
Noname manuscript No.
(will be inserted by the editor)

Building and Querying Semantic Layers for Web Archives
(Extended Version)?

Pavlos Fafalios · Helge Holzmann · Vaibhav Kasturia · Wolfgang Nejdl

Received: date / Accepted: date

Abstract Web archiving is the process of collecting
portions of the Web to ensure that the information
is preserved for future exploitation. However, despite
the increasing number of web archives worldwide, the
absence of efficient and meaningful exploration methods
still remains a major hurdle in the way of turning
them into a usable and useful information source. In
this paper, we focus on this problem and propose an
RDF/S model and a distributed framework for building
semantic profiles (“layers”) that describe semantic infor-
mation about the contents of web archives. A semantic
layer allows describing metadata information about the
archived documents, annotating them with useful se-
mantic information (like entities, concepts and events),
and publishing all this data on the Web as Linked Data.
Such structured repositories offer advanced query and
integration capabilities, and make web archives directly
exploitable by other systems and tools. To demonstrate
their query capabilities, we build and query semantic
layers for three different types of web archives. An ex-
perimental evaluation showed that a semantic layer can
answer information needs that existing keyword-based
systems are not able to sufficiently satisfy.

Keywords Web Archives · Semantic Layer · Profiling ·
Linked Data · Exploratory Search

* This is an extended version of the paper: P. Fafalios, H.
Holzmann, V. Kasturia, & W. Nejdl, “Building and Querying
Semantic Layers for Web Archives”, 2017 ACM/IEEE-CS
Joint Conference on Digital Libraries, June 2017.

Pavlos Fafalios · Helge Holzmann · Vaibhav Kasturia ·
Wolfgang Nejdl
L3S Research Center, Leibniz University of Hannover, Appel-
str. 9a, 30167 Hannover, Germany
E-mail: {fafalios, holzmann, kasturia, nejdl}@L3S.de

1 Introduction

Significant parts of our cultural heritage are produced
and consumed on the Web. However, the ephemeral
nature of the Web makes most of its information
unavailable and lost after a short period of time. Aiming
to avoid losing important historical information, a
web archive captures portions of the Web to ensure
the information is preserved for future researchers,
historians, and interested parties in general.

Despite the increasing number of web archives world-
wide, the absence of efficient and meaningful exploration
methods still remains a major hurdle in the way of turn-
ing web archives into a usable and useful source of infor-
mation. The main functionalities offered by existing sys-
tems are to find older versions of a specific web page, to
search on specific collections, or to search using keywords
and filter the retrieved results by selecting some basic
metadata values. However, for a bit more complex infor-
mation needs, which is usually the case when exploring
web archives, keyword-based search leads to ineffective
interactions and poor results [48]. This is true especially
for exploratory search needs where searchers are often
unfamiliar with the domain of their goals, unsure about
the ways to achieve their goals, or need to learn about the
topic in order to understand how to achieve their goals
[31]. Thus, for exploring web archives, there is the need
to go beyond keyword-based search and support more
advanced information seeking strategies [48, 49, 24].

To cope with this problem, we propose building
semantic profiles (“layers”) that describe semantic
information about the contents of archived documents.
Specifically, we base upon Semantic Web technologies
and propose an RDF/S [11] data model that allows:
a) describing useful metadata information about each
archived document, b) annotating each document with
entities, concepts and events extracted from its textual

This is a preprint of an article accepted for publication in the International Journal on Digital Libraries (2018): https://link.springer.com/article/10.1007/s00799-018-0251-0

2 Pavlos Fafalios et al.

contents, c) enriching the extracted entities1 with
more semantic information (like properties and related
entities coming from other knowledge bases), and d)
publishing all this data on the Web in the standard RDF
format, thereby making all this information directly
accessible and exploitable by other systems and tools.
Then, we can use this model for creating and maintain-
ing a semantic repository of structured data about a
web archive. Note that the actual contents of the web
archive are not stored in the repository. The proposed
approach only stores metadata information that allows
identifying interesting documents and information
based on several aspects (time, entity, type or property
of entities, etc.). Therefore, such a repository acts as a
semantic layer over the archived documents.

By exploiting the expressive power of SPARQL [36]
and its federated features [37, 14], we can run advanced
queries over a semantic layer. For example, in case we
have constructed a semantic layer for a news archive, we
can run queries like:

– find articles of 1995 discussing about New York
lawyers

– find medicine-related articles published during 1995
– find out the most discussed politician during 1995
– find out politicians discussed in articles of 1990

together with Nelson Mandela
– find out how the popularity of Barack Obama evolved

over time during 2007
– find articles similar to another article

Note that for all these queries we can directly (at
query-execution time) integrate information coming
from online knowledge bases like DBpedia [29]. For
instance, regarding the first query, for each lawyer we
can directly access DBpedia and retrieve his/her birth
date, a photo and a description in a specific language.
Thus, semantic layers enable connecting web archives
with existing knowledge bases.

In a nutshell, in this paper we make the following
contributions:

– We introduce a simple but flexible RDF/S data
model, called Open Web Archive, which allows
describing and publishing metadata and semantic
information about the contents of a web archive.

– We detail the process of constructing semantic
layers and we present an open source and dis-
tributed framework, called ArchiveSpark2Triples,
that facilitates their efficient construction.

– We present (and make publicly available) three
semantic layers for three different types of web
archives: one for a versioned web archive, one for

1 For simplicity, when we say entity we refer to entity
(e.g., Barack Obama, New York, or Microsoft), concept (e.g.,
Democracy or Abortion) or event (e.g., 2010 Haiti earthquake
or 2016 US Election).

a non-versioned news archive, and one for a social
media archive.

– We showcase the query capabilities offered by se-
mantic layers through many interesting exploitation
scenarios and query examples.

– We detail the results of a comparative evaluation
using a set of 20 information needs of exploratory
nature (providing also their relevance judgements).
The results showed that a semantic layer can satisfy
information needs that existing keyword-based
systems are not able to sufficiently satisfy. They also
enabled us to identify problems that can affect the
effectiveness of query answering.

The rest of this paper is organized as follows:
Section 2 motivates our work and presents related
literature. Section 3 introduces the Open Web Archive
data model and describes the process and a framework
for constructing semantic layers. Section 4 presents
three semantic layers for three different types of web
archives, as well as their query capabilities. Section 5
presents evaluation results. Finally, Section 6 concludes
the paper and discusses directions for future research.

2 Motivation and Related Work

In this section, we first motivate our work by discussing
information needs that our approach intends to satisfy
for enabling more sophisticated search and exploration
of web archives. Then we review related works by also
discussing the difference of our approach.

2.1 Motivation

Working with large web archives in the context of the
ALEXANDRIA project2, we have identified the fol-
lowing information needs that an advanced exploration
system for web archives should satisfy:

Q1 Information Exploration. How to explore documents
about entities from the past in a more advanced and
“exploratory” way, e.g., even if we do not know the
entity names related to our information need? For
example, how can we find articles of a specific time
period discussing about a specific category of entities
(e.g., philanthropists) or about entities sharing some
characteristics (e.g., born in Germany before 1960)?

Q2 Information Integration. How to explore web
archives by also integrating information from exist-
ing knowledge bases? For example, how can we find
articles discussing about some entities and for each

2 The ALEXANDRIA project (ERC Advance Grant, Nr.
339233, http://alexandria-project.eu/) aims to develop
models, tools and techniques necessary to explore and analyze
web archives in a meaningful way.

Building and Querying Semantic Layers for Web Archives (Extended Version) 3

entity to also retrieve and show some characteris-
tics (e.g., an image or a description in a specific lan-
guage)? Cross-domain knowledge bases like DBpe-
dia contain such properties for almost every popular
entity. Moreover, how to directly integrate informa-
tion coming from multiple web archives? For exam-
ple, how can we combine information from a news
archive and a social media archive?

Q3 Information Inference. How to infer knowledge by
exploiting the contents of a web archive? For exam-
ple, can we identify important time periods related
to one or more entities? Vice-versa, can we find out
the most popular entities of a specific type in a spe-
cific time period (e.g., most discussed politicians in
articles of 2000)? Or how can we understand the
topic of a web page (e.g., find news articles related
to medicine)?

Q4 Robustness (in information change). How to ex-
plore a web archive by automatically taking into ac-
count the change of entities over time? For example,
the company Accenture was formerly known as An-
dersen Consulting, or the city Saint Petersburg was
previously named Leningrad. Such temporal refer-
ence variants are common in the case of high impact
events, new technologies, role changes, etc. How can
we find documents from the past about such entities
without having to worry about their correct refer-
ence?

Q5 Multilinguality. How to explore documents about
entities from the past independently of the docu-
ment language (and thus of the language of the en-
tity name)? For instance, abortion is Avortement
in French and Schwangerschaftsabbruch in German.
How can we find documents about entities without
having to worry about the document and entity lan-
guage?

Q6 Interoperability. How to facilitate exploitation of
web archives by other systems? How to expose infor-
mation about web archives in a standard and machine
understandable format, that will always be available
on the Web, and that will allow for easy information
integration? How to avoid downloading and parsing
the entire web archive for identifying an interesting
part of it related to a time period, some metadata val-
ues, and/or some entities. For example, how can we
gather a corpus of articles of 2004 discussing about
Greek politicians?

2.2 Related Work

Below we discuss related works on profiling, explor-
ing, and analyzing web archives, and we discuss the
differences and limitations of our approach.

2.2.1 Profiling Web Archives

A semantic layer can be considered a way to profile the
contents of a web archive. AlSum et al. [4] exploit the age
of the archived copies and their supported domains, to
avoid sending queries to archives that likely do not hold
the archived page. Alam et al. [1] examine the size and
precision trade-offs in different policies for producing
profiles of web archives (ranging between using full
URIs and only top-level domains). Bornand et al. [10]
explore the use of binary, archive-specific classifiers
to determine whether or not to query an archive for a
given URI. Finally, Alam et al. [2] introduce a random
searcher model to randomly explore the holdings of an
archive by exploiting the co-occurrence of terms.

