
MESSI: In-Memory Data Series Indexing

Botao Peng

LIPADE, Université de Paris

botao.peng@parisdescartes.fr

Panagiota Fatourou

FORTH ICS & Dept. of Comp. Science, Univ. of Crete

faturu@csd.uoc.gr

Themis Palpanas

LIPADE, Université de Paris

themis@mi.parisdescartes.fr

Abstract—Data series similarity search is a core operation for
several data series analysis applications across many different do-
mains. However, the state-of-the-art techniques fail to deliver the
time performance required for interactive exploration, or analysis
of large data series collections. In this work, we propose MESSI,
the first data series index designed for in-memory operation on
modern hardware. Our index takes advantage of the modern
hardware parallelization opportunities (i.e., SIMD instructions,
multi-core and multi-socket architectures), in order to accelerate
both index construction and similarity search processing times.
Moreover, it benefits from a careful design in the setup and
coordination of the parallel workers and data structures, so that
it maximizes its performance for in-memory operations. Our
experiments with synthetic and real datasets demonstrate that
overall MESSI is up to 4x faster at index construction, and up
to 11x faster at query answering than the state-of-the-art parallel
approach. MESSI is the first to answer exact similarity search
queries on 100GB datasets in ∼50msec (30-75msec across diverse
datasets), which enables real-time, interactive data exploration on
very large data series collections.

Index Terms—Data series, Indexing, Modern hardware

I. INTRODUCTION

[Motivation] Several applications across many diverse do-

mains, such as in finance, astrophysics, neuroscience, engi-

neering, multimedia, and others [1]–[3], continuously produce

big collections of data series1 which need to be processed

and analyzed. The most common type of query that different

analysis applications need to answer on these collections of

data series is similarity search [1], [4], [5].

The continued increase in the rate and volume of data series

production renders existing data series indexing technologies

inadequate. For example, ADS+ [6], the state-of-the-art se-

quential (i.e., non-parallel) indexing technique, requires more

than 2min to answer exactly a single 1-NN (Nearest Neighbor)

query on a (moderately sized) 100GB sequence dataset. For

this reason, a disk-based data series parallel indexing scheme,

called ParIS, was recently designed [7] to take advantage

of modern hardware parallelization. ParIS effectively exploits

the parallelism capabilities provided by multi-core and multi-

socket architectures, and the Single Instruction Multiple Data

(SIMD) capabilities of modern CPUs. In terms of query

answering, experiments showed that ParIS is more than 1 order

of magnitude faster than ADS+, and more than 3 orders of

magnitude faster than the optimized serial scan method.

1A data series, or data sequence, is an ordered sequence of data points. If the
ordering dimension is time then we talk about time series, though, series can
be ordered over other measures. (e.g., angle in astronomical radial profiles,
frequency in infrared spectroscopy, mass in mass spectroscopy, position in
genome sequences, etc.).

Still, ParIS is designed for disk-resident data and therefore

its performance is dominated by the I/O costs it encounters.

For instance, ParIS answers a 1-NN (Nearest Neighbor) exact

query on a 100GB dataset in 15sec, which is above the limit

for keeping the user’s attention (i.e., 10sec), let alone for sup-

porting interactivity in the analysis process (i.e., 100msec) [8].

[Application Scenario] In this work, we focus on designing

an efficient parallel indexing and query answering scheme

for in-memory data series processing. Our work is motivated

and inspired by the following real scenario. Airbus2, currently

stores petabytes of data series, describing the behavior over

time of various aircraft components (e.g., the vibrations of the

bearings in the engines), as well as that of pilots (e.g., the way

they maneuver the plane through the fly-by-wire system) [9].

The experts need to access these data in order to run differ-

ent analytics algorithms. However, these algorithms usually

operate on a subset of the data (e.g., only the data relevant

to landings from Air France pilots), which fit in memory.

Therefore, in order to perform complex analytics operations

(such as searching for similar patterns, or classification) fast,

in-memory data series indices must be built for efficient data

series query processing. Consequently, the time performance

of both index creation and query answering become important

factors in this process.

