
How many and what type of
SPARQL queries can be answered through

zero-knowledge link traversal?

Pavlos Fafalios
L3S Research Center, Leibniz University of

Hannover, Germany

fafalios@L3S.de

Yannis Tzitzikas
Computer Science Department, University of Crete, and

Information Systems Laboratory, FORTH-ICS, Greece

tzitzik@ics.forth.gr

Outline

• Introduction / Motivation

• Problem description

• Finding Linked-Data answerable queries

• Executing Linked-Data answerable queries

• Experimental Results

• Conclusion and Future Directions

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 2

Introduction / Motivation

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 3

The Web of Data

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

Image from: https://lod-cloud.net/

• The Linked Open Data Cloud
• 1,239 datasets with 16,147 links (Mar’19)

• Data Markup
• JSON-LD - https://json-ld.org/

• RDFa - https://rdfa.info/

• How to query this data?

• SPARQL

4

https://lod-cloud.net/
https://json-ld.org/
https://rdfa.info/

SPARQL endpoints

• Web services that accept SPARQL queries and return results in a machine-readable format
• SPARQL endpoint of DBpedia: http://dbpedia.org/sparql

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?birthDate WHERE {
dbr:Donald_Trump dbo:birthDate ?birthDate }

"1946-6-14^^<http://www.w3.org/2001/XMLSchema#date>

• Limitations
• Low reliability
• Not optimized for efficiency
• Limited bandwidth
• Expensive to host and maintain

• Need for alternative, less demanding query evaluation methods!

5

http://dbpedia.org/sparql

Approaches to query Web data

I. Data centralization
• Provide a query service over a collection of RDF data (gathered from different sources)

• Then query the data through SPARQL

• Fast responses, but no fresh results

• Cost for maintaining a centralized repository

• Linked Data Fragments (LDFs): efficient offloading of SPARQL query execution from servers to clients
• A LDF is a resource consisting of triples that match a specific selector, together with metadata and

hypermedia controls

• Triple Pattern Fragment (TPF): triple pattern as selector, count metadata, controls to retrieve other TPFs

• Servers maintain high availability rates

• Requires the setup and maintenance of dedicated servers and clients

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 6

Approaches to query Web data

II. Query federation
• Integrated access to distributed RDF sources on the Web

• DARQ, SemWIQ: two of the first systems to support the execution of queries to multiple endpoints

• SPARQL 1.1 Federated Query

• SERVICE operator

• Requires the remote data to be available
through SPARQL endpoints

• SPARQL-LD[1]:
• Extension of SERVICE operator to enable querying any web source containing RDF data

• HTML pages (RDFa, JSON-LD), RDF files (N3, RDF/XML, Turtle), Web APIs (returning RDF data), …

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

SELECT ?birthDate WHERE {
?person rdf:type :Politician .
SERVICE <http://dbpedia.org/sparql>

?person dbo:birthDate ?birthdate }

SELECT ?paperTitle WHERE {
SERVICE <http://l3s.de/~fafalios/> {

?paper a swrc:Paper ; dc:title ?paperTitle } }

[1] P. Fafalios and Y. Tzitzikas, “SPARQL-LD: A SPARQL Extension for Fetching and Querying Linked Data”, ISWC’15

7

Approaches to query Web data

III. Link Traversal
• Real time URI lookup / dynamically discover data relevant for answering a query (by following RDF links)
• No access to local or remote endpoints
• Relies on Linked Data principles, thus on robust web protocols (HTTP, URI)

• Zero-knowledge link traversal
• No starting graph, seed URIs, or pre-build indexes for starting the link traversal

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

This figure is a variation of the figure at: http://linkeddatafragments.org/concept/

generic requests / restricted queries
low server cost and effort
high availability / high bandwidth

specific requests / unrestricted queries
high server cost and effort

low availability / low bandwidth

data
dump

RFF content
negotiation RDFa

Triple pattern
fragments

SPARQL
endpoint

8

http://linkeddatafragments.org/concept/

Our focus: zero-knowledge link traversal

• What types of SPARQL queries can be directly executed on the live Web of
Linked Data, without a priori knowledge of available data sources?
• Input: just a SPARQL query