Difference of our approach

The aim of all these works is to improve the effectiveness
of query routing strategies in a distributed archive
search environment. However, such profiling approaches
do not allow expressing semantic information about the
contents of the archived documents and thus cannot be
exploited for satisfying more sophisticated information
needs like those discussed in Section 2.1.

2.2.2 Exploring Web Archives

Online services

The Wayback Machine is a digital archive of the Web
created by the Internet Archive3. It currently contains
more than 450 billion web pages, making it the biggest
web archive in the world. With the Wayback Machine,
the user can retrieve and access older versions of a
web page. The results are displayed in a calendar view
showing also the number of times the URL was crawled.
Wayback Machine also offers faceted exploration of
archived collections, thus allowing the user to filter the
displayed results by media type, subject, collection,
creator, and language. Recently, it also started offering
keyword-based searching.

The Portuguese Web Archive (PWA)4 is a research
infrastructure that enables search and access to files
archived from the Web since 1996. PWA provides com-
prehensive crawls of the Portuguese Web and supports
both keyword and URL based searching.

Memento’s Time Travel service5 makes it easier for
users to browse the archived version of a web page by
redirecting them to the archive hosting the page. The
user provides the URL of the web page and a date of
interest and Time Travel checks various web archives

3 https://archive.org
4 http://archive.pt
5 http://mementoweb.org

4 Pavlos Fafalios et al.

for finding an older version of the web page closest to
the time indicated by the user.

Archive-It6 is a web archiving service from the
Internet Archive that helps harvesting, building and
preserving collections of digital content. It currently sup-
ports keyword-based searching while the user can also
filter the displayed results based on several metadata val-
ues like creator, subject, and language. Padia et al.[34]
present an alternative interface for exploring an Archive-
It collection consisting of multiple visualizations (image
plot with histogram, wordle, bubble chart and timeline).

Research works

Regarding research works, Tempas [23] is a keyword-
based search system that exploits a social bookmarking
service for temporally searching a web archive by index-
ing tags and time. It allows temporal selections for search
terms, ranks documents based on their popularity and
also provides query recommendations. The new version
of Tempas [26] makes use of temporal link graphs and the
corresponding anchor texts. The authors show how tem-
poral anchor texts can be effective in answering queries
beyond purely navigational intents, like finding the most
central web pages of an entity in a given time period.

Kanhabua et al. [28] propose a search system that
uses Bing for searching the current Web and retrieving a
ranked list of results. The results are then linked to the
WayBack Machine thereby allowing keyword search on
the Internet Archive without processing and indexing
its raw contents.

Vo et al. [47] study the usefulness of non-content ev-
idences for searching web archives, where the evidences
are mined only from metadata of the web pages, their
links and the URLs.

ArchiveWeb [17] is a search system that supports
collaborative search of archived collections. It allows
searching across multiple collections in conjunction with
the live web, grouping of resources, and enrichment
using comments and tags.

Jackson et al.[27] present two prototype search
interfaces for web archives. The first provides facets to
filter the displayed results by several metadata values
(like content type and year of crawl), while the other is a
trend visualization inspired by Google’s Ngram Viewer.

Singh et al.[42] introduce the notion of Historical
Query Intents and model it as a search result diversifi-
cation task which intends to present the most relevant
results (for free text queries) from a topic-temporal
space. For retrieving and ranking historical documents
(e.g., news articles), the authors propose a novel retrieval
algorithm, called HistDiv, which jointly considers the
aspect and time dimensions.

6 https://archive-it.org

Expedition [41] is a time-aware search system for
scholars. It allows users to search articles in a news col-
lection by entering free-text queries and choosing from
four retrieval models: Temporal Relevance, Temporal
Diversity, Topical Diversity, and Historical Diversity.
The results are presented in a newspaper-style interface,
while entity filters allows users refine the results.

The work by Matthews et al. [32] proposes Time
Explorer, an application designed to help users see how
topics and entities associated with a free-text query
change over time. By searching on time expressions
extracted automatically from text, Time Explorer
allows users to explore how topics evolved in the past
and how they will continue to evolve in the future.

Difference of our approach

Although most of the existing approaches offer user-
friendly interfaces, they cannot satisfy more complex
(but common) information needs like those described
in Section 2.1. By basing upon semantic technologies,
a semantic layer allows to semantically describe the
contents of a web archive and to directly “connect” them
with existing information available on online knowledge
bases like DBpedia. In that way, we are able not only
to explore archived documents in a more advanced way,
but also integrate information, infer new knowledge and
quickly identify interesting parts of a web archive for
further analysis.

A similar approach to our work has been recently
proposed by Page et al. [35]. In this work, the authors
build a layered digital library based on content from the
Live Music Internet Archive. Starting from the recorded
audio and basic information in the archive, this approach
first deploys a metadata layer which allows an initial
consolidation of performer, song, and venue information.
A processing layer extracts audio features from the
original recordings, workflow provenance, and summary
feature metadata, while a further analysis layer provides
tools for the user to combine audio and feature data,
discovered and reconciled using interlinked catalogue
and feature metadata from the other layers. Similar
to our approach, the resulting layered digital library
allows exploratory search across and within its layers.
However, it is focused on music digital libraries and
requires the availability of a large amount of metadata
which is not usually the case in web archives. On the
contrary, our approach focuses on entity-centric analysis
and exploration of an archived collection of documents.

The main drawback of our approach is its user-
friendliness since, currently, for querying a semantic
layer one has to write structured (SPARQL) queries.
However, user-friendly interfaces can be developed
on top of semantic layers that will allow end-users to
easily explore them. Moreover, we can directly exploit
systems like Sparklis [19] and SemFacet [6] that allow

Building and Querying Semantic Layers for Web Archives (Extended Version) 5

to explore the contents of semantic repositories through
a Faceted Search-like interface [38, 45]. There are also
approaches that translate free-text queries to SPARQL
(like [46]). Providing such user-friendly interfaces on
top of semantic layers is out of the scope of this paper
but an important direction for future research.

2.2.3 Analyzing Web Archives

EverLast[5] is a web archiving framework built over a
peer-to-peer architecture. It supports human-assisted
archive gathering and allows for time-based search and
analysis. It indexes the documents by term and time
where each term is assigned to a peer responsible for
managing its index.

Gossen et al. [20] propose a method to extract
interlinked event-centric document collections from
large-scale web archives. The proposed method relies on
a specialized focused extraction algorithm which takes
into account both the temporal and the topical aspects
of the documents.

Lin et. al. [30] propose a platform for analyzing web
archives, called Warcbase, which is built on Apache
HBase7, a distributed data store. Storing the data
using HBase allows the use of tools in the Hadoop
ecosystem for efficient analytics and data processing.
Warcbase also provides browsing capabilities similar to
the Wayback Machine allowing users to access historical
versions of captured web pages.

Finally, ArchiveSpark [25] is a programming
framework for efficient and distributed web archive
processing. It is based on the Apache Spark cluster
computing framework8 and makes use of standardized
data formats for analyzing web archives. The ArchiveS-
park2Triples framework introduced in this paper is
an extension of ArchiveSpark for efficiently creating
semantic layers for web archives (more in Section 3.3).

3 Building Semantic Layers

3.1 The “Open Web Archive” Data Model

We first introduce an RDF/S data model for describing
metadata and semantic information about the docu-
ments of a web archive. Figure 1 depicts the proposed
model, which we call Open Web Archive data model.9

We have defined 2 new classes and 3 new properties,
while we also exploit elements from other established
data models. The class owa:ArchivedDocument repre-
sents a document that has been archived. An archived
document may be linked or may not be linked with some
versions, i.e., instances of owa:VersionedDocument.

7 https://hbase.apache.org/
8 https://spark.apache.org/
9 The specification is available at: http://l3s.de/owa/

For example, an archived article from the New York
Times corpus [40] does not contain versions. On the
contrary, Internet Archive contains versions for billions
of web sites. For the case of versioned web archives, and
with correspondence to the Memento Framework (RFC
7089) [43], an archived document actually corresponds
to an Original Resource and a versioned document
to a Memento. An archived document containing
versions can be also associated with some metadata
information like the date of its first capture (using
the property owa:firstCapture), the date of its last
capture (using the property owa:lastCapture) as well
as its total number of captures (using the property
owa:numOfCaptures).

An archived or versioned document can be as-
sociated with three main kinds of elements: i) with
metadata information like date of publication or cap-
ture, title of document, and format (mime type), ii)
with other archived or not documents (i.e., links to
other web pages), and iii) with a set of annotations. For
describing some of the metadata we exploit terms of
the Dublin Core Metadata Initiative10. For describing
an annotation, we exploit the Open Annotation Data
Model11 [39] and the Open Named Entity Extraction
(NEE) Model12 [13]. The Open Annotation Data
Model specifies an RDF-based framework for creating
associations (annotations) between related resources,
while the Open NEE Model is an extension that allows
describing the result of an entity extraction process. An
annotation has a target, which in our case is an archived
or versioned document, and a body which is an entity
mentioned in the document. We can also directly relate
an archived or versioned document with an entity by
exploiting the property “mentions” of schema.org13.
This can highly reduce the number of derived triples. An
entity can be associated with information like its name,
a confidence score, its position in the document, and a
resource (URI). The URI enables to retrieve additional
information from the Linked Open Data (LOD) cloud
[21] (like properties and relations with other entities).

