
Exploiting Available Memory and Disk for
Scalable Instant Overview Search

Pavlos Fafalios and Yannis Tzitzikas

Institute of Computer Science, FORTH-ICS, GREECE, and
Computer Science Department, University of Crete, GREECE

{fafalios,tzitzik}@csd.uoc.gr

Abstract. Search-As-You-Type (or Instant Search) is a recently intro-
duced functionality which shows predictive results while the user types
a query letter by letter. In this paper we generalize and propose an ex-
tension of this technique which apart from showing on-the-fly the first
page of results, it shows various other kinds of information, e.g. the
outcome of results clustering techniques, or metadata-based groupings
of the results. Although this functionality is more informative than the
classic search-as-you type, since it combines Autocompletion, Search-As-
You-Type, and Results Clustering, the provision of real-time interaction
is more challenging. To tackle this issue we propose an approach based
on pre-computed information and we comparatively evaluate various in-
dex structures for making real-time interaction feasible, even if the size of
the available memory space is limited. This comparison reveals the mem-
ory/performance trade-off and allows deciding which index structure to
use according to the available main memory and desired performance.
Furthermore we show that an incremental algorithm can be used to keep
the index structure fresh.

1 Introduction

Autocompletion services help users in formulating queries by exploiting past (and
logged) queries. Recently, Google adopted Instant Search, a new Search-As-You-
Type (for short SAYT ) enhancement that apart from allowing the user to find
out what is popular given the current input string, it also shows an overview of
the top hits (first page of results) as the user types a query. In particular, one
or more possible matches (actually “completions”) of the typed query are com-
puted and immediately their results are presented to the user. This immediate
feedback allows the user to stop typing if the desired results have already been
recommended. If on the other hand the sought results are not there, the user
can continue typing or change what he has typed so far. In general, we can say
that the user adapts his query on the fly until the results match what he wants.
Although the usefulness of this functionality has not been measured or proved
(we did not manage to find any work that reports the results of a user study), it
is true that people type slowly but read quickly (a glance at another part of the

tzitzik
Typewritten Text
-This is an electronic version of an Article published in:

12th International Conference on Web Information System Engineering, 

Sydney, Australia, 2011

-The ﬁnal publication is available at:

http://link.springer.com/chapter/10.1007/978-3-642-24434-6_8



2 P. Fafalios and Y. Tzitzikas

page typically takes only a few milliseconds1), implying that the user can scan
a results page while he types. Furthermore, we observe an increasing interest on
providing such functionality evidenced by the emergence of several systems e.g.
EasySearch2, Keyboardr3, or Wiki Instant4.

Apart from the benefit for the user’s side, SAYT is also beneficial for the
WSE (Web Search Engine), in the sense that the suggested answers have been
pre-computed, thus the engine has to evaluate less queries at run time.

In this paper we generalize and propose a more powerful search-as-you-type
functionality which apart from showing on-the-fly only the first page of results of
the guessed query, it can show several other kinds of supplementary information
that provide the user with a better overview of the search space. We shall call this
paradigm of searching Instant Overview Searching, for short IOS. Regarding the
supplementary information, we focus on results clustering since it can provide
informative overviews of larger parts of the answer. Such “Cluster-As-You-Type”
functionality, can be considered as an instance of IOS. To grasp the idea, Fig. 1
shows an indicative screen dump. Consider a user who wants to find information
about the biography of Marilyn Monroe and for this reason he starts typing the
query “marilyn monroe biography” letter by letter. After having typed the first
three letters, i.e. the string “mar”, a set of query completions are prompted as
shown in Fig. 1a. At the same time, the first page of results and the cluster label
tree that correspond to the top suggestion “marabu” appear instantly (at the
main area and the left bar of the screen respectively). At that point the user can
either continue typing or select a suggestion from the list. If he selects one of the
suggestions the first page and the clustering of the results appear immediately.
Moreover, the user is able to click on a cluster’s name and get the results of only
that cluster.

(a) Start typing a query. (b) Select the suggestion “marilyn monroe”.

Fig. 1: IOS indicative screen dumps.

