountantonakis et al, *Extending VoID for Expressing the Connectivity Metrics of a Semantic Warehouse*, 1st International Workshop on Dataset Profiling & Federated Search for Linked Data (PROFILES'14), ESWC'14,

N2: Connectivity Metrics Definition

Metric Name	Metric Definition
Common URIs between two	$ U_i \cap U_j $
Sources S_i and S_j	
Percentage of Common URIs	$curi_{i,j} = \frac{ U_i \cap U_j }{\min(U_i , U_j)}$
between two Sources S_i and S_j	
Common Literals between two	$ Lit_i \cap Lit_j $
Sources S_i and S_j	
Percentage of Common Literals	$clit_{i,j} = \frac{ Lit_i \cap Lit_j }{\min(Lit_i , Lit_j)}$
between two Sources S_i and S_j	
Increase in the average degree	$\frac{deg_W(E) - deg_S(E)}{deg_S(E)}$
Unique Triples of a Source S_i	$triplesUnique(S_i) = triples(S_i) \setminus (\bigcup_{1 \le j \le k, j \ne i} triples(S_j))$
Percentage of Unique Triples of	$\frac{ triplesUnique(S_i) }{ triples(S_i) }$
a Source S_i	
Complementarity factor for an	$cf(e) = \{ i \mid triples_W(e) \cap triplesUnique(S_i) \neq \emptyset \} $
entity e	

S_i	$\operatorname{avg} deg_{S_i}(U_i)$	avg $deg_W(U_i)$	increase
FLOD	7.18	9.18	27.84%
WoRMS	3.3	7.33	122.36%
Ecoscope	22.84	31.18	36.56%
DBpedia	41.41	42.11	1.7%
FishBase	18.86	29.81	58.08%
AVERAGE	18.72	23.92	27.78%

 \equiv Suffix canonicalization

The average degree is increased from 18.72 to 23.92.

Average degrees in sources and in the warehouse

S_i	avg $deg_{S_i}(U_i)$	avg $deg_W(U_i)$	increase		
FLOD	7.18	54.31	656.51%		
WoRMS	3.3	9.93	201.36%		
Ecoscope	22.84	165.24	623.6%		
DBpedia	41.41	84.2	103.36%		
FishBase	18.86	50.6	168.32%		
AVERAGE	(18.72)	72.86	289.21%		
Average degrees in sources and in the warehouse					

The average degree, of all sources is significantly bigger than before.

N2: Connectivity Metrics:

As computed by MatWare

Metrics Results

Produced by MaTWare on: 1/12/2013 SPARQL EndPoint: http://virtuoso.i-marine.d4science.org:8890/sparql Sources Used: i)FLOD ii)WoRMS iii)Ecoscope iv)DBpedia v)Fishbase vi)Clone Source vii)Airports

Common Uris

Source	FLOD	WoRMS	Ecoscope	DBpedia	Fishbase	Clone Source	Airports
FLOD	173929	239	523	631	887	250	13
WoRMS		80485	200	1714	3596	364	0
Ecoscope			5824	192	225	4030	4
DBpedia				70246	9578	4589	14
Fishbase					34974	481	60
Clone Source						8457	4
Airports							4606

Common Uris Percentage

Source	FLOD	WoRMS	Ecoscope	DBpedia	Fishbase	Clone Source	Airports
FLOD	1	0.3%	8.98%	0.9%	2.54%	2.96%	0.28%
WoRMS		1	3.43%	2.44%	10.28%	4.3%	0%
Ecoscope			1	3.3%	3.86%	69.2%	0.09%
DBpedia				1	27.39%	54.26%	0.3%
Fishbase					1	5.69%	1.3%
Clone Source						1	0.09%
Airports							1

Common Literals

Source	FLOD	WoRMS	Ecoscope	DBpedia	Fishbase	Clone Source	Airports
FLOD	111164	3624	1745	5668	9504	373	1533
WoRMS		51076	382	2429	4773	289	86
Ecoscope			14102	389	422	6871	131
DBpedia				123887	14038	7144	117
Fishbase					138275	604	152
Clone Source						13964	49
Airports							12302