Figure 2 depicts an example of an archived non-
versioned article. We can see some of its metadata
values (date, format, title), its references to other web
pages, and its annotations. We notice that the entity
name “Federer” was identified in that document. We
can also see that this entity has been linked with the
DBpedia resource corresponding to the tennis player
Roger Federer. By accessing DBpedia, we can now
retrieve more information about this entity like its birth
date, an image, a description in a specific language, etc.
Such links to DBpedia can also take the temporal aspect

10 http://dublincore.org/
11 http://www.openannotation.org/spec/core/
12 http://www.ics.forth.gr/isl/oae/
13 http://schema.org/mentions

6 Pavlos Fafalios et al.

skos:Concept

owa:VersionedDocument

owa:ArchivedDocument

owa:ArchivedDocument
owa:VersionedDocument

dc:date

dc:title

owa:firstCapture

owa:numOfCaptures

owa:lastCapture

rdfs:Literal

rdfs:Literal

oae:Entity

rdfs:Literal

rdfs:Literal

rdfs:Literal

rdfs:Resource

oae:position

oae:confidence

oae:score

oae:detectedAs

oae:hasMatchedURI

rdfs:Literal

rdfs:Literal

rdfs:Literal

rdfs:Literal

dc:hasVersion

dc:Event

rdfs:Resource
dc:references

*

*

rdfs:Literal
dc:format

owa: http://l3s.de/owa/

oa: http://www.w3.org/ns/oa#

oae: http://www.ics.forth.gr/isl/oae/core#

dc: http://purl.org/dc/terms/

skos: http://www.w3.org/2004/02/skos/core#

schema: http://schema.org/

rdfs: http://www.w3.org/2000/01/rdf-schema#

oa:Annotation

oa:hasBody

oa:hasTarget

*

oa:hasTarget

dc:format

dc:title

dc:date

*

schema:mentions *

Fig. 1: The Open Web Archive data model.

http://www.nytimes.com/...

06.01.2012 06:40
dc:date

“An example Page”
dc:title

rdf:type

owa:ArchivedDocument

rdf:type

http://...

dc:references
http://...

“text/html”
dc:format

_:e1

512

oae:position

0.9oae:confidence

“Federer”
oae:detectedAs

dbr:Roger_Federer

oae:hasMatchedURI

oae:Entity

rdf:type

dbo:TennisPlayer

schema:mentions

owa: http://l3s.de/owa/
dc: http://purl.org/dc/terms/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
schema: http://schema.org/
oae: http://www.ics.forth.gr/isl/oae/core#

http://...
dc:references

dc:references

dc:references

_:e2

rdf:type

schema:mentions

dc:Event

Fig. 2: Describing an archived article (non-versioned) using the Open Web Archive data model.

http://www.example.com/

:v1

06.01.2012 06:40
dc:date

http://archive.org/1/...

“An example Page”
dc:title

owa:firstCapture

owa:numOfCaptures

owa:lastCapture

06.01.2008 06:40

22.05.2014 18:01

17

dc:Event

dc:hasVersion

owa:VersionedDocument

rdf:type

owa:ArchivedDocument

rdf:type

http://...
dc:references

http://...

http://archive.org/2/...

http://archive.org/3/...

rdf:type

rdf:type

http://...
“text/html”

dc:format

owl:sameAs

_:e1

728

oae:position

0.85
oae:confidence

“Euro 2008”
oae:detectedAs

dbr:UEFA_Euro_2008

oae:hasMatchedURI

rdf:type

rdf:type

dbo:SoccerTournament

dc:hasVersion

dc:hasVersion

owa: http://l3s.de/owa/
dc: http://purl.org/dc/terms/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
schema: http://schema.org/
oae: http://www.ics.forth.gr/isl/oae/core#
owl:http://www.w3.org/2002/07/owl#

…

_:e2

schema:mentions

schema:mentions

rdf:type
oae:Entity

Fig. 3: Describing an archived web page (versioned) using the Open Web Archive data model.

Building and Querying Semantic Layers for Web Archives (Extended Version) 7

into account. For example, we can provide entity URIs
that lead to DBpedia entity descriptions as they were at
the time the web page was captured (e.g., by exploiting
DBpedia archives provided by Memento14).

Figure 3 depicts an example of an archived web page
containing versions. Now, each version has its own meta-
data, annotations and references to other web pages. We
notice that the event name “Euro 2008” was identified
in the first version of the archived document and was
linked to the DBpedia resource corresponding to the
soccer tournament UEFA Euro 2008. The archived
document is also associated with metadata information
related to its versions. Specifically we can see the date
of its first capture, the date of its last capture and its
total number of captures. In addition, by exploiting
the same-as property of OWL Web ontology language
[7], we can state that a specific version of a URL is the
same as another version (e.g., versions 2 and 3 in our
example). Thereby, we can avoid storing exactly the
same data for two identical versions (redundancy is a
common problem in web archives).

Extensibility

The proposed model is highly extensible. For instance,
we can exploit the VoID Vocabulary [3] and express
dataset-related information like statistics (number
of triples, number of entities, etc.), creation or last
modification date, the subject of the dataset, and
collection from which the dataset was derived. Likewise,
one may exploit the PROV data model15 and store
provenance-related information (e.g., which tool was
used for crawling the documents or for annotating
them, what organizations or people were involved in the
crawling or annotation process, etc.).

Update

Since the contents of the archived documents never
change, we can easily update a semantic layer by just
adding triples in the RDF repository. For example, we
can add triples that describe more metadata about the
archived documents, or triples that describe more infor-
mation about the entities like properties, characteristics,
or associations with other entities.

For the case of versioned web archives, we can also
include new versions in the semantic layer. However, in
that case we should also update the date of last capture
and the total number of captures of the corresponding
archived documents.

3.2 The Construction Process

Figure 4 depicts the process of constructing a semantic
layer. The steps are the following:

– Reading of main content and metadata. We first ex-
tract the main content (full text) from each archived
document (for annotating it with entities) and we
also read its metadata. This, of course, depends on
the format used for storing the archive. For example,
WARC (ISO 28500:2009)16 is the standard format for
storing web crawls, CDX17 is widely used for describ-
ing metadata of web documents, while NITF (News
Industry Text Format)18 is a standard XML-based
format for storing and sharing news articles. For ex-
tracting the main content from HTML web pages, we
should also remove the surplus around the main tex-
tual content of a web page (boilerplate, templates,
etc.). We can also extract any other information re-
lated to an archived document that we may want to
semantically describe, like the title of the web page
or links to other web pages.

– Entity extraction and linking. We apply entity ex-
traction and linking in the full text of each archived
document for detecting entities, events and concepts
mentioned in the document and associating them
with web resources (like DBpedia/Wikipedia URIs).
TagMe [18], AIDA [22] and BabelFy [33] are well-
known entity extraction and linking tools with satis-
factory performance in entity disambiguation.

– Schema-based generation of RDF triples. Now, we
exploit the Open Web Archive data model, as well
as any other needed vocabulary/ontology, for gener-
ating the RDF triples that describe all the desired
data related to the archived documents (metadata,
entities, etc.). For representing the extracted enti-
ties (instances of oa:Annotation, oae:Entity, dc:-
Event, and dc:Concept), we can use blank nodes [8]
(since such information does not need to be assigned
a unique URI). We can use blank nodes for also nam-
ing the archived or versioned documents (instances
of owa:ArchivedDocument or owa:VersionedDocu-
ment) in case no URLs are given by the archive
provider and no other URLs can be used (e.g., links to
the Wayback Machine). Moreover, for the case of ver-
sioned documents, if a specific version of a document
is the same as an older version of the same document
(e.g., in case they have the same checksum), we can
add a same-as link starting from the newer document

14 http://mementoweb.org/depot/native/dbpedia/
15 https://www.w3.org/TR/prov-dm/
16 https://iipc.github.io/warc-specifications/
specifications/warc-format/warc-1.0/
17 https://iipc.github.io/warc-specifications/
specifications/cdx-format/cdx-2006/
18 https://iptc.org/standards/nitf/

8 Pavlos Fafalios et al.

Extraction of

main content

and metadata

Entity

Extraction

and Linking

Schema-based

Generation of

RDF triples

Entity

Enrichment
(optionally)

WARC/CDX NITF

STORAGE

Publication
(optionally)

Linked Open Data

AIDAWeb Archive

Fig. 4: The process of constructing a Semantic Layer.

and pointing to the older one (thereby avoiding stor-
ing identical information).

– Entity enrichment (optionally). We can enrich the ex-
tracted entities with more information coming from
other knowledge bases (like properties, characteris-
tics and relations with other entities). The LOD cloud
contains hundreds of knowledge bases covering many
domains. In that way the semantic layer can directly
offer more data about the extracted entities, allowing
for more sophisticated query capabilities and faster
query answering, without requiring access to exter-
nal knowledge bases. This step can be also performed
after the construction of the semantic layer, at any
time, since we just have to add triples describing in-
formation about the entities in the repository.

– Storage. The derived RDF triples are stored in a
triplestore (e.g., OpenLink Virtuoso19). Now, we can
access the triplestore and query the semantic layer
through SPARQL.

– Publication (optionally). We can make the triple-
store publicly available through a SPARQL endpoint
and/or as Linked Data. This will allow other applica-
tions to directly access and query the semantic layer.

3.3 The “ArchiveSpark2Triples” Framework

ArchiveSpark [25] is a programming framework for
efficiently analyzing web archives stored in the standard
WARC/ CDX format. The core of ArchiveSpark is its
unified data model which stores records in an hierarchi-
cal way, starting with the most essential metadata of
a webpage like its URL, timestamp, etc. Based on this
metadata, ArchiveSpark can run basic operations such
as filtering, grouping and sorting very efficiently. In a

19 https://virtuoso.openlinksw.com/

step-wise approach the records can be enriched with
more information by applying external modules, called
enrich functions. An enrich function can call any third-
party tool to extract or generate new information from
the contents of a web page. These functions can be fully
customized and shared among researchers and tasks.

ArchiveSpark2Triples20 is an extension of ArchiveS-
park that automates the construction of a semantic
layer. It reads a web archive and outputs information
about its resources as well as derived information in the
Notation3 (N3) RDF format based on the Open Web
Archive data model. Internally, ArchiveSpark2Triples
defines three types of documents: archived document
(instance of owa:ArchivedDocument), versioned docu-
ment (instance of owa:VersionedDocument), and same-
as versioned document (instance of owa:VersionedDo-
cument which constitutes a revisit-record, i.e., duplicate
of a previous capture). In more detail:

– An archived document represents all versions of the
same web page, i.e., all records with the same URL.
Its triples reflect the web page as one unit, including
the number of captures in the web archive, the
timestamps of the first and last capture as well as
pointers to the corresponding versioned documents.