Suppose the user continues typing and presses the key “i”. The list of sug-
gestions is refreshed according to the new input “mari”, the top suggestion is
now different (i.e. “marilyn”) and thus the first page and the cluster label tree

1 http://www.google.com/instant/
2 http://easysearch.webs.com/home.htm
3 http://keyboardr.com/
4 http://wikinstant.com/



Exploiting Available Memory and Disk for Scalable Instant Overview Search 3

change according to the new top suggestion. Moreover, since there is the sug-
gestion “marilyn monroe” that matches what he would type, the user selects it
(Fig. 1b) and then the cluster label tree and the first page of the query “marilyn
monroe” appears immediately. We observe that the cluster label tree contains
a cluster with label “biography (5)”. The user clicks on that cluster and gets
the results that are relevant to his information need. Notice that the user typed
only 4 letters and made only 2 clicks in total. Furthermore, he have seen how
the results about Marilyn Monroe are clustered.

It is not hard to see that efficiency and real-time interaction is challenging.
To tackle this challenge, we propose enriching the trie structure [13] which is
used for query autocompletion with the various pre-computed supplementary
information. For example, and for the case of clustering, for each query in the
trie we keep the outcome of the results clustering algorithm, specifically the
cluster label tree (the cluster label tree is a tree of strings, each being the label,
readable name, for a cluster). This choice greatly reduces the required compu-
tation at interaction time, however it greatly increases the space requirements
of the trie. For this reason in this paper we describe and comparatively evaluate
various index structures. Essentially each index structure is actually a method
for partitioning the information between main and secondary memory. We have
conducted a detailed performance evaluation according to various aspects such
as system’s response time and main memory cost, which reveals the main per-
formance trade-off and assists deciding which index structure to use according
to the available main memory and desired performance. Furthermore we show
that an incremental algorithm can be used to keep the index structure fresh in
affordable time.

Finally we should clarify that the overall effectiveness of the provided func-
tionality, apart from its efficiency, depends on the quality of the pre-computed
information, i.e. on the quality of (a) the ranking method that determines query
suggestions, (b) the hits in the first page of results, and (c) the labels returned
by the clustering. However we should stress that the index structures that we
introduce and their analysis can be used with any autocompletion, ranking and
clustering method, making our approach widely applicable.

The rest of this paper is organized as follows. Section 2 motivates IOS by
sketching applications. Section 3 discusses related works. Section 4 introduces
the index structures and Section 5 reports extensive comparative experimental
results. Finally, Section 6 concludes and identifies issues that are worth further
research.

2 Applications of IOS

In this section we describe in brief two main forms of IOS; over a meta web
search engine (MSE), and over a standalone web search engine (WSE).

For instance, [8] describes a MSE over Google that clusters at real time
the retrieved results according to the words that appear in the title and the
snippet of each result. Such a system could pre-compute and store the cluster



4 P. Fafalios and Y. Tzitzikas

label tree and the top-k results for each query of the log file. In this way the
system could provide an overview of the results allowing the user to adapt his
query while he is typing. Suppose that a user searches for “apple iphone” and
starts typing that string. After having typed “apple”, he notices that there is a
cluster with name apple iphone with 15 results. Instantly, he can click on that
cluster label and view the results. If the results do not satisfy his information
need, he can continue typing. However we should note that in the context of a
MSE the delivered results depend on the results of the selected underlying search
engines. Since the results of the same query may be different at different points
in time, the pre-computed and stored cluster label tree of the query results may
be different from the cluster label tree of the current query results. This means
that a particular stored term/label of a cluster may not exist in the cluster label
tree of a future search of the same query. Therefore, when a user clicks on a
cluster’s term, the system may not be able to perform the query and then focus
on the selected cluster unless the results of this cluster (i.e. its top-10 hits) have
been also stored beforehand. Of course that approach increases the amount of
pre-computed information that has to be stored and fetched. As we shall see,
the index structures that we will introduce can be used to provide real-time
interaction also in such cases.

Fig. 2: IOS over a faceted search engine.

In the context of a standalone WSE, the engine can pre-compute and store
not only the cluster label tree, but also the facets (metadata-based groupings)
of the top-k results of each logged query. For example, in [12] the engine char-
acterizes the top-k results according to five facets: by clustering, by domain, by
date, by filetype and by language. The provision of such information during typ-
ing can accelerate the search process. For instance, consider a user seeking for
SIGIR 2010 papers. While he types this query letter by letter, he notices that
for the top suggestion “SIGIR”, there is the term 2010 below the facet By date
with 50 results. This means that he can directly click on that term and get the
corresponding results (on user click the engine executes the top suggested query
and directly focuses, i.e. restricts the answer on the clicked term/facet). Two
screendumps of a prototype application we have developed are given at Fig. 2.