• Starting point: the URI(s) that exist in the query
• Additional URIs are resolved only if this is needed for satisfying a triple pattern (for binding its variables)

• Why?
• Convenience: avoid setting up and maintaining indexes/servers/endpoints

• Freshness of results: in line with the dynamic nature of the Web

• Decentralisation: motivates publishers to put their data online (e.g., by just uploading RDF files)

• Reliability: relies on robust web protocols (HTTP, URI)

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 9

Contributions

(A) Method for finding Link Data-answerable Queries (LDaQ)

(B) Method for transforming LDaQ to SPARQL-LD queries

(C) Experimental results (using real SPARQL query logs)
 Pattern-based analysis of LDaQ and non-LDaQ

 Efficiency of the transformed queries

 Open source: https://github.com/fafalios/LDaQ

+ Results of pattern-based analysis of LDaQ and non-LDaQ

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 10

https://github.com/fafalios/LDaQ

Problem Description

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 11

Query evaluation through zero-knowledge link traversal
(Example 1)

• Find the birth date of Barack Obama:
• Run the following query at http://dbpedia.org/sparql (SPARQL endpoint of Dbpedia)

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

• Through zero-knowledge link traversal:
• STEP 1: Access the URI http://dbpedia.org/resource/Barack_Obama and retrieve all triples

• STEP 2: Run the triple pattern (dbr:Barack_Obama dbo:birthDate ?birthDate) on the
retrieved triples

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?birthDate WHERE {
dbr:Barack_Obama dbo:birthDate ?birthDate }

12

http://dbpedia.org/sparql
http://dbpedia.org/resource/Barack_Obama

Query evaluation through zero-knowledge link traversal
(Example 1)

• Implementation through SPARQL-LD:

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?birthDate WHERE {
SERVICE dbr:Barack_Obama {
dbr:Barack_Obama dbo:birthDate ?birthDate } }

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?birthDate WHERE {
dbr:Barack_Obama dbo:birthDate ?birthDate }

13

Query evaluation through zero-knowledge link traversal
(Example 2)

• Find the birth date of all basketball players in DBpedia

• Run the following query at http://dbpedia.org/sparql (SPARQL endpoint of Dbpedia)

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?player ?birthDate WHERE {
?player a dbo:BasketballPlayer .
?player dbo:birthDate ?birthDate }

• Through zero-knowledge link traversal:
• STEP 1: Access the URI http://dbpedia.org/ontology/BasketballPlayer (class) and retrieve all triples

• STEP 2: Run the triple pattern (?player a dbo:BasketballPlayer) on the retrieved triples (i.e., find instances of
the class dbo:BasketballPlayer)

• STEP 3: Access the URIs of all instances of the class dbo:BasketballPlayer (URI-bindings of variable ?player) and
retrieve all triples

• STEP 4: Run the triple pattern (?player dbo:birthDate ?birthDate) on the retrieved triples of each instance

14

http://dbpedia.org/sparql
http://dbpedia.org/ontology/BasketBallPlayer

Query evaluation through zero-knowledge link traversal
(Example 2)

• Implementation through SPARQL-LD:

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?player ?birthDate WHERE {
SERVICE dbo:BasketballPlayer {
?player rdf:type dbo:BasketballPlayer }

SERVICE ?player {
?player dbo:birthDate ?birthDate } }

15

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?player ?birthDate WHERE {
?player a dbo:BasketballPlayer .
?player dbo:birthDate ?birthDate }

Query evaluation through zero-knowledge link traversal
(Example 3)

• Find all subjects having the name “Barack Obama”

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

SELECT ?entity WHERE {
?entity foaf:name “Barack Obama” }

• Find the total number of triples

SELECT count(*) WHERE {
?s ?p ?o }

16

Requirements (in line with the Linked Data principles)

• Rule 1
• URIs must be dereferenceable and return RDF data

• Rule 2
• URIs must provide both the incoming and outgoing properties of the corresponding resource