[MESSI Approach] We present MESSI, the first in-MEmory

data SerieS Index, which incorporates the state-of-the-art tech-

niques in sequence indexing. MESSI effectively uses multi-

core and multi-socket architectures in order to concurrently

execute the computations needed for both index construction

and query answering and it exploits SIMD. More importantly

though, MESSI features redesigned algorithms that lead to a

further ∼4x speedup in index construction time, in compari-

son to an in-memory version of ParIS. Furthermore, MESSI

answers exact 1-NN queries on 100GB datasets 6-11x faster

than ParIS across the datasets we tested, achieving for the first

time interactive exact query answering times, at ∼50msec.

When building ParIS, the design decisions were heavily

influenced by the fact that the cost was mainly I/O bounded.

Since MESSI copes with in-memory data series, no CPU

cost can be hidden under I/O. Therefore, MESSI required

more careful design choices and coordination of the parallel

workers when accessing the required data structures, in order

to improve its performance. This led to the development of a

more subtle design for the construction of the index and on

2http://www.airbus.com/

the development of new algorithms for answering similarity

search queries on this index.

For query answering in particular, we showed that adapta-

tions of alternative solutions, which have proven to perform

the best in other settings (i.e., disk-resident data [7]), are not

optimal in our case, and we designed a novel solution that

achieves a good balance between the amount of communica-

tion among the parallel worker threads, and the effectiveness

of each individual worker. For instance, the new scheme uses

concurrent priority queues for storing the data series that can-

not be pruned, and for processing these series in order, starting

from those whose iSAX representations have the smallest

distance to the iSAX representation of the query data series. In

this way, the parallel query answering threads achieve better

pruning on the data series they process. Moreover, the new

scheme uses the index tree to decide which data series to insert

into the priority queues for further processing. In this way,

the number of distance calculations performed between the

iSAX summaries of the query and data series is significantly

reduced (ParIS performs this calculation for all data series in

the collection). We also experimented with several designs for

reducing the synchronization cost among different workers that

access the priority queues and for achieving load balancing.

We ended up with a scheme where workers use radomization

to choose the priority queues they will work on. Consequently,

MESSI answers exact 1-NN queries on 100GB datasets within

30-70msec across diverse synthetic and real datasets.

The index construction phase of MESSI differentiates from

ParIS in several ways. For instance, ParIS was using a number

of buffers to temporarily store pointers to the iSAX summaries

of the raw data series before constructing the tree index [7].

MESSI allocates smaller such buffers per thread and stores

in them the iSAX summaries themselves. In this way, it

completely eliminates the synchronization cost in accessing

the iSAX buffers. To achieve load balancing, MESSI splits

the array storing the raw data series into small blocks, and

assigns blocks to threads in a round-robin fashion. We applied

the same technique when assigning to threads the buffers

containing the iSAX summary of the data series. Overall, the

new design and algorithms of MESSI led to ∼4x improvement

in index construction time when compared to ParIS.

[Contributions] Our contributions are summarized as follows.

• We propose MESSI, the first in-memory data series

index designed for modern hardware, which can answer

similarity search queries in a highly efficient manner.

• We implement a novel, tree-based exact query answering

algorithm, which minimizes the number of required dis-

tance calculations (both lower bound distance calculations

for pruning true negatives, and real distance calculations

for pruning false positives).

• We also design an index construction algorithm that ef-

fectively balances the workload among the index creation

workers by using a parallel-friendly index framework

with low synchronization cost.

• We conduct an experimental evaluation with several syn-

thetic and real datasets, which demonstrates the efficiency

of the proposed solution. The results show that MESSI

is up to 4.2x faster at index construction and up to

11.2x faster at query answering than the state-of-the-

art parallel index-based competitor, up to 109x faster at

query answering than the state-of-the-art parallel serial

scan algorithm, and thus can significantly reduce the

execution time of complex analytics algorithms (e.g., k-

NN classification).

II. PRELIMINARIES

We now provide some necessary definitions, and introduce

the related work on state-of-the-art data series indexing.