Exploiting Available Memory and Disk for Scalable Instant Overview Search 5

It follows that IOS can be used for accelerating the performance of multifaceted
browsing interfaces [4, 3, 6].

3 Background and Related Work

A SAYT system computes answers to keyword queries as the user types in key-
words letter by letter. Fig. 3 illustrates the architecture of such a system. At
each keystroke of the user the browser sends (in AJAX style) the current string
to the server, which in turn computes the top suggestions and returns to the
browswer the best answers ranked by their relevancy to the top-suggested query.

User types 
a query 

letter-by-letter

Send input on every 
keystroke (AJAX)

Send top-k
suggestions,

top-m results to 
the user (AJAX)

client

Give current 
query as input 

in the trie

Collect all past 
queries starting 

with current 
input (DFS) Rank suggestions 

by their 
popularity score server

For each 
suggestion retrieve 

top-m results

Fig. 3: A Search-As-You-Type (SAYT) System.

There are several works describing letter-by-letter searching for various kinds
of sources, e.g. for relational databases [5, 15, 10, 11], or documents [2, 9]. To cope
with the efficiency problem, most use pre-computed results and in-memory in-
dexes (i.e. the entire index is loaded in main memory). The only work that does
not load everything in main memory is the semantic search engine Complete-
Search5) [1]. That work differs from ours in the following aspects: (1) Complete-
Search is not a generic search engine, but is based on specific known datasets (like
Wikipedia and DBLP) with predefined semantic categories, (2) it’s suggestion
system is word based, not query based, i.e. it suggests only words that match
user’s current input, not whole queries, (3) it focuses on compression of index
structures, especially in disk-based settings, while IOS uses partial in-memory
indexes, (4) in general CompleteSearch helps users to formulate a good semantic
query while IOS helps users to locate directly and fast what they are looking for.

4 Index Structures

To tackle the requirements of IOS, we propose enriching the trie that is used
for autocompletion with the results of the pre-processing steps. Specifically, and
for the scenario of Fig. 1, for each query stored in the query log file, we extend
its entry in the trie by two additional strings. The first string contains the first

5 http://search.mpi-inf.mpg.de



6 P. Fafalios and Y. Tzitzikas

page of results of the guessed query (i.e. an HTML string containing for each
hit its title, snippet and URL). The second string contains the faceted dynamic
taxonomy, for short facets (or only the cluster label tree in the case of a MSE).
Note that we prefer to store both strings in HTML format in order to save time
while presenting the results to the user (no need for any post-processing).

Obviously, such enrichment significantly increases the size of the trie, since
for each query we have to save two additional long strings. Specifically, in the
original trie for each logged query of n characters, the trie keeps a node of about
n bytes (usually n = 16). However, the string that represents the cluster label
tree (or the facets) can be about 30,000 bytes and the string that represents
the first page of results is about 40,000 bytes (including the characters of the
HTML code for both strings). Below we propose methods and index structures
for managing this increased amount of data.

The first idea is to adopt the trie partitioning method proposed in [7]. Ac-
cording to that method, only one “subtrie” (of much smaller size) is loaded in
main memory. Since users seldom change their initial queries [14], dividing the
trie in this way implies that once the appropriate subtrie has been loaded (dur-
ing the initial user’s keystrokes), the system can compute the completions of
the subsequent requests using the same subtrie. Now suppose the case where
we do not have enough main memory to load the enriched trie (or subtrie). In
such case we can save the results of the preprocessing steps (e.g. facets, cluster
label tree, first hits), in one or more different files. Consequently, the trie for
each query entry has to keep only three numbers: (a) one for the file, (b) one
for the bytes to skip and (c) one for the bytes to read. Obviously, one should
use random access files for having fast access to the pre-computed information.
This approach greatly reduces the size of the trie, however we have to perform
additional disk accesses for reading the pointing file.