(all triples where the URI is the subject or object)
• This includes URIs that represent RDFS/OWL classes, meaning that the URI of a class

should return all its instances

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 17

(A) Finding Linked-Data answerable queries

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 18

(A) Finding Linked Data-answerable Queries (LDaQ)

• Algorithm for checking the answerability of a BGP:
1. Go through the triple patterns and find “bindable” variables, i.e.:

• variables that can get bound by dereferencing a subject or object URI, or
• variables that can get bound through bindings of other variables

2. Map a non-bindable variable to other variables that can help binding it at a later stage
3. At the end, if there is at least one variable that is not bound or cannot get bound through another
bound variable, the query is not a LDaQ

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

?player a dbo:BasketballPlayer .
?player dbo:birthplace ?place .
?place rdfs:label ?placeName

20

• What if we change
the order of the triples?

?player dbo:birthplace ?place .
?player a dbo:BasketballPlayer .
?place rdfs:label ?placeName

• What if there is no subject
or object URI?

?player dbo:birthplace ?place .
?place rdfs:label ?placeName

(A) Finding Linked Data-answerable Queries (LDaQ)

• Algorithm for checking the answerability of a query:
1. Go through the triple and UNION group elements

2. Check the answerability of an element using the previous algorithm and considering the already bound
variables
• In case of UNION group, check the answerability of each UNION’s graph pattern

• If the element is not answerable, add it to a list of “pending” elements (it might be answerable when a
variable in another element gets bound)

• At each step, update the list of bound variable

3. Go through the pending elements and check for bindable variables iteratively until the list is empty
• In each loop, at least one new element must get answerable, otherwise the query is not a LDaQ

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

SELECT ?player ?birthDate ?birthPlaceName WHERE {
{ ?player rdf:type dbo:BasketballPlayer } UNION { ?player rdf:type dbo:FootballPlayer }
?player dbo:birthDate ?birthDate .
?player dbo:birthPlace ?place .
{ ?place foaf:name ?birthPlaceName } UNION { ?place rdfs:label ?birthPlaceName } }

21

(B) Transforming Linked-Data answerable queries

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 22

(B) Transforming LDaQ to SPARQL-LD queries

• Objective: Evaluate a SPARQL query over the live Web of Linked Data
• without accessing local or remote endpoints

• without considering any seed URIs

• Approach: Transformation-based method through SPARQL-LD
• Directly make use of this functionality through existing instances of SPARQL-LD

• No need to implement a dedicated server!

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 23

(B) Transforming LDaQ to SPARQL-LD queries

• Algorithm for transforming a BGP to a SPARQL-LD graph pattern
1. Go through the triples and create SERVICE patterns

2. If the triple contains a URI or bound variable, check if there is already a SERVICE pattern for it
• If so, add the triple to its graph pattern, otherwise create a new SERVICE pattern

3. If the triple does not contain a URI or a bound variable, add it to a list of “pending” triples
• Since the BGP is Linked Data-answerable, these triples require the binding of another variable existing in a

subsequent triple

4. Go through the pending triples iteratively until the list is empty
• In each loop, either include the triple to an existing SERVICE pattern or create a new one.

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

?player a dbo:BasketballPlayer .
?player dbo:birthPlace ?place .
?place rdfs:label ?placeName

SERVICE dbo:BasketballPlayer {
?player a dbo:BasketballPlayer }

SERVICE ?player {
?player dbo:birthPlace ?place }

SERVICE ?place {
?place rdfs:label ?placeName }

24

(B) Transforming LDaQ to SPARQL-LD queries

• Algorithm for transforming a query to a SPARQL-LD graph pattern
1. Go through all elements (triples or UNION groups) and check if they are Linked Data-answerable

2. If so, include the corresponding element to the SPARQL-LD query, either by appending it to an existing
SERVICE or by creating a new one

3. If not, add the element to a list of “pending” elements (whose transformation requires the binding of a
variable existing in as subsequent triple or UNION group)