– A versioned document represents each individual
capture of a web page, i.e., every record of a web
page in the archive. The assignment of URLs to
the versioned documents is customizable and thus
can be defined by the user. By default, the triples
of such a document only include the date of the
capture and its mime type (e.g., text, image, etc.).
However, the framework supports to extend this
easily by accessing and transforming into triples any
property of ArchiveSpark’s data model. If this step
involves enrich functions, the required content of the

20 https://github.com/helgeho/ArchiveSpark2Triples

Building and Querying Semantic Layers for Web Archives (Extended Version) 9

web page is seamlessly integrated by ArchiveSpark’s
enrichment mechanisms. In our case, we can use
enrich functions to extract the title of a page, its
links to other pages, and its entities. The extraction
of entities requires an additional module which uses
the entity extraction and linking system Yahoo FEL
[9]. The corresponding enrich function is available
under FEL4ArchiveSpark21.

– A same-as versioned document represents an al-
ready archived web page whose content has not been
changed. In this case, a same-as property pointing to
the previous record is only created. The way in which
duplicates are identified is not part of the framework
and can be defined as part of the generation workflow.

Finally, defining the vocabularies to use for produc-
ing the triples is part of the generation workflow and
thus can be customized by the user. An example of a
workflow is shown in Listing 122.

Efficiency

ArchiveSpark2Triples gains its efficiency from the ef-
ficiency of ArchiveSpark, which is mainly a result of
the two-way approach that is used for data loading
and access [25]. An archived collection to be used with
ArchiveSpark always consists of two parts, the WARC
files containing the data records with headers and pay-
loads, and the CDX files containing only basic metadata
such as URLs, timestamps and datatype (which are con-
siderably smaller in size). Hence, operations that rely ex-
clusively on information contained in the metadata can
be performed very efficiently, e.g., filtering out items of
a certain type. Eventually, if operations need to be per-
formed on the actual contents, only the required records
are accessed using location pointers in the CDX files.
ArchiveSpark2Triples benefits from this approach, since
records of a datatype other than text/html, such as im-
ages and videos, can be filtered out very fast. In addition,
all properties of the archived documents and the majority
of properties of the versioned documents can be gener-
ated purely based on metadata and thus, very efficiently.
In fact, the payload is accessed only for applying enrich
functions, e.g., for extracting the title of a web page, its
entities, etc. However, these are only part of the same-as
versioned documents that do not constitute duplicates.

The most expensive task in our pipeline is the entity
extraction process, performed by FEL4ArchiveSpark
using Yahoo FEL [9] (a lightweight and very efficient
entity extraction and linking system). To avoid extraor-
dinarily long runtimes, FEL4ArchiveSpark supports to
define a timeout (set to 10 seconds per record in our

21 https://github.com/helgeho/FEL4ArchiveSpark
22 The corresponding Jupyter Notebook is available at:
https://github.com/helgeho/ArchiveSpark2Triples/
blob/master/notebooks/Triples.ipynb

experiments). Additionally, we consider only web pages
with a compressed size of less than 100 KB, as larger
file sizes are unlikely to constitute a web page and may
indicate a malformed record. Although the described
steps are considered quite efficient, the actual time
for the entire workflow depends on the dataset size,
the nature of the data as well as the used computing
infrastructure. Indicatively, the Hadoop cluster used in
our experiments for producing a semantic layer for a
web archive of about 9 millions web pages consisted of
25 compute nodes with a total of 268 CPU cores and
2,688 GB RAM (more about this web archive in Section
4.2). While the available resources strongly depend on
the load of the cluster and vary, we worked with 110
executors in parallel most of the time, which resulted in
a runtime of 24 hours for processing the entire collection
of 474.6 GB of compressed WARC and CDX files.

4 Case Studies

In this section, we present three semantic layers for three
different types of web archives and we showcase their
query capabilities. The semantic layers are publicly
available for experimentation and further research23.

4.1 A Semantic Layer for a News Archive

We created a semantic layer for the New York Times
(NYT) Annotated Corpus [40] (a non-versioned news
archive). The corpus contains over 1.8 million articles
published by the NYT between 1987 and 2007. We
filtered out articles like memorial notices, corrections,
letters, captions, etc. which actually are not articles.
This reduced their number to 1,456,875. For each article
in the corpus, a large amount of metadata is provided.
In this case study, we exploited only the article’s URL,
title and publication date. Of course, one can exploit any
other of the provided metadata (like author, taxonomic
classifiers, etc.) and extend the semantic layer with
more triples describing these metadata fields.

We used TagMe [18] for extracting entities from each
article using a confidence score of 0.2. For each extracted
entity, we stored its name (surface form), its URI and its
confidence score. Table 1 shows the number of articles
and distinct entities per year. In total, 856,283 distinct
entities of several types were extracted from the NYT ar-
ticles. Indicatively, the semantic layer has associated the
articles with 304,502 distinct entities of type Person (i.e.,
of rdf:type http://dbpedia.org/ontology/Person),
86,237 of type Location, and 54,585 of type Organization.
Regarding the entities of type Person, 63,537 are ath-
letes, 23,974 are artists, and 8,818 are politicians. The

23 http://l3s.de/owa/semanticlayers/

10 Pavlos Fafalios et al.

1 import de.l3s.archivespark._
2 import de.l3s.archivespark.implicits._
3 import de.l3s.archivespark.specific.warc._
4 import de.l3s.archivespark.specific.warc.specs._
5 import de.l3s.archivespark.specific.warc.implicits._
6 import de.l3s.archivespark.enrich._
7 import de.l3s.archivespark.enrich.functions._
8 import de.l3s.archivespark.enrich.dataloads._
9 import de.l3s.archivespark.enrichfunctions.fel._

10 import de.l3s.archivespark2triples._
11 import org.apache.hadoop.io.compress.GzipCodec
12

13 // Load the Entity Linking model (FEL)
14 val modelFile = "english-nov15.hash"
15 sc.setCheckpointDir("spark_checkpoint")
16 sc.addFile("hdfs:///user/holzmann/" + modelFile)
17

18 // Load the web archive collection (filter duplicates and very big records)
19 ArchiveSpark2Triples.versionUrl = r => s"https://wayback.archive-it.org/2950/${r.timestamp}/${r.originalUrl}"
20 val collection = "ArchiveIt-Collection-2950"
21 val cdxPath = s"/data/archiveit/$collection/cdx/*.cdx.gz"
22 val warcPath = s"/data/archiveit/$collection/warc"
23 val raw = ArchiveSpark.load(sc, WarcCdxHdfsSpec(cdxPath, warcPath))
24 val records = raw.distinctValue(_.get)((a, b) => a).filter(_.compressedSize < 1024 * 100).cache // 100 kb
25

26 // Select successful responses of type HTML and detect duplicates
27 val responses = records.filter(r => r.status == 200 && r.mime == "text/html")
28 val earliestDigests = responses.map(r => ((r.surtUrl, r.digest), r)).reduceByKey{(r1, r2) => if (r1.time < r2.time) r1 else r2 }
29 val duplicates = records.map(r => ((r.surtUrl, r.digest), r)).join(earliestDigests).map{case (_, records) => records}
30 .filter{case (r1, r2) => r1.time != r2.time}
31

32 // Generate ArchivedDocument triples representing distinct webpages
33 val versions = earliestDigests.map{case (_, r) => r}.union(duplicates.map{case (r1, r2) => r1})
34 val documentTriples = ArchiveSpark2Triples.generateDocs(versions)
35

36 // Create "sameAs triples" from duplicates
37 val sameAsTriples = ArchiveSpark2Triples.generateSameAsVersions(duplicates)
38

39 // Generate VersionedDocument triples with title and entities
40 val repartitioned = earliestDigests.map{case (_, r) => r}.repartition(5000)
41 val title = HtmlText.of(Html.first("title"))
42 val responsesWithTitles = repartitioned.enrich(title)
43 val fel = FELwithTimeOut(scoreThreshold = -4, modelFile = modelFile).on(HtmlText)
44 val responsesWithEntities = responsesWithTitles.enrich(fel)
45

46 val versionTriples = ArchiveSpark2Triples.generateVersionsMapped(responsesWithEntities) {(record, uid, doc) =>
47 val recordTitle = record.value(title).getOrElse("")
48 val recordEntities = record.value(fel).getOrElse(Seq.empty)
49 doc.appendTriples("dc:title", s"""\"$recordTitle\"""").appendChildren("schema:mentions", {
50 recordEntities.zipWithIndex.map{case (entity, i) => TripleDoc(s"_:e$uid-$i", "oae:Entity", Seq(
51 "oae:confidence" -> Seq(s""""${entity.score}"^^xsd:double"""),
52 "oae:detectedAs" -> Seq(s"""\"${entity.span}\""""),
53 "oae:position" -> Seq(s""""${entity.startOffset}"^^xsd:integer"""),
54 "oae:hasMatchedURI" -> Seq(s"<http://dbpedia.org/resource/${entity.annotation}>")))}})}
55

56 // Sort and store with headers
57 val headers = TripleHeader.append("oae" -> "http://www.ics.forth.gr/isl/oae/core#")
58 val triples = ArchiveSpark2Triples.toStringsSorted(headers, documentTriples, sameAsTriples, versionTriples)
59 triples.saveAsTextFile(s"$collection-Triples1.gz", classOf[GzipCodec])

Listing 1: An example of a workflow for generating a Semantic Layer.

constructed semantic layer contains totally 195,958,390
triples.

4.2 A Semantic Layer for a Web Archive

Using ArchiveSpark2Triples, we created a semantic layer
for the Occupy Movement 2011/2012 collection24, which
has been generously provided to us by Archive-It. The
collection contains 9,094,573 captures of 3,036,326 web
pages related to protests and demonstrations around the
world calling for social and economic equality. For each
version, we stored its capture date, its title, its mime type
and its extracted entities (using a confidence score of -4),

24 https://archive-it.org/collections/2950

while for each distinct URL we stored its total number
of captures, the date of its first capture, and the date of
its last capture. For assigning URLs to the versioned web
pages, we used links to the collection’s Wayback Machine
provided by Archive-It. In that way one can have direct
online access to a specific version of an archived web page.