Note that this approach could be used in the context of a MSE, in order
to store also the results of each cluster (as we discussed previously). We could
further reduce the size of the trie that is loaded in the main memory by combining
the last two approaches (trie partitioning and trie with indices to external files).
Such approach requires very small amount of main memory, however it requires
more time for loading the appropriate subtrie in the main memory and reading
the data from the pointing file.

To clarify the pros and cons of the aforementioned approaches, we decided
to comparatively evaluate the following approaches (depicted at Fig. 4):

(a) (SET) Single Enriched Trie. The entire enriched trie in main memory.

(b) (STIE) Single Trie with Indices to External files. Single (query) trie in
main memory with pointers to external random access files where a pointer
consists of 3 numbers (file number, bytes to skip, and bytes to read).

(c) (PET) Partitioned Enriched Trie. The enriched trie is partitioned to
several subtries using the partitioning proposed in [7].

(d) (PTIE) Partitioned Trie with Indices to External files. The (query)
trie is partitioned ([7]) and each subtrie contains pointers to external random
access files.



Exploiting Available Memory and Disk for Scalable Instant Overview Search 7

root

trie
(a) SET (b) STIE

c a p

j
a m

o b

String: query
String: cluster label tree
String: results’ first page
String: query
String: cluster label tree
String: results’ first page

sub-trie1

sub-trie2

m a p
sub-trie3

(c) PET (d) PTIE

String: query
String: cluster label tree
String: results’ first page
String: query
String: cluster label tree
String: results’ first page

c a p

j
a m

o b

int: file
int: bytes to skip
int: bytes to readsub-trie1

sub-trie2

m a p
sub-trie3

int: file
int: bytes to skip
int: bytes to read
int: file
int: bytes to skip
int: bytes to read
int: file
int: bytes to skip
int: bytes to read

c a p String: queryString: cluster label treeString: results’ first page

j
a m

o b

String: queryString: cluster label treeString: results’ first page
String: queryString: cluster label treeString: results’ first page

m a p
String: queryString: cluster label treeString: results’ first page

root

trie

c a p

j
a m

o b

m a p

int: fileint: bytes to skipint: bytes to read
int: fileint: bytes to skipint: bytes to read
int: fileint: bytes to skipint: bytes to read
int: fileint: bytes to skipint: bytes to read

Fig. 4: Index implementation approaches.

5 Experimental Evaluation

The objective is to comparatively evaluate the previous approaches, to identify
the more scalable one(s) and to clarify the main performance trade-offs.

Evaluation Aspects We evaluated the above approaches according to the
following aspects:
[Trie Size to be loaded in main memory] We will measure the size of the trie that
has to be loaded in main memory. The key requirement for those approaches
which are based on a single trie, is to fit in memory, since loading is done only
once (at deployment time), so the loading time of the trie does not affect the
performance at user requests. Instead, the loading time is very important for
those approaches relying on multiple subtries, since each user request may require
loading the appropriate subtrie from the disk.
[Average retrieval time] We will measure the average time for retrieving the
suggestions, the results and the clusters/facets for a specific current user’s query.
This time does not contain the network’s delay time and the javascript running
time.
[Construction Time and Update Time] We will measure the time required to
process the query log and construct the corresponding index. This task has
to be done once, however it should be redone periodically since the log file
changes. We should clarify at this point that in contrast to the problem of
inverted file construction, in our case we do not have main memory problems
at construction time, specifically the most space consuming part of the pre-
computed information (i.e. the outcome of results clustering and the first page



8 P. Fafalios and Y. Tzitzikas

of hits) can be directly stored in the external file(s) at construction time, thus
there is no need for creating and merging partial indices (as it is the case of
inverted file construction). We will also investigate the time required to update
the index structures (after query log change) instead of constructing them from
scratch.