Common Literals Percentage

Source	FLOD	WoRMS	Ecoscope	DBpedia	Fishbase	Clone Source	Airports
FLOD	1	7.1%	12.37%	5.1%	8.55%	2.67%	12.46%
WoRMS		1	2.71%	4.76%	9.34%	2.07%	0.7%
Ecoscope			1	2.76%	2.99%	49.21%	1.06%
DBpedia				1	11.33%	51.16%	0.95%
Fishbase					1	4.33%	1.24%
Clone Source						1	0.4%
Airports							1

Triples

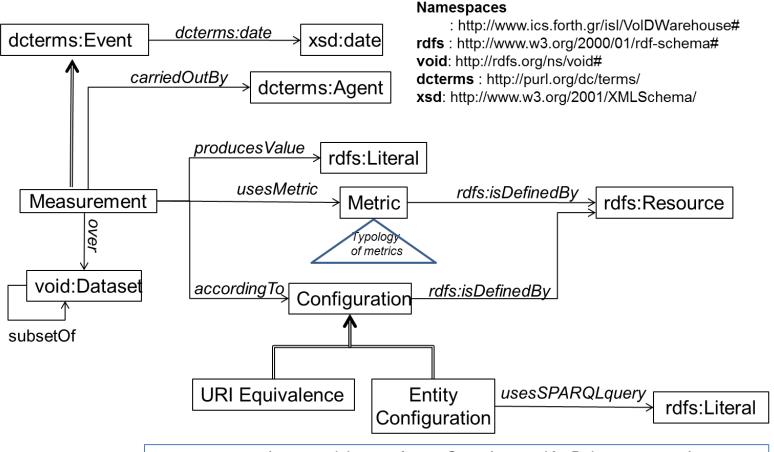
Source	Triples	Unique Triples	Percentage			
FLOD	665456	664703	99.89%			
WoRMS	461230	460741	99.89%			
Ecoscope	54027	17951	33.23%			
DBpedia	450429	429426	95.34%			
Fishbase	1425283	1424713	99.96%			
Clone Source	56166	0	0%			
Airports	31628	31628	100%			

* Probably redundant source

stitute of Cor

Complementarity Factor

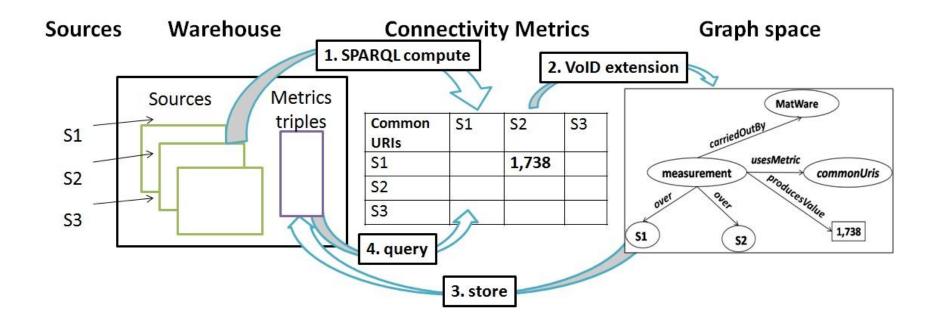
Entities	Complementarity Factor
Astrapogon	2 7
Species	5 7
Greece	4 7
Thunnus	5 7
Shark	5 7


Degrees

Source	Source Degree	Warehouse Degree	Increase
FLOD	7.18	54.3	656.4%
WoRMS	3.3	9.93	200.09%
Ecoscope	22.84	165.24	623.46%
DBpedia	41.41	84.2	104.8%
Fishbase	18.86	50.6	168.29%
Clone Source	44.43	84.2	89.5%
Airports	70.99	72.56	2.2%
Average	41.8	74.43	78.07%

Probably out of domain of interest

N2:: Connectivity Metrics: Exchanging


We have extended VoID for representing and exchanging such metrics (VoIDWarehouse)

Published in: http://www.ics.forth.gr/isl/VoIDWarehouse

N2:: Connectivity Metrics: Exchanging (cont).