A. Data Series and Similarity Search

[Data Series] A data series, S = {p1, ..., pn}, is defined as a

sequence of points, where each point pi = (vi, ti), 1 ≤ i ≤ n,

is associated to a real value vi and a position ti. The position

corresponds to the order of this value in the sequence. We call

n the size, or length of the data series. We note that all the

discussions in this paper are applicable to high-dimensional

vectors, in general.

[Similarity Search] Analysts perform a wide range of data

mining tasks on data series including clustering [10], classifi-

cation and deviation detection [11], [12], and frequent pattern

mining [13]. Existing algorithms for executing these tasks rely

on performing fast similarity search across the different series.

Thus, efficiently processing nearest neighbor (NN) queries

is crucial for speeding up the above tasks. NN queries are

formally defined as follows: given a query series Sq of length

n, and a data series collection S of sequences of the same

length, n, we want to identify the series Sc ∈ S that has the

smallest distance to Sq among all the series in the collection S .

(In the case of streaming series, we first create subsequences

of length n using a sliding window, and then index those.)

Common distance measures for comparing data series are

Euclidean Distance (ED) [14] and dynamic time warping

(DTW) [15]. While DTW is better for most data mining tasks,

the error rate using ED converges to that of DTW as the

dataset size grows [16]. Therefore, data series indexes for

massive datasets use ED as a distance metric [6], [15]–[18],

though simple modifications can be applied to make them

compatible with DTW [16]. Euclidean distance is computed

as the sum of distances between the pairs of corresponding

points in the two sequences. Note that minimizing ED on

z-normalized data (i.e., a series whose values have mean 0

and standard deviation 1) is equivalent to maximizing their

Pearson’s correlation coefficient [19].

[Distance calculation in SIMD] Single-Instruction Multiple-

Data (SIMD) refers to a parallel architecture that allows the

execution of the same operation on multiple data simultane-

ously [20]. Using SIMD, we can reduce the latency of an

operation, because the corresponding instructions are fetched

once, and then applied in parallel to multiple data. All modern

CPUs support 256-bit wide SIMD vectors, which means that

certain floating point (or other 32-bit data) computations can

be up to 8 times faster when executed using SIMD.

(a) raw data series

(b) PAA representation

10

00

1111

10

01

00

N
 (

0
,

1
)

(c) iSAX representation

IdxBulkLoading worker

ROOT

1 0 1

10 0 1 11 0 1

IdxConstruction worker

C
o

o
rd

in
a

to
r

iS
A

X
s
u

m
m

a
rie

s

create thread

RAW Datadisk

OutBuf

RecBuf

…

main memory

10 00 1

11 01 1

(d) ParIS index

Fig. 1. The iSAX representation, and the ParIS index

In the data series context, SIMD has been employed for the

computation of the Euclidean distance functions [21], as well

as in the ParIS index, for the conditional branch calculations

during the computation of the lower bound distances [7].

B. iSAX Representation and the ParIS Index

[iSAX Representation] The iSAX representation (or sum-

mary) is based on the Piecewise Aggregate Approximation

(PAA) representation [22], which divides the data series in

segments of equal length, and uses the mean value of the

points in each segment in order to summarize a data series.

Figure 1(b) depicts an example of PAA representation with

three segments (depicted with the black horizontal lines),

for the data series depicted in Figure 1(a). Based on PAA,

the indexable Symbolic Aggregate approXimation (iSAX)

representation was proposed [16] (and later used in several

different data series indices [6], [7], [11], [23], [24]). This

method first divides the (y-axis) space in different regions,

and assigns a bit-wise symbol to each region. In practice,

the number of symbols is small: iSAX achieves very good

approximations with as few as 256 symbols, the maximum

alphabet cardinality, |alphabet|, which can be represented by

eight bits [18]. It then represents each segment w of the series

with the symbol of the region the PAA falls into, forming the

word 102002112 shown in Figure 1(c) (subscripts denote the

number of bits used to represent the symbol of each segment).