Num. of log’s
queries

Num. of unique
queries

Avg num. of
words per query

Num. of
distinct words

Avg num. of
chars per query

1,000 578 2.23 950 15.5

10,000 5,341 2.3 6,225 16

20,000 10,518 2.34 10,526 16.2

40,000 20,184 2.35 17,179 16.2

Table 1: Query Log Files

Data Sets and Setup We used 4 query log files of different sizes. One with
1,000, one with 10,000, one with 20,000 and one with 40,000 queries. Each file
is a subset of a random log sample of about 45,000 fully anonymized queries
from a real query log file (from Excite6 WSE). Table 1 illustrates some features
of these files. We should note that it is not necessary to have a very big set of
distinct queries for an IOS functionality. Note that in WSE query logs the query
repetition frequency follows a Zipf distribution [16], i.e. there are few queries
that are repeated frequently and a very large number of queries which have very
small frequency. Obviously the latter are not very useful to be logged and used as
suggestions for an IOS functionality in the sense that they will not be suggested
as completions (their rank will be very low). Regarding trie partitioning, we
created subtries each corresponding to the first two characters (k = 2) of the
queries. As shown in [7], for k = 2 the partitioning yields subtries whose sizes
are very close (close to ideal). All experiments were carried out in an ordinary
laptop with processor Intel Core 2 Duo P7370 @ 2.00Ghz CPU, 3GB RAM and
running Windows 7 (64 bit). The implementation of all approaches was in Java
1.6 (J2EE platform), using Apache Tomcat 6 and Ajax JSP Tag Library.

Results on Trie’s sizes Fig. 5 illustrates how the size of the trie that is
loaded in the main memory grows in each approach.
In the SET approach (Fig. 5a), the size of the trie increases linearly with the
query log size and can get quite high. In particular, we observe that SET requires
about 40 MB for storing the results and the clusters of a query log file of 1000
queries (578 distinct queries), i.e. it needs about 70 KB per query.
In the PET approach (Fig. 5b), we examine how the size of a subtrie grows as
a function of the entries (results and clusters of a query), we decide to store
in it. Since the subtries do not have the same size, the diagram presents the
worst case (max size), the best case (min size) and the mean case (average size)
of a subtrie’s size (for a query log file of 40,000 queries). However, the smaller
this number is, the more subtries have to be created. For example, selecting to
store 50 entries in each subtrie, 170 tries have to be created (note that this also

6 http://www.excite.com



Exploiting Available Memory and Disk for Scalable Instant Overview Search 9

depends on the number of distinct substrings of size k, for more see [7]). On
the other hand, selecting to store 800 entries per subtrie, only 24 subtries are
created.
In the STIE approach (Fig. 5c), the number of entries we select to store in each
separate file does not affect the size of the trie that is loaded in the main memory.
We observe that this approach leads to a very small trie’s size. In particular, STIE
requires about 1,8 MB for a query log file of 1,000 queries (578 distinct queries),
i.e. it needs only about 3 KB per query. For a log file of 40,000 queries, selecting
to store 50 entries in each file leads to the creation of 404 external files (with
average size of about 3.5 MB each one). At the same time, selecting to store 400
entries in each file, 51 files have to be created (with average size of about 28 MB
each one).
In the PTIE approach (Fig. 5d), we combine trie partitioning and trie with
indices to external files in order to further reduce the size of the trie. As in PET,
we examine how the number of the entries we select to store in each subtrie
affects its size (as we mentioned above, the number of entries we select to store
in each separate file does not affect the size of the trie). Since the subtries have
not the same size, the diagram presents the worst case (max size), the best case
(min size) and the mean case (average size) of a subtrie’s size (for a query log
file of 40,000 queries and selecting to store 400 entries in each external file). We
observe that even for the worst case, the size of a subtrie is extremely low.

0

400

800

1200

1600

0 20000 40000

Size
(mb)

Num of queries in query log file

(a) SET

0

20

40

60

80

0 200 400 600 800

Size
(mb)

Entries per trie

AVG MIN MAX

(b) PET

0
5
10
15
20
25
30

0 20000 40000

Size
(mb)

Num of queries in query log file

(c) STIE

0

0,4

0,8

1,2

1,6

0 200 400 600 800

Size
(mb)

Entries per trie

AVG MIN MAX

(d) PTIE

Fig. 5: Size of the Trie

1
10

100
1.000

10.000
100.000

1.000.000
10.000.000

1000 10000 20000 40000

Main 
memory 
size (kb) 

in log
scale

Number of Queries in Query Log File

SET PET STIE PTIE

Fig. 6: Comparison of the trie’s size.