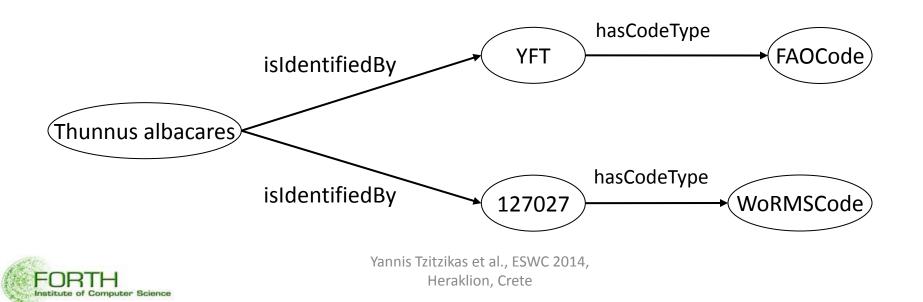
1. Compute of the Connectivity Metrics-Production of Matrixes

- 2. Describe the Connectivity Metrics with the proposed VoID extension
- 3. Store these triples in a separate graph space
- 4. Retrieve/Query these values from the warehouse using SPARQL queries

We have realized that the following 4 levels of provenance support are usually required:

- [a] Conceptual level
- [b] URIs and Values level
- [c] Triple Level
- [d] Query level

Level [a] can be supported by the conceptual model level. In our application context we use the MarineTLO and the transformation rules do the required transformations.


Matware offers support also for levels [b]-[d]

a) Conceptual modeling level

Example: Assignment of identifiers to species

• MarineTLO models the provenance of species names, codes etc, and the Transformation rules of MatWare transform the ingested data according to this model.

b) URIs and Literals :

- i. Adopting the namespace mechanism for **URIs**:
 - The prefix of the URI provides information about the origin of the data.
 - e.g. <u>www.fishbase.org/entity/ecosystem#</u>mediterannean_sea
- ii. Ability to attach @Source to every **literal** coming from a Source:
 - e.g. select scientific name and authorship of Yellow Fin Tunna

scientificName	year	authorship
"Thunnus albacares"@dbpedia	"1788"@dbpedia	"Bonnaterre"@dbpedia
"Thunnus albacares"@worms	"1788"@worms	"Bonnaterre"@worms

- This policy allows formulating source-centric queries in a relative simple way:

SELECT ?speciesname WHERE { ?species tlo:has_scientific_name ?scientificname FILTER(langMatches(lang(?scientificname), "worms"))

c) Triple Level Provenance

- Store the fetched triples in a separate graphspace:
 - FISHBASE: http://www.ics.forth.gr/isl/Fishbase
 - DBpedia: http://www.ics.forth.gr/isl/DBpedia
 - FLOD: http://www.ics.forth.gr/isl/FLOD
 - Ecoscope: http://www.ics.forth.gr/isl/Ecoscope
 - WoRMS: http://www.ics.forth.gr/isl/WoRMS

 By asking for the graph that each triple is coming from we retrieve the provenance of the data.

d) Query Level Provenance

- Matware offers a query rewriting functionality that exploits the contents of the graphspaces for returning the sources that contributed to the query results (including those that contributed to the intermediate steps).
- Let q be a SPARQL query that has n parameters in the select clause and contains k triple patterns of the form (?s_i, ?p_i, ?o_i) :

```
SELECT {?o_1 ?o_2} WHERE {
?s_1 ?p_1 ?o_1.
?s_2 ?p_2 ?o_2.
?s_k ?p_k ?o_k
}
```

 The rewriting produces a query q' that has n+k parameters in the select clause and each triple pattern (?si ?pi ?oi) has been replaced by: graph ?gi {?si ?pi ?oi}.
 Eventually the rewritten query q' is:

SELECT {?o_1 ?o_2 ?g_1 ?g_2 ?g_k} WHERE {
graph ?g_1 {?s_1 ?p_1 ?o_1 }.
graph ?g_2 { ?s_2 ?p_2 ?o_2} .
graph ?g_3 {?s_k ?p_k ?o_k}

Query Level Provenance Example:

QUERY: For a scientific name of a species (e.g. Thunnus Albacares) find the FAO codes of the waterareas in which the species is native.