[ParIS Index] Based on the iSAX representation, the state-

of-the-art ParIS index was developed [7], which proposed

techniques and algorithms specifically designed for modern

hardware and disk-based data. ParIS makes use of variable

cardinalities for the iSAX summaries (i.e., variable degrees

of precision for the symbol of each segment) in order to

build a hierarchical tree index (see Figure 1(d)), consisting

of three types of nodes: (i) the root node points to several

children nodes, 2w in the worst case (when the series in the

collection cover all possible iSAX summaries); (ii) each inner

node contains the iSAX summary of all the series below it,

and has two children; and (iii) each leaf node contains the

iSAX summaries of all the series inside it, and pointers to

the raw data (in order to be able to prune false positives and

produce exact, correct answers), which reside on disk. When

the number of series in a leaf node becomes greater than the

maximum leaf capacity, the leaf splits: it becomes an inner

node and creates two new leaves, by increasing the cardinality

of the iSAX summary of one of the segments (the one that

will result in the most balanced split of the contents of the

node to its two new children [6], [18]). The two refined iSAX

summaries (new bit set to 0 and 1) are assigned to the two

new leaves. In our example, the series of Figure 1(c) will be

placed in the outlined node of the index (Figure 1(d)). Note

that we define the distance of a query series to a node as the

distance between the query (raw values, or iSAX summary)

and the iSAX summary of the node.

In the index construction phase (see Figure 1(d)), ParIS

uses a coordinator worker that reads raw data series from

disk and transfers them into a raw data buffer in memory.

A number of index bulk loading workers compute the iSAX

summaries of these series, and insert <iSAX summary, file

position> pairs in an array. They also insert a pointer to the

appropriate element of this array in the receiving buffer of the

corresponding subtree of the index root. When main memory

is exhausted, the coordinator worker creates a number of index

construction worker threads, each one assigned to one subtree

of the root and responsible for further building that subtree (by

processing the iSAX summaries stored in the coresponding

receiving buffer). This process results in each iSAX summary

being moved to the output buffer of the leaf it belongs to.

When all iSAX summaries in the receiving buffer of an index

construction worker have been processed, the output buffers

of all leaves in that subtree are flushed to disk.

For query answering, ParIS offers a parallel implementation

of the SIMS exact search algorithm [6]. It first computes an

approximate answer by calculating the real distance between

the query and the best candidate series, which is in the leaf

with the smallest lower bound distance to the query. ParIS uses

the index tree only for computing this approximate answer.

Then, a number of lower bound calculation workers compute

the lower bound distances between the query and the iSAX

summary of each data series in the dataset, which are stored

in the SAX array, and prune the series whose lower bound

distance is larger than the approximate real distance computed

earlier. The data series that are not pruned, are stored in a

candidate list for further processing. Subsequently, a number

of real distance calculation workers operate on different parts

of this array to compute the real distances between the query

and the series stored in it (for which the raw values need to

be read from disk). For details see [7].

In the in-memory version of ParIS, the raw data series are

Search

Tree ConstructionCalculate iSAX summaries

read each iSAX buffer;

place elements in

appropriate tree index

subtree
fill up index iSAX Buffers

query

S
ta

g
e

 2
:

Q
u

e
ry

 A
n

sw
e

ri
n

g

raw

data compute iSAX summaries

S
ta

g
e

 1
:

In
d

e
x

C
o

n
st

ru
ct

io
n

traverse index

build priority queue(s)

iSAX buffers

Search

1-NN answer

remove iSAX summaries (in

order) from priority queue(s)

calculate real distance

tree

index

use result for better pruning by

updating BSF

Priority

Queues

Fig. 2. MESSI index construction and query answering

stored in an in-memory array. Thus, there is no need for a

coordinator worker. The bulk loading workers now operate

directly on this array (split to as many chunks as the workers).

In the rest of the paper, we use ParIS to refer to this in-memory

version of the algorithm.