Conclusion. Fig. 6 compares the four approaches where the y-axis is in
logarithm scale. For the PET and PTIE approach, we choose to depict the



10 P. Fafalios and Y. Tzitzikas

best case (50 entries per trie), so the average size of a subtrie is constant and
independent of the query log size. As expected, SET requires the more main
memory space, which can be very big for large query logs. The best approach
(regarding only the size of the trie) is PTIE with great difference from the
others. STIE follows but for query logs of smaller than 40,000 queries. Finally,
PET requires less space than STIE only for very large query logs files (more
than 40,000 queries).

Average Retrieval Time Fig. 7 depicts the average retrieval time for each
implementation approach (for the PET approach, the corresponding diagram
concerns a query log file of 40,000 queries).

0

20

40

60

80

100

0 20000 40000

Time
(ms)

Num of Queries in Query Log File

(a) SET

0

400

800

1200

0 200 400 600 800

Time
(ms)

Entries per Trie

(b) PET

0

20

40

60

80

100

0 20000 40000

Time
(ms)

Num of Queries in Query Log File

(c) STIE

0

20

40

60

80

100

0 20000 40000

Time
(ms)

Num of Queries in Query Log File

(d) PTIE

Fig. 7: Average retrieval time.

We can see that SET has very low average retrieval time (almost constant),
taking only a few milliseconds to retrieve the required data even for very large
query log files (Fig. 7a). However, it requires that the entire trie fits the main
memory. In PET, the average retrieval time depends on the size of the appro-
priate subtrie that needs to be loaded in the main memory, i.e. the number of
entries per subtrie. We observe that for all cases, PET is much slower than SET
(Fig. 7b). The STIE approach was implemented using random access files and
therefore the average retrieval time does not depend on the size of the external
file. We observe that this approach is very efficient even for large query log files
with average retrieval time lower than 40 ms (Fig. 7c). Finally, as in STIE ap-
proach, PTIE was implemented using random access files. For this reason, its
average retrieval time depend mainly on the size of the query log file (Fig. 7d).
We observe that this approach is a bit worse than STIE. The reason is that it
requires one more disk access in order to find and load the appropriate subtrie.

Synopsis. Fig. 8b compares the average retrieval time of all approaches (for
PET approach, we consider the best case of 50 entries per subtrie). It is obvious
that the SET approach is much more efficient than all the other approaches.
However, as mentioned above, for large query log files its size is huge and it does
not fit in main memory. For this reason, one may argue that the best approach is
STIE, as it combines low trie size and very fast retrieval time. Moreover, PTIE is
a very good approach as it offers very small trie size and efficient retrieval time.
Finally, PET approach is the worst although its retrieval time is not unacceptable
(about 200 ms). Fig. 8a compares only the SET, STIE and PTIE approaches,
excluding PET (as it is independent on the size of the query log file). We observe



Exploiting Available Memory and Disk for Scalable Instant Overview Search 11

0

20

40

60

0 20000 40000

Time
(ms)

Number of Queries in Query Log File

SET STIE PTIE

(a) PET vs. STIE vs. PTIE

0

50

100

150

200

250

SET PET STIE PTIE

Time
(ms)

Implementation Approach

(b) All indexes

Fig. 8: Comparison of the average retrieval time.

that in all approaches, the average retrieval time is very low. SET is the more
efficient approach, followed by STIE, and finally by PTIE.

At last we should mention that experiments over bigger synthetic query logs
yield the same conclusions7.

5.1 Selecting the Right Index

The main conclusion is that the proposed functionality is feasible for real time
interaction even if the log file and the preprocessed information have considerably
high size. The selection of the implementation approach depends on the available
main memory, the size of the log file, and the size of the preprocessed information.
Below we describe criteria that should be used and in the right order.

1/ If the entire SET fits in memory then this is the faster choice since no loading
has to be done during user’s requests.
2/ If SET does not fit in memory then, the next choice to follow is STIE since it
offers faster retrieval time in comparison to PET and PTIE. However note that
STIE is feasible only if the trie of the query log fits in main memory (which is
usually the case), if not then PTIE approach has to be used.
3/ Finally, we could say that the more scalable approach is PTIE, since it can be
adopted even if the available main memory has very small size. Furthermore, the
experiments showed that PTIE is very efficient (with retrieval time lower than
60 ms) and can be used even with very large query log files. Fig. 9a analyzes
the retrieval time of PTIE’s main tasks. However, more information has to be
loaded to main memory at request time in comparison to SET and STIE. This
limits the throughput that is feasible to achieve. This problem can be alleviated
by adopting a caching scheme, an issue for future research.