4. Go through the pending elements iteratively until the list is empty
• In each loop, include the transformed element to the SPARLQ-LD query

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 25

(B) Transforming LDaQ to SPARQL-LD queries

• Algorithm for transforming a query to a SPARQL-LD graph pattern

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

SELECT ?player ?birthDate ?birthPlaceName WHERE {
{ ?player rdf:type dbo:BasketballPlayer } UNION { ?player rdf:type dbo:FootballPlayer }
?player dbo:birthDate ?birthDate .
?player dbo:birthPlace ?place .
{ ?place foaf:name ?birthPlaceName } UNION { ?place rdfs:label ?birthPlaceName } }

SELECT ?player ?birthDate ?birthPlaceName WHERE {
{ SERVICE dbo:BasketballPlayer { ?player rdf:type dbo:BasketballPlayer } } UNION
{ SERVICE dbo:FootballPlayer { ?player rdf:type dbo:FootballPlayer } }
SERVICE ?player {
?player dbo:birthDate ?birthDate ; dbo:birthPlace ?place }

SERVICE ?place {
{ ?place foaf:name ?birthPlaceName } UNION { ?place rdfs:label ?birthPlaceName } } }

26

(B) Transforming LDaQ to SPARQL-LD queries

• Problems
• Dereferencing a URI may result in the retrieval of an unforeseeable large set of RDF triples
• Servers might put restrictions on clients such as serving only a limited number of requests per second
• A link traversal-based query execution system should implement a politeness policy

• E.g., by respecting the robots.txt

• We have not (yet) examined (and implemented) the following SPARQL operators:
• DESCRIBE

• look up the URI and return all triples

• FROM, FROM NAMED / GRAPH
• Look up the URI, fetch the triples, and run the graph pattern over these triples

• SERVICE (over remote endpoints)
• Just check if the graph pattern is Linked Data-answerable

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 27

(C) Experimental Results

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 28

Experiments - Objectives

• Find patterns of LDaQ and non-LDaQ
• Check their number, type, and distribution

• Examine the efficiency of the transformed SPARQL-LD queries

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 29

Experiments - Datasets

• Fixing of common errors (like absence of popular prefixes)

• Jena 3.2 to parse the queries

• We did not consider queries that:
• are not valid according to Jena 3.2
• Use property paths, nested queries, or contain one of the following (unexamined) operators:

DESCRIBE, FROM, GRAPH, SERVICE, MINUS, EXISTS, BIND, VALUES

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 30

67,849,121

Pattern-based analysis of LDaQ and non-LDaQ

• Pattern (template) extraction
• Remove FILTER
• Replace:

• Variable  [V], URI  [U], Literal  [L], Blank node  [B]
• UNION  UN

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

SELECT ?player ?birthDate ?birthPlaceName WHERE {
{ ?player rdf:type dbo:BasketballPlayer } UNION { ?player rdf:type dbo:FootballPlayer }
?player dbo:birthDate ?birthDate ;

dbo:birthPlace ?place .
{ ?place foaf:name ?birthPlaceName } UNION { ?place rdfs:label ?birthPlaceName } }

{ [V] [U] [U] } UN { [V] [U] [U] } [V] [U] [V] ; [U] [V] { [V] [U] [V] } UN { [V] [U] [V] }

31

Pattern-based analysis of LDaQ and non-LDaQ

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

More than 85% of the examined queries
are potentially Linked Data-answerable!

32

Number of answerable and not answerable queries and unique patterns

Distribution of LDaQ and non-LDaQ patterns

• Power law distribution
• Top-10 LDaQ patterns:

• LGD: 95%
• SWDF: 95%
• Dbpedia: 84%

• Top-10 non-LDaQ patterns:
• LGD: 98%
• SWDF: 96%
• Dbpedia: 86%

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

Answerable Not Answerable

SWDF

LGD

DBPEDIA

The majority (>84%) of both
answerable and non-answerable
queries follow a few (≤10)
specific patterns/templates!