SPARQL:

select ?faocode ?source1 ?source2

where {

graph ?source1 {

ecoscope:thunnus_albacares MarineTLO:isNativeAt ?waterarea

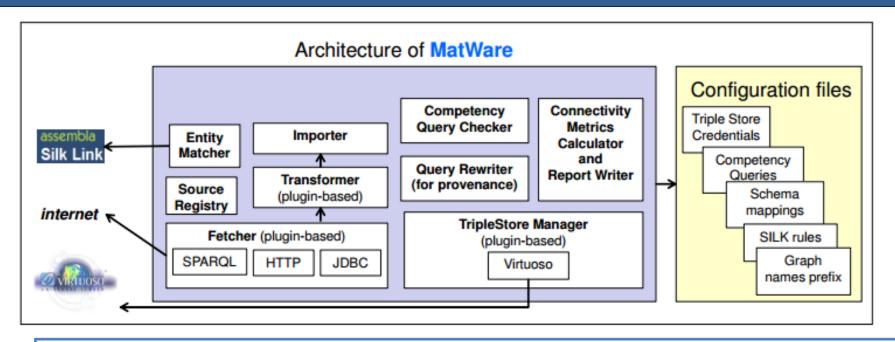
}.

1

graph ?source2 {

?waterarea MarineTLO:LXrelatedIdentifierAssignment ?faocode

RESULT:

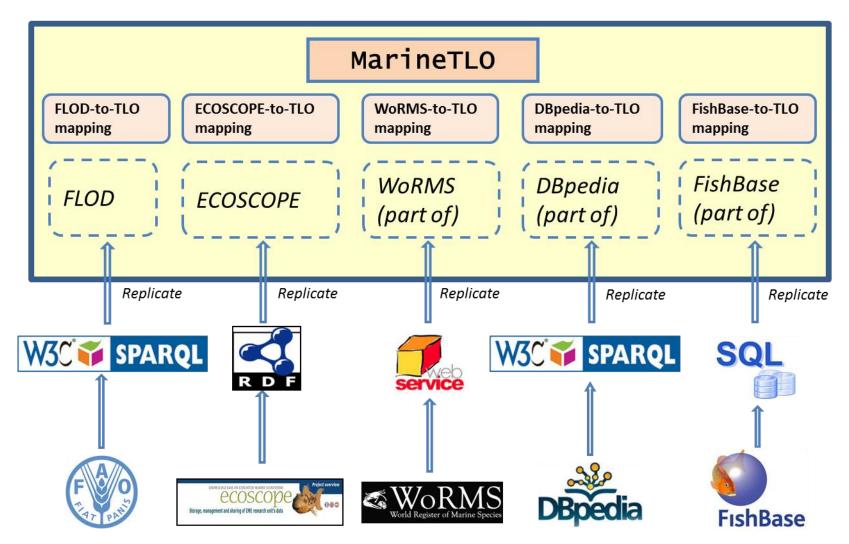

faocode	sourcel	source2
47	http://www.ics.forth.gr/isl/Fishbase	http://www.ics.forth.gr/isl/FLOD
34	http://www.ics.forth.gr/isl/Fishbase	http://www.ics.forth.gr/isl/FLOD
31	http://www.ics.forth.gr/isl/Fishbase	http://www.ics.forth.gr/isl/FLOD
41	http://www.ics.forth.gr/isl/Fishbase	http://www.ics.forth.gr/isl/FLOD
71	http://www.ics.forth.gr/isl/Fishbase	http://www.ics.forth.gr/isl/FLOD
77	http://www.ics.forth.gr/isl/Fishbase	http://www.ics.forth.gr/isl/FLOD

Yannis Tzitzikas et al., ESWC 2014,

Heraklion, Crete

Architecture of Matware

- Actions in order to create a Warehouse from scratch one should specify
 - the type of the repository
 - the names of the graphs that correspond to the different sources
 - URL, username and password in order to connect to the repository
- Actions in order to add a new source
 - (a) include the fetcher class for the specific source as plug in
 - (b) provide the mapping files (schema mappings)
 - (c) include the transformer class for the specific source as a plug in
 - (d) provide the SILK rules as a minimized as et al., ESWC 2014,