Fig. 9b summarizes the results and illustrates the trade-off between (a) re-
sponse time, (b) amount of bytes to be loaded in main memory for serving one
request, and (c) cost (amount) of main memory that should be available. The
values concern a query log of 40,000 queries (20,184 unique queries). For the
PET approach we consider the best case of 50 entries per subtrie.

7 For example over a synthetic query log with 230,000 distinct queries STIE gave
average resp. time 80ms while PTIE slightly higher: 80-90ms.



12 P. Fafalios and Y. Tzitzikas

Load 
subtrie

95%

Retrieve 
data 
from 

subtrie
3%

Read File 
Data
2%

(a) Retrieval time analysis of
PTIE.

10 ms
31 ms

54 ms

210 ms

0 mb 0,07 mb 0,685 mb

19,1 mb

1430 mb

24,1 mb

0,892 mb

35 mb

0,5 1,5 2,5 3,5 4,5

Average
response time
(ms)
Megabytes to be
loaded at
request time
Cost of main
memory (mb)

SET STIE PTIE PET

Time (ms) Size (mb)

0 0 

50

50

25

100

200

5

500

(b) Summarized results for all approaches.

Fig. 9

We observe that SET does not load anything at request time, while STIE
loads only the bytes that has to read from the external file (about 70 KB). For
this reason, these two approaches achieve very fast response time. PTIE needs
about 54 ms for loading the appropriate subtrie (of average size about 622 KB)
and reading the results from the external file, while PET spends about 210 ms
to load the appropriate subtrie (of average size about 19,1 MB) that contains all
the needed information. On the other side, SET requires vast amount of main
memory contrary to the other three approaches that require much less.

5.2 Construction and Update

Construction For the construction of the trie, the main tasks are (a) the
analysis of the query log file, (b) the execution of each distinct query in order to
get the first page and the cluster label tree of the results and (c) the creation of
the trie’s file. Of course the time required by these tasks depend on the particular
query evaluation or clustering method that it is employed. Table 2 reports the
average times of these tasks for various sizes of the query log.

Number of
log’s queries

Query log file
analysis time (ms)

Results and clusters
retrieval time (ms)

Trie creation
time (ms)

Total time
(sec)

1,000 4 592,515 1,259 594

10,000 9 5,415,150 10,156 5,425

20,000 12 10,802,970 19,950 10,823

40,000 16 21,105,780 34,760 21,141

Table 2: Trie’s Construction Time.

The results are almost the same for all index approaches and for this reason
we present only the results of the SET approach (for the STIE and PTIE ap-
proach, the creation of the external files has very small time impact and for the
PET and PTIE approach, the time for creating all the subtries is almost equal
to the time SET requires to create a single big trie).



Exploiting Available Memory and Disk for Scalable Instant Overview Search 13

We observe that the task requiring the most time is the retrieval of the results
and their clustering. For example, for the query log of 1,000 queries (578 distinct
queries), we can see that the retrieval of the results and their clustering takes
about 592 seconds, i.e. around 1 second per query.

Update Note that the index should be updated periodically (based on the
contents of the constantly changing query log and the new fresh results of the
underlying WSE). One policy is to update the index daily. Since the construction
takes some hours (as we saw earlier) it is worth providing an incrementalmethod.
An incremental approach is to create the trie of the new query log file and then
merge the old “big” trie with the new one which is much smaller. If an entry of
the new trie does not exist in the initial trie then we just add the new query with
all its data to the initial trie. If however an entry of the new trie exists in the
initial then we have to update its results, its clusters and it’s popularity (which
is used by the autocompletion algorithm). As we have seen earlier, the time for
creating a trie depends on the size of the query log file (about 1 second for each
query in our setting). For example, if the new query log has 250 distinct queries
then it’s trie creation time is about 4 minutes.

For testing the time required for merging two tries, we run an experiment
with an initial trie of about 11,000 distinct queries (767 MB) and a new trie
of 250 distinct queries (14 MB). The execution time was about 2 minutes. We
can see that the incremental approach is much more efficient (6 minutes versus
about 3 hours).

