

Viewpoint Discovery and Understanding in Social Networks

May, 2018

Mainul Quraishi L3S Research Center, Leibniz University of Hannover Hannover, Germany <u>quraishimainul@gmail.com</u> Pavlos Fafalios L3S Research Center, Leibniz University of Hannover Hannover, Germany <u>fafalios@L3S.de</u> **Eelco Herder**

Radboud Universiteit Nijmegen, Institute for Computing and Information Sciences Nijmegen, the Netherlands <u>eelcoherder@acm.org</u>

Introduction & Motivation

➢ Social Media:

> Dominant platform to comment & discuss on breaking news and events

- > Enable the expression of diverse opinions and **viewpoints**
- ≻ However:
 - Media bias
 - Echo Chamber
 - Filter bubbles

http://theday.co.uk/technology/research-reveals-facebook-echo-chambers

Social costs and effects

> As also observed in the US election 2016 (Allcott and Gentzkow, 2017)

Need of methods to <u>detect</u> and <u>understand</u> the different viewpoints about a topic
To better understand political or societal debates
To better analyze and interpret course of historical events retrospectively

Contribution

Viewpoint Discovery

- Given a topic, detect the different viewpoints discussed in a Social Network (Twitter)
- Cluster the users based on their viewpoint on the topic (by exploiting retweets)

Viewpoint Understanding

- What is a viewpoint about?
 - by identifying a list of descriptive terms that characterize the viewpoint
- What is a term about?
 - by identifying other descriptive terms

Related Work

Viewpoint discovery in Documents:

- TAM (Paul and Girju,2010)
- VODUM (Thonet et al, 2016)
- Viewpoint discovery in Social Media:
 - SNVDM-GPU (Thonet et al, CIKM 2017)
 - Detect viewpoints of subtopics related to a controversial topic
 - Show descriptive terms that characterize a viewpoint
 - Others:
 - Supervised models [Fang et al. 2015, Cohen et al. 2013]
 - Contrastive opinion mining (Ren et al,2016)
 - Controversy detection [Garimella et al. 2016]
 - Viewpoint discovery in forums [Qiu and Jiang, 2013]

Our Approach

- Viewpoint Discovery
 - Use of **interaction graph** (retweet graph)
 - By first gathering tweets related to the topic
 - Apply **multilevel graph partitioning** (as done by Garimella et al, 2016)
 - Exploitation of **conductance** clustering quality metric
 - Find clusters representing concrete viewpoints
 - Identify noisy clusters
- Viewpoint Understanding
 - Apply a Rank Difference approach iteratively
- Contrary to existing works:
 - Applicable to unknown number of viewpoints
 - Detection of noisy groups with no clear viewpoint
 - Deep understanding of viewpoints (through focusing on specific terms)

Choosing the proper graph clustering method

- > Main requirement: Ensuring <u>sparse connection</u> between different clusters
- \succ No edge between the users \neq different viewpoints
 - But: users with different viewpoints will definitely not endorse each other
- Various ways of clustering
 - Node similarity
 - The Louvain method (Community Detection)
 - Multi-Level Graph Partitioning (MLGP)
 - Using METIS
 - Problem: what number of clusters to consider (K value)?

> Conductance:

Ensures sparse connection between the different clusters!

Conductance = $\frac{\text{size of cut (edges connecting the clusters)}}{\text{volume of smaller cluster devided by that cut}}$

Volume= total number of edges starting from *nodes in the cluster*

Advantages of Conductance:

- It considers the cut size
- It considers the volume of the cluster

Deciding on the clusters that hold different viewpoints

- We inspect the conductance of the clusters for different values of k
- Conductance Threshold:
 - A value of 0.1 seem to be good threshold
 - 10% of the edges in the cluster point to nodes outside the cluster!
 - Conductance < 0.1 means well separated therefore good clustering
 - Conductance > 0.1, means most likely noise

> For k=2, if the conductance >0.1, the topic is probably not controversial!