Institute of Computer Science

Herakilon, Crete

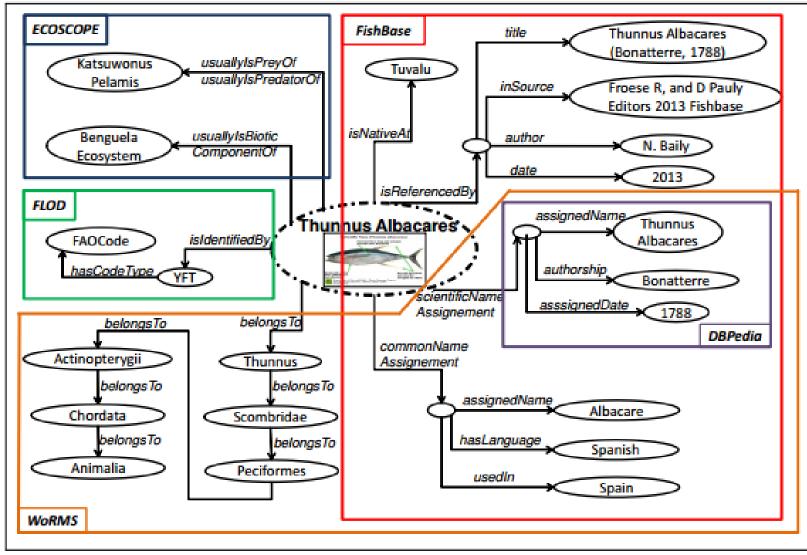
Using MatWare for constucting the MarineTLO-based warehouse

The MarineTLO-based semantic warehouse

MatWare

The resulted MarineTLO-based Warehouse(3/3)

The current warehouse contains:

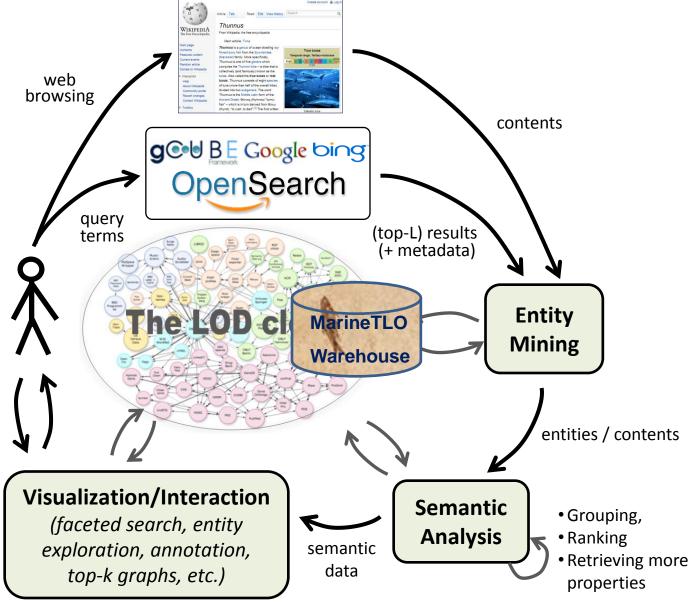

- •37,000 marine species.
- •3,772,919 triples

Process	Time (Min)
Downloading the Sources	60
Importing the data	15
Applying the transformation rules	40
Producing sameAs links using SILK	30
Computing the metrics	50
Total Process	195

The resulted MarineTLO-based Warehouse(1/3)

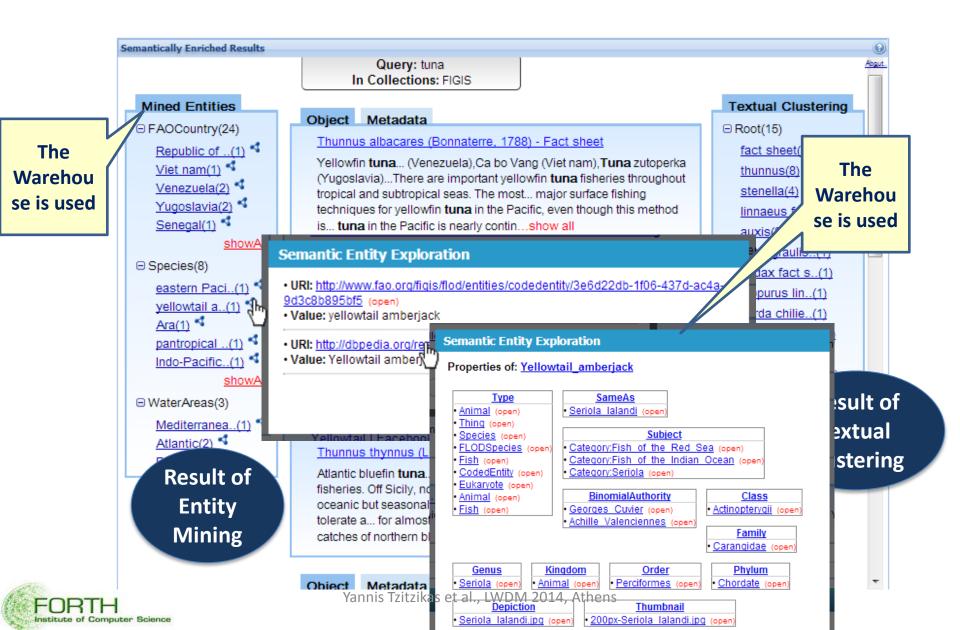
Integrated information about Thunnus albacares from different sources