6 Conclusion

In this paper we introduced a generalized form of search-as-you-type function-
ality which apart from suggesting query completions and showing fast the first
page of results, it shows various other kinds of supplementary information for
giving the users an overview of the information space. The effectiveness of this
functionality depends on the quality of the pre-computed information (e.g the
quality of the ranking method for the query suggestions, the quality of the hits
in the first page of results, the quality of the labels returned by the clustering).
In any case, the provision of such services at real time significantly increases the
amount of information that has to be stored and fetched at run time. For this
reason we focused on the problem of efficiency, and we comparatively evaluated
various index structures which partition the pre-computed information in var-
ious ways. This comparison reveals the main performance trade-off and allows
deciding which index structure to use according to the available main memory
and desired performance. Contrary to past works, the proposed structure (PTIE)
partitions the index and can be adapted to a system’s main memory capacity.
This means that one can exploit large amounts of pre-computed information
(even images produced by visualization algorithms). We should also note that
the performance is independent of the size of the collection; it is affected only by
the size of the query log (in particular by the number of distinct queries), which



14 P. Fafalios and Y. Tzitzikas

often has a limited size as we discussed earlier. Furthermore, and since the index
should be updated periodically based on the contents of the constantly chang-
ing query log and the new fresh results of the underlying WSE, we described
an incremental approach for updating the index. Finally we should clarify that
the proposed implementation method can be used with any ranking, clustering
or autocompletion method. Issues which are worth further research include: (a)
caching mechanisms for further reducing the information that has to be loaded
at user request time and thus increasing the throughput that can be served, and
(b) methods for automatically selecting the more beneficial index according to
details of the particular setting (e.g. size of cluster label tree, size of first page
of results, etc), the available main memory, and desired performance.

Acknowledgements This work was partially supported by the EU project
SCIDIP-ES (FP7-283401).

References

1. H. Bast, A. Chitea, F. Suchanek, and I. Weber. Ester: efficient search on text,
entities, and relations. In SIGIR 2007, pages 671–678. ACM, 2007.

2. H. Bast and I. Weber. Type less, find more: fast autocompletion search with a
succinct index. In SIGIR 2006, pages 364–371. ACM, 2006.

3. S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania. Minimum-effort
driven dynamic faceted search in structured databases. In CIKM 2008. ACM.

4. W. Dakka, P. Ipeirotis, and K. Wood. Automatic construction of multifaceted
browsing interfaces. In CIKM 2005, pages 768–775. ACM, 2005.

5. S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword search. In
WWW 2009, pages 371–380. ACM, 2009.

6. A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor: cost-driven exploration of
faceted query results. In CIKM 2010, pages 719–728. ACM, 2010.

7. D. Kastrinakis and Y. Tzitzikas. Advancing search query autocompletion services
with more and better suggestions. In ICWE 2010. Springer, 2010.

8. S. Kopidaki, P. Papadakos, and Y. Tzitzikas. Stc+ and nm-stc: Two novel online
results clustering methods for web searching. WISE 2009, pages 523–537, 2009.

9. G. Li, J. Feng, and L. Zhou. Interactive search in xml data. In WWW 2009, pages
1063–1064. ACM, 2009.

10. G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on relational data: a
tastier approach. In SIGMOD 2009, pages 695–706. ACM, 2009.

11. S. Li, W. Yu, X. Gu, H. Jiang, and C. Fang. Efficient interactive smart keyword
search. WISE 2010, pages 204–215, 2010.

12. P. Papadakos, S. Kopidaki, N. Armenatzoglou, and Y. Tzitzikas. Exploratory
web searching with dynamic taxonomies and results clustering. In ECDL 2009.
Springer, 2009.

13. H. Shang and T. Merrettal. Tries for approximate string matching. Knowledge
and Data Engineering, IEEE, pages 540–547, 1996.

14. C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very large
web search engine query log. In SIGIR 1999, pages 6–12. ACM, 1999.

15. H. Wu, G. Li, C. Li, and L. Zhou. Seaform: search-as-you-type in forms. VLDB
2010, pages 1565–1568, 2010.

16. Y. Xie and D. O’Hallaron. Locality in search engine queries and its implications
for caching. In INFOCOM 2002, IEEE, pages 1238–1247. IEEE, 2002.