- > Algorithm:
 - Start from k = 2 and check the conductance value
 - Continue for k > 2 until we get the maximum number of clusters below the threshold for the larger k value

Conductance of the cut of each cluster for various k values

Threshold: 0.10 (Red line)

Viewpoints Understanding

- > **Rank Difference**: automatic term recognition algorithm (Kit & Liu, 2008)
 - Operates over two ranked lists of terms: one extracted from the "subject corpus" (corpus of interest) and one extracted from a "contrasting corpus" (e.g., general corpus)
 - Ranking criterion for the lists: term frequency
 - Score of a term:

$$score(w) = \frac{rank(w, W_c)}{|W_c|} - \frac{rank(w, W_s)}{|W_s|}$$

• Focuses on filtering out frequent terms occurring in both lists

European
Onion
Garlic
Black pepper
Paprika
Ginger
Tomato
Chili

Viewpoints Understanding

- Iterative Rank Difference (IRD)
 - 1. First Iteration
 - What is a viewpoint about?
 - Extract Top-n terms after running Rank Difference
 - <u>Subject list</u>: frequent terms in tweets of a viewpoint
 - <u>Contrasting list</u>: frequent terms in tweets from all **the other viewpoints**
 - 2. Next Iterations
 - What is a term (w) about?
 - <u>Subject list</u>: frequent terms that **co-occur** with w in tweets about the viewpoint
 - Contrasting list: frequent terms that do not co-occur with w in tweets about the same viewpoint

Effectiveness of Viewpoint Discovery

- > Comparative evolution with topic modeling proposed by Thonet et al. [CIKM, 2017]
- Indyref: 2 viewpoints (YES and NO)
- Midterms: 2 viewpoints (Democrat and Republican)
- Evaluation metrics:
 - Purity: proportion of users whose are correctly clustered compared with the ground truth class
 - NMI: Based on Mutual Information and Entropy

	Indyref		Midterms	
Method	Purity	NMI	Purity	NMI
SNVDM-GPU	0.969	0.800	0.964	0.778
MLGP	0.988	0.908	0.983	0.876

Purity and NMI comparison between SNVDM-GPU and Multi-Level Graph Partitioning (MLGP)

> Indyref

- Ground truth dataset (YES or NO)
- First Iteration:

Viewpoint 1	Viewpoint 2
<pre>#voteyes, #yes,westminister,</pre>	#nothanks, #bettertogether,
Meeting, independent,	currency, #labourno,#scotdecides
#scotland, murphy, event	speech, alex, #voteno, part
national, folk	seperation

> Indyref

- Ground truth dataset (YES or NO)
- Second Iteration:

murphy	{#voteyes, #yes}
leader	Scoltland,
war	independent
tax	power,
labour	future,
really	country

- ➤ US Election
 - First Iteration:

Viewpoint 1	Viewpoint 2
#nevertrump, #theresistance	<pre>#tcot, #trump2016, #pjnet,</pre>
#obamafarewell, #iamwithher	#trumptrain, #draintheswamp,
<pre>#resist, #trumps, gop, tweet</pre>	video,#makeamericagreatagain,
#gop, #trumpleaks, tax	#fakenews, breaking, god
#notmypresident, putin	#realdonaldtrump, usa, fbi

- ➤ US Election
 - Second Iteration:

#trumpleaks	fbi
#trumprussia	investigation
#impeachtrump	comey
#dworkinreport	reopen
#amjoy	director
#muslimban	case

➢ Brexit

• First Iteration:

Viewpoint 1(Pro-Brexit)	Viewpoint 2 (Anti-Brexit)	Viewpoint 3 (Neutral)
Democracy,	#tory, tory	#ue, unido, reino, #maga
#nexit, try, #go,	Johnson,	#stocks, #cdnpoli, europa
#referendum	#theresamay	londres, #americafirst,
<pre>#leave, #britain</pre>	Boris, #votein	royaumeuni, #trumptrain
free, control	#stopbrexit	#healthinnovations,
#leaveeu	#nhs, cost ,nhs	#banking, #pharma

> Brexit

Second Iteration:

control	{boris, johnson}	banking
#takecontrol,	Conservative,	#stock
Border, uncontrolled,	Biscuit,	#healthinnovations
#betteroffout,	#foreignsecratery, #mp,	#pharma
#takecontrol,	#borisjohnson	decrease, index

Conclusion and Future Works

- Graph clustering using multi-level graph partitioning and conductance quality metric
 - Discover groups of users that represent clear viewpoints
 - Identify noisy groups of users (with no clear viewpoint)
- > Iterative Rank Difference (IRD) for understanding the viewpoints
 - 1st iteration: what is the viewpoint about
 - Next iterations: what is a particular term about?
- ➤ Evaluation
 - Proposed viewpoint discovery method outperforms more complex topic models
 - IRD allows getting a deep understanding of a viewpoint and of the related terms
 - Why did Trump's supporters use the hashtag **#draintheswamp**?
 - Why did Clinton's supporters use the hashtag **#trumpleaks?**

Future Works:

> Timeline Summarization of topics and viewpoints

 that will allow understanding how a controversial topic evolves over time and with respect to the involved entities, events and subtopics

> Knowledge graphs about controversial topics

 How to semantically represent topics and viewpoints to enable advanced query answering?

Thank You