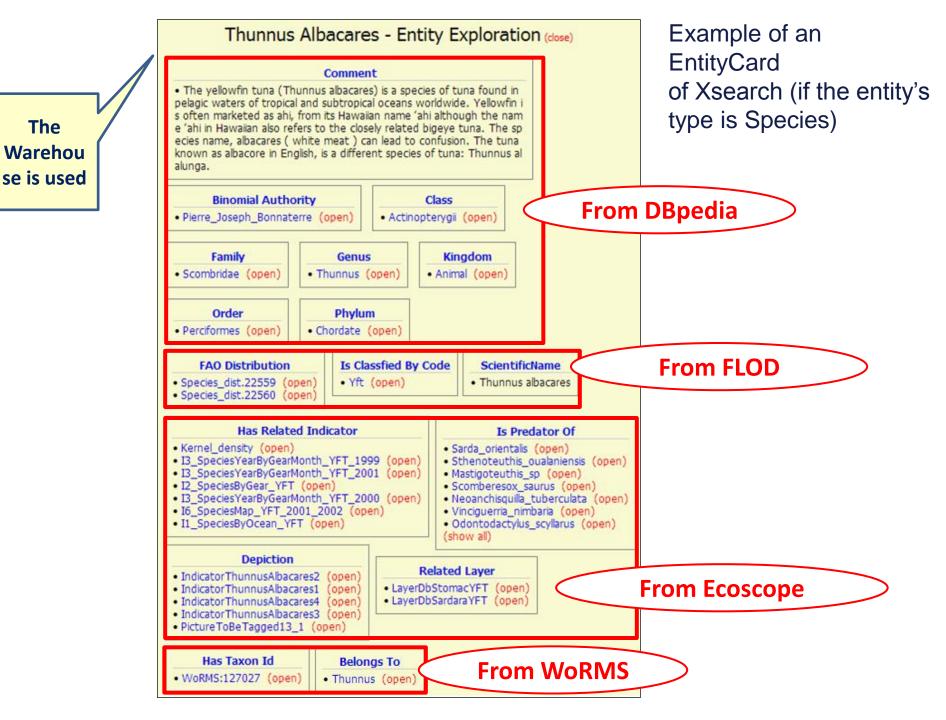
Institute of Computer science


The resulted MarineTLO-based Warehouse(2/3)

Concepts	Ecoscope	FLOD	WoRMS	DBpedia	Fishbase
Species	-	-	-	-	-
Scientific Names	-	1	-	-	-
Authorships			-	1	-
Common Names	-	-	-	-	-
Predators	-				-
Ecosystems	-				-
Countries					1
Water Areas		-			1
Vessels	-	-			1
Gears	-				
EEZ	Yannis	Tzitzikas et al., E	\$WC 2014,		
FORTH	iMarine 2n 2013.Bruss	^R Heraklion, Cre	teer		

Applications that use this Warehouse


Semantic Post-Processing of Search Results (e-infrastructure service)
 Fact Sheet Generator (web application)
 Ichthys Android app


For Semantic Post-Processing of Search Results: The process

For Semantic Post-Processing of Search Results: Example (X-Search)

XSearch as a **bookmarklet**

The Warehou se is used

ee Encyclopedia

Navigation

Main page Contents Featured content Current events Random article Donate to Wikipedia

Interaction

Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox

What links here Related changes Upload file Special pages Permanent link Page information Cite this page