III. THE MESSI SOLUTION

Figure 2 depicts the MESSI index construction and query

answering pipeline. The raw data are stored in memory into

an array, called RawData. This array is split into a prede-

termined number of chunks. A number, Nw, of index worker

threads process the chunks to calculate the iSAX summaries

of the raw data series they store. The number of chunks is

not necessarily the same as Nw. Chunks are assigned to index

workers the one after the other (using Fetch&Inc). Based on

the iSAX representation, we can figure out in which subtree

of the index tree an iSAX summary will be stored. A number

of iSAX buffers, one for each root subtree of the index tree,

contain the iSAX summaries to be stored in that subtree.

Each index worker stores the iSAX summaries it computes

in the appropriate iSAX buffers. To reduce synchronization

cost, each iSAX buffer is split into parts and each worker

works on its own part3. The number of iSAX buffers is usually

a few tens of thousands and at most 2w, where w is the number

of segments in the iSAX summaries of each data series (w is

fixed to 16 in this paper, as in previous studies [6], [7]).

When the iSAX summaries for all raw data series have been

computed, the index workers proceed in the constuction of

the tree index. Each worker is assigned an iSAX buffer to

work on (this is done again using Fetch&Inc). Each worker

reads the data stored in (all parts of) its assigned buffer and

builds the corresponding index subtree. Therefore, all index

workers process distinct subtrees of the index, and can work

in parallel and independently from one another, with no need

3We have also tried an alternative technique where each buffer was
protected by a lock and many threads were accessing each buffer. However,
this resulted in worse performance due to the encountered contention in
accessing the iSAX buffers.

for synchronization4. When an index worker finishes with the

current iSAX buffer it works on, it continues with the next

iSAX buffer that has not yet been processed.

When the series in all iSAX buffers have been processed, the

tree index has been built and can be used to answer similarity

search queries, as depicted in the query answering phase of

Fig. 2. To answer a query, we first perform a search for the

query iSAX summary in the tree index. This returns a leaf

whose iSAX summary has the closest distance to the iSAX

summary of the query. We calculate the real distance of the

(raw) data series pointed to by the elements of this leaf to the

query series, and store the minimum of these distances into

a shared variable, called BSF (Best-So-Far). Then, the index

workers start traversing the index subtrees (the one after the

other) using BSF to decide which subtrees will be pruned. The

leaves of the subtrees that cannot be pruned are placed into

(a fixed number of) minimum priority queues, using the lower

bound distance between the raw values of the query series and

the iSAX summary of the leaf node, in order to be further

examined. Each thread inserts elements in the priority queues

in a round-robin fashion so that load balancing is achieved

(i.e., all queues contain about the same number of elements).

As soon as the necessary elements have been placed in the

priority queues, each index worker chooses a priority queue to

work on, and repeatedly calls DeleteMin() on it to get a leaf

node, on which it performs the following operations. It first

checks whether the lower bound distance stored in the priority

queue is larger than the current BSF: if it is then we are certain

that the leaf node does not contain any series that can be part

of the answer, and we can prune it; otherwise, the worker

needs to examine the series contained in the leaf node, by first

computing lower bound distances using the iSAX summaries,

and if necessary also the real distances using the raw values.

During this process, we may discover a series with a smaller

distance to the query, in which case we also update the BSF.

When a worker reaches a node whose distance is bigger than

the BSF, it gives up this priority queue and starts working

on another, because it is certain that all the other elements

in the abandoned queue have an even higher distance to the

query series. This process is repeated until all priority queues

have been processed. During this process, the value of BSF is

updated to always reflect the minimum distance seen so far.

At the end of the calculation, the value of BSF is returned as

the query answer.

Note that, similarly to ParIS, MESSI uses SIMD (Single-

Instruction Multiple-Data) for calculating the distances of

both, the index iSAX summaries from the query iSAX sum-

mary (lower bound distance calculations), and the raw data se-

ries from the query data series (real distance calculations) [7].

A. Index Construction

Algorithm 1 presents the pseudocode for the initiator thread.

The initiator creates Nw index worker threads to execute the

4Parallelizing the processing inside each one of the index root subtrees
would require a lot of synchronization due to node splitting.

