Towards a Ranking Model for Semantic Layers over Digital Archives

Pavlos Fafalios, Vaibhav Kasturia, Wolfgang Nejdl

L3S Research Center, University of Hannover, Germany {fafalios,kasturia,nejdl}@l3s.de

1. Motivation

- * How to explore archives in a more **advanced** and **exploratory** way?
 - Find documents discussing about a specific category of entities (e.g., philanthropists), or about entities sharing some characteristics (e.g., born in Germany before 1960)?
- How to explore archives by integrating information from existing knowledge bases, like DBpedia?

2. Semantic Layer

- * RDF repository describing **metadata** and **annotation** information for a collection of archived documents.
 - Allows running advanced, entity-centric SPARQL queries that combine metadata of the documents (e.g., publication date) and semantic information (e.g., mentioned entities)
 - More at: Fafalios et al., "Building and Querying Semantic Layers for Web Archives", JCDL'17
- ***** Example for a **news article**:

***** Example **SPARQL queries** over Semantic Layers

SELECT DISTINCT ?article WHERE {

?article dc:date ?date FILTER(year(?date) = 1990). "AND" (conjunctive) semantics ?article schema:mentions ?entity1, ?entity2.

?entity1 oae:hasMatchedURI dbr:Nelson_Mandela . ?entity2 oae:hasMatchedURI dbr:F._W._de_Klerk }

Retrieve articles of **1990** discussing about **Nelson Mandela** and **F. W. de Klerk**

SELECT DISTINCT ?article WHERE {

?article dc:date ?date FILTER(year(?date) = 1990) .

"OR" (disjunctive) semantics ?article schema:mentions ?entity .

?entity oae:hasMatchedURI ?entURI .

?entURI dc:subject dbc:State_Presidents_of_South_Africa }

Retrieve articles of **1990** discussing about **state presidents of South Africa**

3. The problem

- ❖ The results returned by a SPARQL query:
 - can be numerous
 - all equally match the query
- How to rank them for identifying and promoting the most important ones?
 - What makes an archived document important for a given query?

4. Related Work

- **Ranking of archived documents** (for free-text queries)
- Time-aware Retrieval and Ranking [Kanhabua and Anand, 2016]
- Tempas [Holzmann and Anand, 2016], HistDiv [Singh et al., 2016]
- Works by Kanhabua et al. (2016), Vo et al. (2016)

A Ranking in knowledge graphs

- Learning to rank for RDF entity search [Dali et al., 2012]
- Swoogle [Ding et al., 2005], SemRank [Anyanwu et al., 2005]
- NAGA [Kasneci et al., 2008], DING [Delbru et al., 2010],
- ReconRank [Hogan et al., 2006], Noc-order [Graves et al., 2008]
- **Our approach:** Ranking archived documents for structured queries in knowledge graphs
 - Availability of metadata and entity annotations
 - No access to full contents!

5. Problem Definition

- **Ranking Documents for Structured Queries over Semantic Layers**
 - Consider a **semantic layer** over a collection of **archived documents D** published within a set of time periods T of fixed granularity (e.g., day), and a set of entities E mentioned in documents of D.
 - Given a SPARQL query Q requesting documents from D published within a time **period** $T_o \subseteq T$ and related to one or more **Entities of Interest (EoI)** $E_o \subseteq E$ with logical AND (mentioning all EoI) or OR (mentioning at least one EoI) semantics, the **problem** is how to rank the returned documents $D_0 \subseteq D$ that match Q.

6. Towards a Ranking Model

- * What makes an archived document **important** for one or more entities of interest (EoI)?
 - Relativeness: the document should talk about the EoI (as its main topic)
 - Timeliness: the document should have been published in an important (for the EoI) time period
 - Relatedness: the document should discuss the relation of the EoI with other important (for the EoI) entities
- **Relativeness** (of a document *d*)
 - Consider the frequency of the EoI in d

$$Score D_{\wedge}(d) = \frac{\sum_{e \in E_Q} count(e,d)}{\sum_{e' \in E_d} count(e',d)} \qquad Score D_{\vee}(d) = \frac{\sum_{e \in E_Q} count(e,d)}{\sum_{e' \in E_d} count(e',d)} \cdot \frac{|E_d \cap E_Q|}{|E_Q|}$$
 "AND" (conjunctive) semantics "OR" (disjunctive) semantics

- \Leftrightarrow **Timeliness** (of a time period p)
 - Consider the number of documents mentioning the EoI during p

$$ScoreP(p) = \frac{|D_p \cap D_Q|}{|D_Q|}$$

- **Relatedness** (of an entity *e* to the EoI)
 - Consider the number of co-occurrences of e with the EoI in important time periods
 - Avoid over-emphasizing common and general entities

$$ScoreE(e) = idf(e) \cdot \sum_{p \in P_Q} \left(ScoreP(p) \cdot \frac{|D_{e,p} \cap D_Q|}{|D_p \cap D_Q|} \right) \qquad idf(e) = 1 - \frac{|D_e \cap (\cup_{e' \in E_Q} D_{e'})|}{|\cup_{e' \in E_Q} D_{e'}|}$$

 \clubsuit Joining the models: $S(d) = ScoreP(p_d) \cdot ScoreD(d) + \beta \frac{\sum_{e \in E_d \setminus E_Q} ScoreE(e)}{1 - 1}$

7. Next Steps

- Create a ground truth for the problem at hand
- Evaluate our baseline ranking model and the effect of each component
- Define and evaluate more advanced models (learning to rank, stochastic, etc.)
- Investigate the case of web archives (where documents have versions and publication dates are not usually available)