33

Top LDaQ and non-LDaQ patterns

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

SWDFLGD

DBPEDIA

Answerable

Not
Answerable

Answerable

Not
Answerable

Answerable

Not
Answerable

34

Efficiency of the transformed queries

• Querying a single URI
• Patterns like [U] [V] [V] and [V] [U] [U]

• 70% of all unique queries in LGD

• 77% of all unique queries in SWDF

• 56% of all unique queries in DBpedia

• Time proportional to the number of triples contained in the resource [1]
• 10,000 triples  ≈1 second
• 1M triples  ≈30 seconds
• Querying Dbpedia URIs:

• ≈320 ms (N3)
• ≈650 ms (content negotiation)
• ≈300 ms (endpoint)

• Potential problem when requesting the incoming properties of resources representing classes
• 3.6% of queries in DBpedia
• The number of instances can be very high, e.g., dbo:Person has 3.2M instances

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

More than 50% of the examined
DBpedia queries can bypass the

endpoint and be efficiently (<1 sec)
answered through link traversal!

[1] Fafalios, P., Yannakis, T., & Tzitzikas, Y. (2016). Querying the Web of Data with SPARQL-LD.
In International Conference on Theory and Practice of Digital Libraries (pp. 175-187). Springer.

35

Efficiency of the transformed queries

• Querying multiple URIs
• The majority of queries containing joins

• Experiments for the pattern [V] [U] [U] ; [U] [V]

• Query execution time highly depends on number of intermediate bindings

• We tested the following (Wikicat) classes:
a) American Civil Rights Lawyers (136 instances)
b) Video Artists (262 instances)
c) People from Sheffield (502 instances)
d) American magazines (1,030 instances)
e) American Male Film Actors (9,787 instances)

• Two different query execution methods
• Non-optimized (sequential fetching of remote resources)
• Optimized (fetching using max 10 parallel threads at the same time)

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

?player a dbo:BasketballPlayer .
?player foaf:name ?name

36

Efficiency of the transformed queries

• Query execution time (seconds) of the transformed queries

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

For queries with large number of
intermediate bindings (which in turn
might require large number of URI

lookups), the query execution time can
become prohibitively high!

(a) American Civil Rights Lawyers (136 instances)
(b) Video Artists (262 instances)
(c) People from Sheffield (502 instances)
(d) American magazines (1,030 instances)
(e) American Male Film Actors (9,787 instances)

37

Conclusion
and Future Directions

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 38

Conclusion and Takeaways
• Answering SPARQL queries through zero-knowledge link traversal

• Detecting answerable queries

• Transforming answerable queries to SPARLQ-LD queries (that bypass the endpoint)

• Popular patterns of answerable and non-answerable queries?

• Efficiency of the transformed queries?

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019

More than 85% of the (examined)
queries are potentially Linked

Data-answerable!

The majority (>84%) of both answerable
and non-answerable queries follow a

few (≤10) specific patterns/templates!

More than 50% of the examined
DBpedia queries can bypass the

endpoint and be efficiently (<1 sec)
answered through link traversal!

For queries with large number of intermediate
bindings (which in turn might require large
number of URI lookups), the query execution

time can become prohibitively high!

39

Future directions

• Long-term vision:
• Decrease the load of SPARQL endpoints and increase their availability/reliability!

• Design adaptive query processing methods that combine different strategies
• Based on: the load of the servers/endpoints, the availability of the remote sources, and

the estimated efficiency of query execution

• Study methods to improve the execution time of the transformed SPARQL-LD queries
• Caching? Query planning?

• Further examination of non-answerable query patterns
• Would a different policy for publishing Linked Data be beneficial for making more queries answerable

through Link Traversal?

Pavlos Fafalios (fafalios@L3S.de), SAC'19, Limassol (Cyprus), April 2019 40

Thank you!

Questions / Comments?

fafalios@L3S.de

• Finding and transforming LDaQ: https://github.com/fafalios/LDaQ

• SPARQL-LD: https://github.com/fafalios/sparql-ld

https://github.com/fafalios/LDaQ
https://github.com/fafalios/sparql-ld