Algorithm 1: CreateIndex

Input: Index index, Integer Nw , Integer chunk size

1 for i ← 0 to Nw − 1 do

2 create a thread to execute an instance of IndexWorker(index,
chunk size,i, Nw);

3 wait for all these threads to finish their execution;

Algorithm 2: IndexWorker

Input: Index index, Integer chunk size, Integer pid, Integer

Nw

1 CalculateiSAXSummaries(index, chunk size,pid);
2 barrier to synchronize the IndexWorkers with one another;
3 TreeConstruction(index, Nw);
4 exit();

index construction phase (line 2). As soon as these workers

finish their execution, the initiator returns (line 3). We fix

Nw to be 24 threads (Figure 9 in Section IV justifies this

choice). We assume that the index variable is a structure

(struct) containing the RawData array, all iSAX buffers, and

a pointer to the root of the tree index. Recall that MESSI splits

RawData into chunks of size chunk size. We assume that

the size of RawData is a multiple of chunk size (if not,

standard padding techniques can be applied).

The pseudocode for the index workers is in Algorithm 2.

The workers first call the CalculateiSAXSummaries func-

tion (line 1) to calculate the iSAX summaries of the raw data

series and store them in the appropriate iSAX buffers. As

soon as the iSAX summaries of all the raw data series have

been computed (line 2), the workers call TreeConstruction

to construct the index tree.

The pseudocode of CalculateiSAXSummaries is shown

in Algorithm 3 and is schematically illustrated in Figure 3(a).

Each index worker repeatedly does the following. It first per-

forms a Fetch&Inc to get assigned a chunk of raw data series to

work on (line 3). Then, it calculates the offset in the RawData

array that this chunk resides (line 4) and starts processing the

relevant data series (line 6). For each of them, it computes

its iSAX summary by calling the ConvertToiSAX function

(line 7), and stores the result in the appropriate iSAX buffer

of index (lines 8-9). Recall that each iSAX buffer is split into

Nw parts, one for each thread; thus, index.iSAXbuffer is

a two dimensional array.

Each part of an iSAX buffer is allocated dynamically when

the first element to be stored in it is produced. The size of

each part has an initial small value (5 series in this work, as

we discuss in the experimental evaluation) and it is adjusted

dynamically based on how many elements are inserted in it

(by doubling its size each time).

We note that we also tried a design of MESSI with no iSAX

buffers, but this led to slower performance (due to the worse

cache locality). Thus, we do not discuss this alternative further.

As soon as the computation of the iSAX summaries is over,

each index worker starts executing the TreeConstruction

function. Algorithm 4 shows the pseudocode for this function

Algorithm 3: CalculateiSAXSummaries

Input: Index index, Integer chunk size, Integer pid
1 Shared integer Fc = 0;

2 while (TRUE) do

3 b←Atomically fetch and increment Fc;
4 b = b ∗ chunk size;
5 if (b ≥ size of the index.RawData array) then break ;
6 for j ← b to b+ chunk size do

7 isax = ConvertToiSAX(index.RawData[j]);
8 ℓ = find appropriate root subtree where isax must be

stored;
9 index.iSAXbuf [ℓ][pid] = 〈isax, j〉;

Algorithm 4: TreeConstruction

Input: Index index, Integer Nw

1 Shared integer Fb = 0;

2 while (TRUE) do

3 b←Atomically fetch and increment Fb;
4 if (b ≥ 2w) then break ; // the root has at most 2w

children

5 for j ← 0 to Nw do
6 for every 〈isax, pos〉 pair ∈ index.iSAXbuf [b][j] do

7 targetLeaf ← Leaf of index tree to insert
〈isax, pos〉;

8 while targetLeaf is full do
9 SplitNode(targetLeaf);