The semantic layer contains 1,344,450 same-as
properties, which means that we avoided annotating
and storing identical information for a very large number
of versioned web pages (about 15% of all captures).
Moreover, 939,960 distinct entities (including concepts
and events) were extracted from the archived web pages.
For each entity, we stored its name (surface form), its
URI, its position in the text, and its confidence score.

Building and Querying Semantic Layers for Web Archives (Extended Version) 11

Table 1: Number of articles and distinct entities per year
contained in the Semantic Layer of the NYT corpus.

Year Number of Articles Number of distinct Entities
1987 98,311 201,245
1988 96,508 205,745
1989 94,465 201,362
1990 89,577 200,496
1991 74,298 188,402
1992 71,530 186,289
1993 67,320 185,423
1994 62,998 186,393
1995 71,944 188,716
1996 66,255 202,197
1997 57,395 199,935
1998 60,736 214,900
1999 61,014 218,546
2000 64,642 226,724
2001 66,838 219,858
2002 69,365 227,847
2003 66,833 226,896
2004 63,796 224,252
2005 62,822 228,426
2006 61,727 231,223
2007 28,501 151,119

The constructed semantic layer contains totally more
than 10 billion triples (10,884,509,868).

4.3 A Semantic Layer for a Social Media Archive

We also created a semantic layer for a collection of
tweets. The collection comprises 1,363,415 tweets posted
in 2016 by 469 twitter accounts of USA newspapers.
For each tweet we exploit its text, creation date, favorite
count, retweet count, and the screen name of the account
that posted the tweet. For representing an instance of
a tweet, as well as its favorite and retweet count, we
used the OpenLink Twitter Ontology25 (its class Tweet
corresponds to an archived document in our model).

For extracting entities from the tweets, we used Ya-
hoo FEL (with confidence score -4). For each extracted
entity, we stored its name (surface form), its URI and
its confidence score. In total, 146,854 distinct entities
(including concepts and events) were extracted from
the collection. Table 2 shows the number of tweets and
distinct entities per month. The constructed semantic
layer contains totally 19,242,761 triples.

4.4 Querying the Semantic Layers

By exploiting the expressive power of SPARQL [36] and
its federated features [37, 14], we can offer advanced
query capabilities over the semantic layers. Below we
first discuss how a semantic layer can satisfy the motivat-
ing questions described in Section 2.1 by also presenting

25 http://www.openlinksw.com/schemas/twitter

Table 2: Number of tweets and distinct entities per
month contained in the Semantic Layer of the Tweets
Collection.

Month Number of Tweets Number of distinct Entities
01.2016 110,250 56,244
02.2016 111,370 57,557
03.2016 123,445 61,184
04.2016 114,697 59,844
05.2016 112,273 59,476
06.2016 109,412 58,043
07.2016 113,105 55,248
08.2016 115,255 57,998
09.2016 116,391 59,251
10.2016 118,429 59,179
11.2016 114,651 56,103
12.2016 104,137 52,683

interesting query examples. We also present other
exploitation scenarios for different application contexts.

Information Exploration and Integration (Q1-Q2)

A semantic layer allows running sophisticated queries
that can also directly integrate information from ex-
ternal knowledge bases. For example, Listing 2 shows a
SPARQL query that can be answered by the semantic
layer of the NYT corpus. The query asks for articles
of June 1989 discussing about New York lawyers born
in Brooklyn. By directly accessing DBpedia, the query
retrieves the entities that satisfy the query as well as
additional information (in our example the birth date
and a description in French of each lawyer). The query
returns 47 articles mentioning 5 different New York
lawyers born in Brooklyn.

1SELECT ?article ?title ?date ?nylawyer ?bdate ?abstr WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?nylawyer dc:subject dbc:New_York_lawyers ;
4 dbo:birthPlace dbr:Brooklyn .
5 OPTIONAL {
6 ?nylawyer dbo:birthDate ?bdate ;
7 dbo:abstract ?abstr FILTER(lang(?abstr)="fr")}}
8 ?article dc:date ?date FILTER(?date>="1989-06-01"^^xsd:date
9 && ?date<="1989-06-30"^^xsd:date)

10 ?article schema:mentions ?entity .
11 ?entity oae:hasMatchedURI ?nylawyer .
12 ?article dc:title ?title
13} ORDER BY ?nylawyer

Listing 2: SPARQL query for retrieving articles of
June 1989 discussing about New York lawyers born in
Brooklyn.

Listing 3 shows a query that can be answered by
the semantic layer of the tweets collection. The query
requests the most popular tweets (having more than 50
retweets) posted during the summer of 2016, mentioning
basketball players of the NBA team Los Angeles Lakers.
The query returns 14 tweets mentioning 7 different
players.

12 Pavlos Fafalios et al.

1SELECT DISTINCT ?tweet ?count ?date ?entityUri WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?entityUri dc:subject dbc:Los_Angeles_Lakers_players }
4 ?t a tw:Tweet ;
5 dc:date ?date FILTER(?date>="2016-06-01"^^xsd:dateTime &&
6 ?date<="2016-08-31"^^xsd:dateTime)
7 ?t tw:retweetCount ?count FILTER (?count > 50) .
8 ?t schema:text ?tweet ; schema:mentions ?entity .
9 ?entity oae:hasMatchedURI ?entityUri }

Listing 3: SPARQL query for retrieving popular tweets
of summer 2016 mentioning basketball players of Los
Angeles Lakers.

We can also combine information coming from
different semantic layers. For example, the query in
Listing 4 requests tweets of summer 2016 mentioning
basketball players of Los Angeles Lakers discussed in
articles of the same time period.

1SELECT DISTINCT ?player ?tweet WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?player dc:subject dbc:Los_Angeles_Lakers_players }
4 ?article dc:date ?date FILTER(?date>="2016-06-01"^^xsd:date
5 && ?date<="2016-08-31"^^xsd:date)
6 ?article schema:mentions ?articleEntity .
7 ?articleEntity oae:hasMatchedURI ?player .
8 ?tweet a tw:Tweet ;
9 dc:date ?date FILTER(?date>="2016-06-01"^^xsd:date

10 && ?date<="2016-08-31"^^xsd:date) .
11 ?tweet schema:mentions ?tweetEntity .
12 ?tweetEntity oae:hasMatchedURI ?player }

Listing 4: SPARQL query for retrieving tweets of
summer 2016 mentioning players of Los Angeles Lakers
discussed in articles of the same time period.

Information Inference (Q3)

By querying a semantic layer we can infer useful
knowledge related to the archived documents that is
very laborious to derive otherwise. For example, Listing
5 shows a query that can be answered by the semantic
layer of the Occupy Movement collection. The query
asks for the most discussed journalists in the web pages
of this collection. Notice that the query counts the
archived documents, not the versions. In that way we
avoid counting multiple times exactly the same pages
captured in different time periods. The query returns
Ralph Nader, Chris Hedges and Dylan Ratigan, as three
of the most discussed journalists.

Likewise, by running a query at the semantic layer
of the NYT corpus requesting the number of articles per
year discussing about Nelson Mandela (Listing 6), we
can see that in 1990 the number of articles is much higher
compared to the previous years, meaning that this year
was probably important for Nelson Mandela (indeed, as
in 1990 Nelson Mandela was released from prison).

Listing 7 shows another example in which the
query requests the most discussed drugs in articles
of 1987. The query returns the following top-5 drugs:

1SELECT ?journ (COUNT(DISTINCT ?page) AS ?num) WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?journ a yago:Journalist110224578 }
4 ?page a owa:ArchivedDocument ;
5 dc:hasVersion ?version .
6 ?version schema:mentions ?entity .
7 ?entity oae:hasMatchedURI ?journ .
8} GROUP BY ?journ ORDER BY DESC(?num)

Listing 5: SPARQL query for retrieving the most dis-
cussed journalists in web pages of the Occupy Movement
collection.

1SELECT ?year (COUNT(DISTINCT ?article) AS ?num) WHERE {
2 ?article dc:date ?date ;
3 schema:mentions ?entity .
4 ?entity oae:hasMatchedURI dbr:Nelson_Mandela
5} GROUP BY (year(?date) AS ?year) order by ?year

Listing 6: SPARQL query for retrieving the number of
articles per year mentioning Nelson Mandela.

Cocaine (778 articles), Heroin (248 articles), Aspirin
(63 articles), Zidovudine (53 articles), Furosemide (53
articles). If we run the same query for the year 1997, the
results are: Cocaine (462 articles), Heroin (275 articles),
Nicotine (125 articles), Fluoxetine (61 articles), Caffeine
(58 articles). We notice that Cocaine and Heroin remain
the two most discussed drugs, however we also see that
Nicotine is highly discussed in 1997 but not in 1987.

1SELECT ?drug (count(DISTINCT ?article) as ?numOfArticles) WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?drug a dbo:Drug }
4 ?article dc:date ?date FILTER(year(?date) = "1987") .
5 ?article schema:mentions ?ent .
6 ?ent oae:hasMatchedURI ?drug .
7} GROUP BY ?drug ORDER BY DESC(?numOfArticles)

Listing 7: SPARQL query for retrieving the most
discussed drugs in 1987.

Robustness and Multilinguality (Q4-Q5)

Each entity extracted from the archived documents
is assigned a unique URI (together with a confidence
score) which can be used for retrieving documents and
information related to that entity. This means that all
different mentions of an entity (e.g., name variants or
names in different languages) are assigned the same
unique URI. Thereby, we can query a semantic layer
and retrieve information related to one or more entities
without having to worry about the names of the entities
(like in the queries of Listings 2-7). Of course, this also
depends on the entity linking system used for extract-
ing the entities, specifically on its “time-awareness”
and correct disambiguation (e.g., for understanding
that Leningrad corresponds to the DBpedia URI
http://dbpedia.org/resource/Saint_Petersburg),
as well as on whether it supports the identification of
entities in different languages (e.g., for assigning the

Building and Querying Semantic Layers for Web Archives (Extended Version) 13

same URI http://dbpedia.org/resource/Abortion

to both “abortion” and “Schwangerschaftsabbruch”).