Print/export

Institute of

Create a book Download as PDF Printable version

Annotating entities over the original page

<mark>Thunnus</mark>∢

From Wikipedia, the free encyclopedia

Main article: Tuna

Thunnus is a genus of ocean-dwelling ray-finned bony fish from the Scombridae (Mackerel) family. More specifically, **Thunnus** is one of five genera which comprise the Thunnini tribe – a tribe that is collectively (and famously) known as the tunas. Also called the **true tunas** or **real tunas**, **Thunnus** consists of eight species of tuna (more than half of the overall tribe), divided into two subgenera. The word **Thunnus** is the Middle Latin form of the Ancient Greek: θύνος (*thýnnos*) "tunny-fish" – which is in turn derived from θύνω (*thynō*), "to rush; to dart".^[3] The first written use of the word was by Homer.^[citation needed]

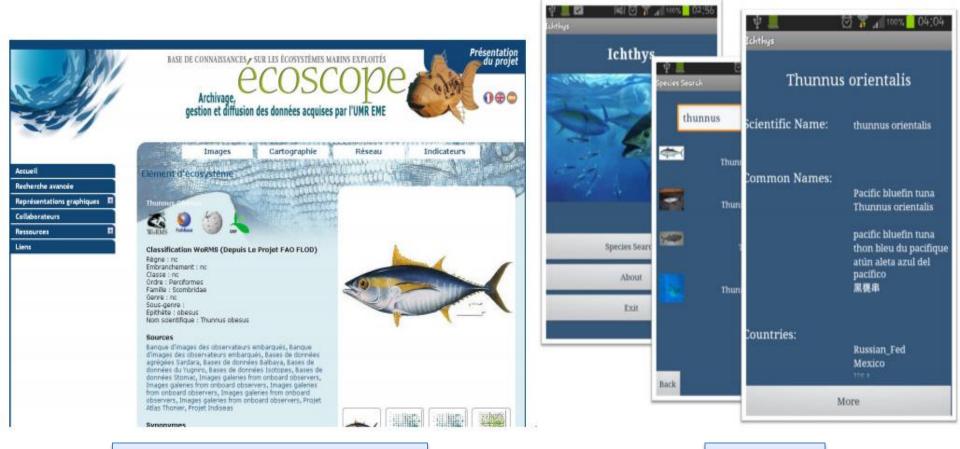
Yellowfin 🛃 tuna Scientific classification Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Perciformes < Scombridae < Family: Tribe: Thunnini Genus: Thunnus d South, 1845 Subgenus T. (Thunnus () (bluefin group) T. (Neothunnus) (yellowfin d group)

Their coloring, metallic blue on top and shimmering silver-white on the bottom, helps camouflage them from above and below. They can grow to 15 feet long and weigh over 1,000 pounds, and can swim up to 50 miles per hour when pursuing prey. Atlantic bluefin tunas are warm-blooded, which is a rare trait among fish, and are comfortable in the cold waters. Bluefin fish are found in Newfoundland and lceland, as well as the tropical waters of the Gulf of Mexico and the Mediterranean Sea, where they go each year to spawn.

Due to overfishing the genus range has been significantly reduced, being effectively removed from the Black Sea4, for example.^[4]

Taxonomy [edit]

Subgenus Thunn


This genus has eight species in two subgenera:

- Subgenus Thunnus< (Thunnus<):
 - Albacore , T. alalunga (Bonnaterre, 1788).
 - Southern bluefin tuna, T. maccoyii (Castelnau, 1872)
 - Bigeye tuna
 T obesus (Lowe 1839)
 - - URI: http://www.ecoscope.org/ontologies/ecosystem s#thunnus obesus (open)

Entity

- Yellowfin tu
 Label: Bigeye tuna
- Blackfin tuna
 Yannis Tzitzikas et LWDM 2014, Athens
 Longtail tuna

Fact Sheet Generator & Android Application

Fact Sheet Generator

Concluding Remarks

- We have described the main requirements and challenges in designing, building, maintaining and evolving a real and operational semantic warehouse for marine resources
- We have presented the process and the tool MatWare that we have developed for supporting this process with emphasis on:
 - Scope control
 - Connectivity assessment
 - Provenance
 - Reconstructability
 - Extensibility

Future Work

- Next steps
 - Further work on metrics for monitoring and understanding the dynamics of the warehouse
 - Investigate various optimizations for being scalable to very large amounts of data, relating inference materialization and provenance
 - E.g. using a single graph space that materializes all inferred triples for offering efficient query answering, while keeping also the separate graph spaces for provenance reasons

Thank you for your attention

Visit and send us feedback: www.ics.forth.gr/isl/MarineTL0 www.ics.forth.gr/isl/Matware