Interoperability (Q6)

RDF is a standard model for data interchange on the
Web and has features that facilitate data integration.
Describing metadata and content-based information
about web archives in RDF makes their contents
machine understandable, and allows their direct ex-
ploitation by other systems and tools. Moreover,
following the LOD principles for publishing a semantic
layer enables other systems to directly access it, while
the advanced query capabilities that it offers allow the
easy identification of an interesting part of a web archive
(related to a time period and some entities) by just
writing and submitting a SPARQL query.

Other exploitation scenarios

Time-Aware Entity Recommendation. Recent works
have shown that entity recommendation is time-
dependent, while the co-occurrence of entities in docu-
ments of a given time period is a strong indicator of their
relatedness during that period and thus should be taken
into consideration [51, 44]. By querying a semantic layer,
we can easily find entities of a specific type, or having
some specific characteristics, that co-occur frequently
with a given entity in a specific time period, thereby
enabling the provision of time and context aware entity
recommendations. For example, the query in Listing 8
retrieves the top-5 politicians co-occurring with Barack
Obama in NYT articles of summer 2007. Here one could
also apply a more sophisticated approach, e.g., by also
considering the inverse document frequency of the co-
occurred entities in the same time-period.

1SELECT ?politician (count(distinct ?article) as ?num) WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?politician a dbo:Politician }
4 ?article dc:date ?date FILTER(?date >= "2007-06-01"^^xsd:date &&
5 ?date <= "2007-08-30"^^xsd:date) .
6 ?article schema:mentions ?entity .
7 ?entity oae:hasMatchedURI dbr:Barack_Obama .
8 ?article schema:mentions ?entityPolit.
9 ?entityPolit oae:hasMatchedURI ?politician

10 FILTER (?politician != dbr:Barack_Obama)
11} GROUP BY ?politician ORDER BY DESC(?num) LIMIT 5

Listing 8: SPARQL query for retrieving the top-5
politicians co-occurring with Barack Obama in NYT
articles of summer 2007.

Evolution of entity-related features. The work in [15]
has proposed a set of measures that allow studying
how entities are reflected in a social media archive and
how entity-related information evolves over time. Given
an entity and a time period, the proposed measures

capture the following entity aspects: popularity, attitude
(predominant sentiment), sentimentality (magnitude
of sentiment), controversiality, and connectedness to
other entities. Such time-series data can be easily com-
puted by running SPARQL queries on a corresponding
semantic layer (considering also that the layer contains
the sentiments of the tweets). For example, the query
in Listing 9 retrieves the monthly popularity of Barack
Obama in tweets of 2016 (using Formula 1 of [15]).

1SELECT ?month xsd:double(?cEnt)/xsd:double(?cAll)
2WHERE {
3 { SELECT (month(?date) AS ?month) (count(?tweet) AS ?cAll) WHERE {
4 ?tweet dc:date ?date FILTER(year(?date) = 2016)
5 } GROUP BY month(?date) }
6 { SELECT (month(?date) AS ?month) (count(?tweet) AS ?cEnt) WHERE {
7 ?tweet dc:date ?date FILTER(year(?date) = 2016) .
8 ?tweet schema:mentions ?entity .
9 ?entity oae:hasMatchedURI dbr:Barack_Obama

10 } GROUP BY month(?date) }
11} ORDER BY ?month

Listing 9: SPARQL query for retrieving the monthly
popularity of Barack Obama in tweets of 2016.

Identification of Similar or Identical Documents. We
can find similar documents by comparing the entities
mentioned on them. The idea is that if two documents
mention a big number of common entities then they are
probably about the same topic. For example, given a
NYT article about golf, the query in Listing 10 retrieves
the top-5 documents with the bigger number of common
entities. By inspecting the returned results, we notice
that all are about golf.

1SELECT ?article2 (count(?entUri2) as ?numOfCommon) WHERE {
2 nyt:9504E4D71530F932A35755C0A9619C8B63 schema:mentions ?entity1 .
3 ?entity1 oae:hasMatchedURI ?entUri1 .
4 ?article2 schema:mentions ?entity2
5 FILTER (?article2 != nyt:9504E4D71530F932A35755C0A9619C8B63)
6 ?entity2 oae:hasMatchedURI ?entUri2 FILTER(?entUri2 = ?entUri1) .
7} GROUP BY ?article2 ORDER BY DESC(?numOfCommon) LIMIT 5

Listing 10: SPARQL query for retrieving similar
documents.

Likewise, we can find possibly identical documents
by checking if they contain exactly the same number of
occurrences of the same entities. This can be especially
useful for the case of versioned web archives where two
versions of the same web page may have the same main
content but different checksums because, for example,
of different layout.

Advancing Information Retrieval. Recent works have
shown that the exploitation of entities extracted from
search results can enhance the effectiveness of keyword-
based search systems in different contexts, like in
biomedical [12] and academic [50] search. Consequently,
a semantic layer built on top of a collection of archived

14 Pavlos Fafalios et al.

documents can also serve a search system operating
over the same collection.

5 Evaluation

Our objective is to show that for a bit more complex
information needs (e.g., of exploratory nature), keyword-
based search systems return poor results and thus there
is the need for more advanced information seeking strate-
gies. This corresponds to our first motivating question
(Q1). We also study the quality of the results returned by
a semantic layer (for identifying possible problems and
limitations) as well as the efficiency of query answering.

5.1 Setup

We have defined a set of 20 information needs of
exploratory nature. Each information need requests
documents of a specific time period, related to some
entities of interest. We used the NYT corpus as the
underlying archived collection. For example, “find
articles of August 1992 mentioning African-American
film producers” is such an exploratory information need.

Each of the information needs corresponds to a
SPARQL query and to a free-text query that better
describes the information need (in our evaluation we
consider one interaction step, i.e., one submitted query).
As an example, for the information need “find articles
of August 1992 discussing about African-American film
producers”, the free-text query that is used is “African-
American film producer” (we manually specify the date
range to each system). Table 3 shows the full list of infor-
mation needs and the corresponding free-text queries.

We evaluated and compared the results returned by
the SPARQL query over the semantic layer with the
results returned by the following two keyword-based
search systems operating over the NYT corpus: a)
Google News (adding at the end of the query the string
“site:nytimes.com” for returning only results from
this domain), b) HistDiv [42], which uses a different,
diversity-oriented approach for searching news archives.
Moreover, in the reported results we did not consider
23 articles (out of totally 356 articles) returned by the
SPARQL queries because they do not exist in Google
News.

For each information need, we measure:

– the number of hits returned by the SPARQL query
– the number of relevant hits returned by the SPARQL

query
– the number of hits returned by each search system
– the number of relevant hits returned by each search

system, existing in the set of relevant hits returned
by the SPARQL query

– The number of relevant hits returned by each search
system, not existing in the set of relevant hits
returned by the SPARQL query.

The SPARQL queries that correspond to the 20 infor-
mation needs as well as the full results and the relevance
judgements are publicly available26.

5.2 Results

Table 4 shows the results. We notice that the keyword-
based search systems cannot retrieve many relevant
hits, while for many cases the number of returned results
is zero. This illustrates that their effectiveness is poor
for more advanced information needs like those in our
experiments (considering however that we allow one
interaction step). The reason for this poor performance
is the fact that each information need describes a
category of entities which refers to a number of (possibly
unknown) entities, while the corresponding free-text
query does not contain the entity names. For example,
the query “African-American film producer” does not
contain the actual names of any of these film producers.
Note that during an exploratory search process, users
may be unfamiliar with the domain of their goal (e.g.,
they may not know the names of the entities of interest),
may be unsure about the ways to achieve their goal (e.g.,
not sure about the query to submit to a search system),
or may need to learn about the topic in order to under-
stand how to achieve their goal (e.g., learn facts about
some entities of interest) [31]. For achieving a better
performance, the user should probably first find entities
belonging to the corresponding information need and
then submit many queries using the entity names in the
query terms. Thus, multiple interaction and exploration
steps may be needed. However this can be infeasible, for
example in case of a large number of entities of interest.

Nevertheless, the results also show that in a few cases
the search system returns relevant hits that are not re-
turned by the SPARQL query (e.g., #2 and #20 for
Google, #2, #8 and #16 for HistDiv). In addition, some
of the hits returned by the SPARQL query are not rele-
vant (e.g., 5 results of #2), while especially in three cases
(#7, #9, and #11), this number is very large. This is due
to disambiguation error of the entity linking system. For
example, for the information need #9 (“Find articles dis-
cussing about Australian Cricketers who played One Day
Internationals”), the entity extraction system wrongly
linked the name “John Dyson” to the former interna-
tional cricketer John Dyson, instead of the deputy mayor
John Dyson (at the time of Rudolph Giuliani’s may-
oralty) discussed in the articles. Therefore, the perfor-
mance of the entity extraction system as well as the confi-
dence threshold used for entity disambiguation can affect

26 http://l3s.de/owa/semanticlayers/SemLayerEval.zip

Building and Querying Semantic Layers for Web Archives (Extended Version) 15

Table 3: List of information needs and corresponding free-text queries used in the evaluation.

Information Need Free-text query
1 Find articles of June-August 1998 mentioning actors winners of an academy award for

Best Actor
Best actor academy award
winner

2 Find articles of July-August 1989 mentioning players of Los Angeles Lakers (NBA team) Los Angeles Lakers player
3 Find articles of August 1992 mentioning African-American film producers African-American film producer
4 Find articles of 5-8/1/1990 mentioning drugs which act as stimulants Stimulant drugs
5 Find articles of 1/7/1992-20/9/1992 mentioning Ferrari Formula One drivers Ferrari formula one drivers
6 Find articles of 5/7/1989-15/8/1989 mentioning assassinated Indian politicians Assassinated Indian politicians
7 Find articles of 1-19/06/1990 mentioning American crime thriller films American crime thriller films
8 Find articles of July-August 1989 mentioning Boing 747 aircraft accidents boeing 747 aircraft accidents
9 Find articles of 1/7/1994-18/9/1994 mentioning Australian cricketers who played One

Day Internationals
Australian cricketers one day
internationals

10 Find articles of 4/7/1995 mentioning companies listed on the New York Stock Exchange
(NYSE)

Companies listed on NYSE

11 Find articles of 1/7/1994-15/8/1994 mentioning video-game consoles Video game consoles
12 Find articles of 1/7/1992-15/9/1992 mentioning famous Indian personalities who

received Padma Shri Award
Indian Padma Shri recipients

13 Find articles of July-September 1993 mentioning bacterial sexually transmitted diseases Bacterial stds
14 Find articles of July 1989 mentioning operations of the Central Intelligence Agency (CIA) CIA operations
15 Find articles of 1/8/1998 mentioning Grammy Award Winners grammy award winner
16 Find articles of 1989 mentioning Indian meat dishes Indian meat dishes
17 Find articles of July-September 1994 mentioning mammalian animals found in India Indian mammals
18 Find articles of 1-10/7/1989 mentioning US fast food chains US fast food chains
19 Find articles of 1/7/1997-2/8/1997 mentioning NASA civilian astronauts NASA civilian astronauts
20 Find articles of 1/07/1989-15/8/1989 mentioning geological hazards geological hazard

Table 4: Comparative evaluation results on effectiveness.

Query: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SPARQL
Num of results 27 34 37 16 11 14 18 8 11 15 15 12 13 16 14 12 15 13 16 15
Num of relevant results 27 29 35 16 9 14 4 8 1 15 2 8 13 16 13 10 15 13 15 15

Google
News

Num of results 8 1 0 0 0 1 1 1 0 0 0 0 0 2 0 6 1 1 1 1
Num of relevant results
returned by SPARQL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Num of relevant results
not returned by SPARQL

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

HistDiv
Num of results 0 3 1 0 0 0 0 4 0 0 0 0 0 0 0 25 2 0 0 0
Num of relevant results
returned by SPARQL

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0

Num of relevant results
not returned by SPARQL

0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0

the quality of the retrieved results. Applying a low confi-
dence threshold can increase recall, however many irrel-
evant hits may also be returned. On the contrary, by ap-
plying a high confidence threshold, the returned results
are less but the probability that they are correct is higher.

Table 5 details all the failure cases. In summary, we
have identified the following problems that can affect
the quality of the results:

– False positive: A SPARQL query may return a result
which is not relevant, due to disambiguation error of
the underlying entity linking system.

– False negative: A SPARQL query may not return a
relevant result because: i) the entity linking system
did not manage to recognize one of the entities of
interest, ii) the entity linking system did not disam-
biguate correctly an extracted entity of interest, iii)
the confidence score of the extracted entity of interest
is under the threshold used for entity disambiguation.

– Temporal inconsistency: A SPARQL query may re-
turn an irrelevant hit or may not return a relevant
hit, because a property of an entity of interest has
changed value. For example, the query of Listing 3
may return a tweet for a basketball player who was
playing in a different team at the time the tweet was
posted (although this also depends on user’s inten-
tion, since he/she may be interested in also such play-
ers). Likewise, a query may not return a hit because
the knowledge base (from which we retrieve the list
of players) may not contain information about the
team’s old players. Thus, the contents of the knowl-
edge base, its “freshness” and its completeness, affect
the quality of the retrieved results.

16 Pavlos Fafalios et al.

Table 5: Detailed analysis of SPARQL failure cases.

Query SPARQL Failure Analysis
2 SPARQL returns 5 irrelevant results (disambiguation errors of the mentions ‘Malcolm C.’, ‘Leonard C. Green’,

‘Jon Barry’, ‘Bobby Duhon’, ‘Kevin McKenna’). Google and HistDiv return 1 relevant result which though is not
returned by SPARQL. The result mentions ‘Mike Johnson’ which is not linked by the entity linking system.

3 SPARQL returns 2 irrelevant results (disambiguation errors of the mentions ‘Michael Jackson’ and ‘ice cube’).
5 SPARQL returns 2 irrelevant results (disambiguation errors of the mentions ‘Tony Brooks’ and ‘Pedro Rodriquez’).
7 SPARQL returns 14 irrelevant results (disambiguation errors of the mentions ‘avenging angel’, ‘Thomas King of

New York’, ‘don’t say a word’, ‘man apart’, ‘usual suspects’, ‘running scared’, ‘training day’, ‘ten to midnight’,
‘Black Dahlia’).

8 HistDiv returns 3 relevant results which are not returned by SPARQL. The results mention Boeing 747 accidents
which though are not linked by the entity linking system.

9 SPARQL returns 10 irrelevant results (disambiguation errors of the mentions ‘Kevin Wright’, ‘Alan Conolly’,
‘Matthew Elliott’, ‘John Dyson’).

11 SPARQL returns 13 irrelevant results (disambiguation errors of the mentions ‘a can’, ‘3DO’, ‘NES’, ‘Wii’).
12 This is a special case: 4 results mention the actor Ben Kingsley. Ben Kingsley is from England however he has been

awarded the Padma Shri award.
15 SPARQL returns 1 irrelevant result (disambiguation error of the mention ‘Betty White’).
16 SPARQL returns 2 irrelevant results (disambigation errors of the mention ‘butter, chicken’ linked to the famous

Indian dish Butter Chicken). HistDiv returns 3 relevant results which though are not returned by SPARQL. The
results contain the Indian meat dish ’Tandoori Murgh’ which is not linked by the entity linking system.

19 SPARQL returns 1 irrelevant resutls (disambiguation error of the mention ‘Gregory Johnson’).
20 Google returns 1 relevant result which is not returned by SPARQL. The result mentions ‘earthquake’ which though

is not linked by the entity linking system.

Efficiency of Query Answering

The execution time of a SPARQL query over a semantic
layer mainly depends on the following factors:

– The efficiency of the triplestore hosting the semantic
layer (e.g., in-memory triplestores are more efficient).

– The efficiency of the server hosting the triplestore
(available main memory, etc.).

– The query itself since some SPARQL operators are
costly (like the operators FILTER and OPTIONAL).
Moreover, if the query contains one or more SERVICE
operators (like the queries of Listings 2-5), then its
execution time is also affected by the efficiency of
the remote endpoints at the time of the request.

Table 6 shows the execution times of the 20 queries
used in our evaluation. The average execution time was
about 400 ms, with minimum 56 ms for query #16 and
maximum 2.4 sec for query #15 (we run each query 10
times within 3 days). All these queries use the SERVICE

operator for querying DBpedia’s SPARQL endpoint
but not any FILTER or OPTIONAL operator, while the
semantic layer was hosted in a Virtuoso server installed
in a modest personal computer (MacBook Pro, Intel
Core i5, 8GB main memory) and we run the queries in
Java 1.8 using Apache Jena 3.1.

6 Conclusion

We have introduced a model and a framework for describ-
ing and publishing metadata and semantic information
about web archives. The constructed semantic layers
allow: i) exploring web archives in a more advanced way

based on entities, events and concepts extracted from
the archived documents and linked to web resources; ii)
integrating information (even at query-execution time)
coming from multiple knowledge bases and semantic
layers; iii) inferring new knowledge that is very laborious
to derive otherwise; iv) coping with common problems
when exploring web archives like temporal reference vari-
ants and multilinguality; and v) making the contents of
web archives machine understandable, thereby enabling
their direct exploitation by other systems and tools. The
results of a comparative evaluation showed that seman-
tic layers can answer complex information needs that
keyword-based search systems fail to sufficiently satisfy.
The evaluation also enabled us to identify problems
that can affect the effectiveness of query answering.

We believe that constructing semantic layers is the
first step towards more advanced and meaningful explo-
ration of web archives [24]. Our vision is to enrich the
LOD cloud27 with semantic layers, i.e., with knowledge
bases describing metadata and semantic information
about archived collections.

Regarding future work and research, user-friendly
interfaces should be developed on top of semantic layers
for allowing end-users to easily and efficiently explore
web archives. Another interesting direction is to study
approaches for ranking the results returned by SPARQL
queries [16].

Acknowledgements The work was partially funded by
the European Commission for the ERC Advanced Grant
ALEXANDRIA (No. 339233).

27 http://lod-cloud.net/

Building and Querying Semantic Layers for Web Archives (Extended Version) 17

Table 6: Execution times of SPARQL queries.

Query R1 (ms) R2 (ms) R3 (ms) R4 (ms) R5 (ms) R6 (ms) R7(ms) R8 (ms) R9 (ms) R10 (ms) Average (ms)
1 40 80 112 78 97 75 74 63 64 63 74.6
2 256 324 406 434 391 408 274 248 251 515 350.7
3 96 585 1540 532 907 123 120 91 89 97 418
4 156 169 295 233 176 216 135 137 130 184 183.1
5 55 59 104 98 86 66 168 49 62 71 81.8
6 53 59 67 78 72 67 51 53 189 72 76.1
7 182 199 455 380 497 223 209 182 260 270 285.7
8 58 46 61 103 200 63 43 48 45 110 77.7
9 75 110 181 122 199 126 82 71 67 103 113.6
10 1,809 1,887 1,991 2,936 2,900 2,858 1,822 1,711 1,743 3,816 2,347.3
11 65 59 60 88 172 81 58 54 62 156 85.5
12 428 431 462 725 883 793 500 399 420 693 573.4
13 42 77 62 96 54 193 40 32 41 50 68.7
14 79 95 92 115 107 407 69 70 62 98 119.4
15 1,772 1,958 2,132 2,975 3,611 3,080 1,962 1,768 1,739 3,291 2,428.8
16 42 70 74 119 74 45 31 30 33 43 56.1
17 89 95 87 136 117 100 93 79 83 128 100.7
18 182 181 195 258 581 253 235 153 162 229 242.9
19 65 98 71 100 712 81 89 55 51 85 140.7
20 82 81 67 108 104 72 56 57 61 88 77.6

Average (ms): 395.12

References

1. Alam S, Nelson ML, Van de Sompel H, Balakireva
LL, Shankar H, Rosenthal DS (2015) Web archive
profiling through cdx summarization. In: Interna-
tional Conference on Theory and Practice of Digital
Libraries, Springer

2. Alam S, Nelson ML, Van de Sompel H, Rosenthal
DS (2016) Web archive profiling through fulltext
search. In: International Conference on Theory and
Practice of Digital Libraries, Springer

3. Alexander K, Hausenblas M (2009) Describing
linked datasets-on the design and usage of void,
thevocabulary of interlinked datasets. In: In Linked
Data on the Web Workshop (LDOW 09), in con-
junction with 18th International World Wide Web
Conference (WWW 09, Citeseer

4. AlSum A, Weigle MC, Nelson ML, Van de Sompel H
(2014) Profiling web archive coverage for top-level
domain and content language. International Journal
on Digital Libraries 14(3-4):149–166

5. Anand A, Bedathur S, Berberich K, Schenkel R, Try-
fonopoulos C (2009) Everlast: a distributed architec-
ture for preserving the web. In: 9th ACM/IEEE-CS
joint conference on Digital libraries, ACM

6. Arenas M, Cuenca Grau B, Kharlamov E, Marciuska
S, Zheleznyakov D, Jimenez-Ruiz E (2014) Sem-
Facet: Semantic Faceted Search over YAGO. In: 23rd
International Conference on World Wide Web, ACM

7. Bechhofer S (2009) Owl: Web ontology language.
In: Encyclopedia of Database Systems, Springer,
pp 2008–2009

8. Beckett D, McBride B (2004) Rdf/xml syntax
specification (revised). W3C recommendation 10

9. Blanco R, Ottaviano G, Meij E (2015) Fast and
space-efficient entity linking in queries. In: Eight
ACM International Conference on Web Search and
Data Mining, ACM, New York, NY, USA

10. Bornand NJ, Balakireva L, Van de Sompel H (2016)
Routing memento requests using binary classifiers.
In: 16th ACM/IEEE-CS on Joint Conference on
Digital Libraries, ACM

11. Brickley D, Guha RV, McBride B (2014) Rdf
schema 1.1. W3C recommendation

12. Fafalios P, Tzitzikas Y (2017) Stochastic Re-
Ranking of Biomedical Search Results based on
Extracted Entities. Journal of the Association for
Information Science and Technology (JASIST)
68(11):2572–2586

13. Fafalios P, Baritakis M, Tzitzikas Y (2015) Exploit-
ing linked data for open and configurable named
entity extraction. International Journal on Artificial
Intelligence Tools 24(02)

14. Fafalios P, Yannakis T, Tzitzikas Y (2016) Querying
the web of data with sparql-ld. In: International
Conference on Theory and Practice of Digital
Libraries, Springer, pp 175–187

15. Fafalios P, Iosifidis V, Stefanidis K, Ntoutsi E
(2017) Multi-aspect Entity-centric Analysis of
Big Social Media Archives. In: 21st International
Conference on Theory and Practice of Digital
Libraries (TPDL’17), Thessaloniki, Greece

16. Fafalios P, Kasturia V, Nejdl W (2017) Towards
a Ranking Model for Semantic Layers over Digital
Archives. In: ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL’17 - Posters & Demonstra-
tions)), Toronto, Ontario, Canada

18 Pavlos Fafalios et al.

17. Fernando ZT, Marenzi I, Nejdl W, Kalyani R
(2016) Archiveweb: Collaboratively extending and
exploring web archive collections. In: International
Conference on Theory and Practice of Digital
Libraries, Springer

18. Ferragina P, Scaiella U (2010) Tagme: on-the-fly
annotation of short text fragments (by wikipedia
entities). In: 19th ACM international conference on
Information and knowledge management, ACM

19. Ferré S (2014) Sparklis: a sparql endpoint explorer
for expressive question answering. In: ISWC Posters
& Demonstrations Track

20. Gossen G, Demidova E, Risse T (2017) Extracting
event-centric document collections from large-scale
web archives. In: International Conference on
Theory and Practice of Digital Libraries

21. Heath T, Bizer C (2011) Linked data: Evolving the
web into a global data space. Synthesis lectures on
the semantic web: theory and technology 1(1):1–136

22. Hoffart J, Yosef MA, Bordino I, Fürstenau H,
Pinkal M, Spaniol M, Taneva B, Thater S, Weikum
G (2011) Robust disambiguation of named entities
in text. In: Conference on Empirical Methods in
Natural Language Processing

23. Holzmann H, Anand A (2016) Tempas: Temporal
archive search based on tags. In: International
Conference on World Wide Web

24. Holzmann H, Risse T (2017) Accessing web archives
from different perspectives with potential synergies.
2nd International Conference on Web Archives /
Web Archiving Week (RESAW/IIPC)

25. Holzmann H, Goel V, Anand A (2016) Archives-
park: Efficient web archive access, extraction
and derivation. In: 16th ACM/IEEE-CS on Joint
Conference on Digital Libraries, ACM

26. Holzmann H, Nejdl W, Anand A (2017) Exploring
web archives through temporal anchor texts. In:
Proceedings of the 2017 ACM on Web Science
Conference, ACM, pp 289–298

27. Jackson A, Lin J, Milligan I, Ruest N (2016)
Desiderata for exploratory search interfaces to web
archives in support of scholarly activities. In: 16th
ACM/IEEE-CS on Joint Conference on Digital
Libraries, ACM

28. Kanhabua N, Kemkes P, Nejdl W, Nguyen TN,
Reis F, Tran NK (2016) How to search the internet
archive without indexing it. In: 20th International
Conference on Theory and Practice of Digital
Libraries, Springer

29. Lehmann J, Isele R, Jakob M, Jentzsch A, Kon-
tokostas D, Mendes PN, Hellmann S, Morsey
M, van Kleef P, Auer S, et al (2015) Dbpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web 6(2):167–195

30. Lin J, Gholami M, Rao J (2014) Infrastructure
for supporting exploration and discovery in web

archives. In: International Conference on World
Wide Web

31. Marchionini G (2006) Exploratory search: from
finding to understanding. Communications of the
ACM 49(4)

32. Matthews M, Tolchinsky P, Blanco R, Atserias J,
Mika P, Zaragoza H (2010) Searching through time
in the new york times. In: 4th Workshop on Human-
Computer Interaction and Information Retrieval

33. Moro A, Raganato A, Navigli R (2014) Entity
linking meets word sense disambiguation: a unified
approach. Transactions of the Association for
Computational Linguistics 2

34. Padia K, AlNoamany Y, Weigle MC (2012)
Visualizing digital collections at archive-it. In:
12th ACM/IEEE-CS joint conference on Digital
Libraries, ACM

35. Page KR, Bechhofer S, Fazekas G, Weigl DM,
Wilmering T (2017) Realising a layered digital
library: Exploration and analysis of the live music
archive through linked data. In: Digital Libraries
(JCDL), 2017 ACM/IEEE Joint Conference on,
IEEE, pp 1–10

36. PrudHommeaux E, Seaborne A, et al (2008) Sparql
query language for rdf. W3C recommendation 15

37. Prudhommeaux E, Buil-Aranda C, et al (2013)
Sparql 1.1 federated query. W3C Recommendation
21

38. Sacco GM, Tzitzikas Y (2009) Dynamic taxonomies
and faceted search: theory, practice, and experience,
vol 25. Springer Science & Business Media

39. Sanderson R, Ciccarese P, Van de Sompel H,
Bradshaw S, Brickley D, a Castro LJG, Clark T,
Cole T, Desenne P, Gerber A, et al (2013) Open
annotation data model. W3C community draft

40. Sandhaus E (2008) The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia
6(12)

41. Singh J, Nejdl W, Anand A (2016) Expedition: A
time-aware exploratory search system designed for
scholars. In: SIGIR conference on Research and
Development in Information Retrieval

42. Singh J, Nejdl W, Anand A (2016) History by
diversity: Helping historians search news archives.
In: ACM Conference on Human Information
Interaction and Retrieval

43. Van de Sompel H, Nelson M, Sanderson R (2013)
Rfc 7089-http framework for time-based access
to resource states-memento. Internet Engineering
Task Force (IETF), RFC

44. Tran NK, Tran T, Niederée C (2017) Beyond time:
Dynamic context-aware entity recommendation. In:
European Semantic Web Conference, Springer

45. Tzitzikas Y, Manolis N, Papadakos P (2016)
Faceted exploration of rdf/s datasets: a survey.
Journal of Intelligent Information Systems pp 1–36

Building and Querying Semantic Layers for Web Archives (Extended Version) 19

46. Unger C, Bühmann L, Lehmann J, Ngonga Ngomo
AC, Gerber D, Cimiano P (2012) Template-
based question answering over rdf data. In: 21st
international conference on World Wide Web, ACM

47. Vo KD, Tran T, Nguyen TN, Zhu X, Nejdl W (2016)
Can we find documents in web archives without
knowing their contents? In: ACM Conference on
Web Science

48. Weikum G, Spaniol M, Ntarmos N, Triantafillou
P, Benczúr A, Kirkpatrick S, Rigaux P, Williamson
M (2011) Longitudinal analytics on web archive
data: It’s about time! In: 5th Biennial Conference
on Innovative Data Systems Research, CIDR 2011

49. Whitelaw M (2015) Generous interfaces for digital
cultural collections. Digital Humanities Quarterly
9(1)

50. Xiong C, Power R, Callan J (2017) Explicit se-
mantic ranking for academic search via knowledge
graph embedding. In: Proceedings of the 26th
International Conference on World Wide Web, In-
ternational World Wide Web Conferences Steering
Committee, pp 1271–1279

51. Zhang L, Rettinger A, Zhang J (2016) A probabilis-
tic model for time-aware entity recommendation. In:
International Semantic Web Conference, Springer