10 targetLeaf ← New leaf to insert 〈isax, pos〉;
11 Insert 〈isax, pos〉 in targetLeaf ;

and Figure 3(b) schematically describes how it works. In

TreeConstruction, a worker repeatedly executes the follow-

ing actions. It accesses Fb (using Fetch&Inc) to get assigned

an iSAX buffer to work on (line 3). Then, it traverses all

parts of the assigned buffer (lines 5-6) and inserts every pair

〈iSAX summary, pointer to relevant data series〉 stored there

in the index tree (line 7-11). Recall that the iSAX summaries

contained in the same iSAX buffer will be stored in the

same subtree of the index tree. So, no synchronization is

needed among the index workers during this process. If a tree

worker finishes its work on a subtree, a new iSAX buffer is

(repeatedly) assigned to it, until all iSAX buffers have been

processed.

B. Query Answering

The pseudocode for executing an exact search query is

shown in Algorithm 5. We first calculate the iSAX summary of

the query (line 2), and execute an approximate search (line 3)

Algorithm 5: ExactSearch

1 Shared float BSF ;
Input: QuerySeries QDS, Index index, Integer Nq

2 QDS iSAX = calculate iSAX summary for QDS;
3 BSF = approxSearch(QDS iSAX , index);
4 for i ← 0 to Nq − 1 do
5 queue[i] = Initialize the ith priority queue;
6 for i ← 0 to Ns − 1 do

7 create a thread to execute an instance of SearchWorker(QDS,
index, queue[], i, Nq);

8 Wait for all threads to finish;
9 return (BSF);

Create

thread

Initiate

thread

ROOT

0 0 0 1 1 1. . .

iSAXBuf

iSAXBuf

Raw Data

…
..

Worker

fill up index iSAX Buffers

compute iSAX summaries

Nc

(a) CalculateiSAXSummaries

0 0 0

0 00 01 0 01 01

0 0 00 0 0 01

Tree construction workers

…
..

grow subtree

iSAXBufs

ROOT

. . .

iSAXBufs

……

(b) TreeConstruction

Fig. 3. Workflow and algorithms for MESSI index creation

to find the initial value of BSF, i.e., a first upper bound on the

actual distance between the query and the series indexed by

the tree. This process is illustrated in Figure 4(a).

During a search query, the index tree is traversed and the

distance of the iSAX summary of each of the visited nodes to

the iSAX summary of the query is calculated. If the distance of

the iSAX summary of a node, nd, to the query iSAX summary

is higher than BSF, then we are certain that the distances of all

data series indexed by the subtree rooted at nd are higher than

BSF. So, the entire subtree can be pruned. Otherwise, we go

down the subtree, and the leaves with a distance to the query

smaller than the BSF, are inserted in the priority queue.

The technique of using priority queues maximizes the

pruning degree, thus resulting in a relatively small number of

raw data series whose real distance to the query series must be

calculated. As a side effect, BSF converges fast to the correct

value. Thus, the number of iSAX summaries that are tested

against the iSAX summary of the query series is also reduced.

Algorithm 5 creates Ns = 48 threads, called the search

workers (lines 6-7), which perform the computation described

above by calling SearchWorker. It also creates Nq ≥ 1
priority queues (lines 4-5), where the search workers place

those data series that are potential candidates for real distance

calculation. After all search workers have finished (line 8),

ExactSearch returns the current value of BSF (line 9).

We have experimented with two different settings regarding

the number of priority queues, Nq , that the search workers

use. The first, called Single Queue (SQ), refers to Nq = 1,

whereas the second focuses in the Multiple-Queue (MQ)

case where Nq > 1. Using a single shared queue imposes

a high synchronization overhead, whereas using a local queue

per thread results in severe load imbalance, since, depending

on the workload, the size of the different queues may vary

significantly. Thus, we choose to use Nq shared queues, where

Nq > 1 is a fixed number (in our analysis Nq is set to 24, as

experiments our show that this is the best choice).

Algorithm 6: SearchWorker

Input: QuerySeries QDS, Index index, Queue queue[], Integer

pid, Integer Nq

1 Shared integer Nb = 0;

2 q = pid mod Nq ;

3 while (TRUE) do
4 i←Atomically fetch and increment Nb;
5 if (i ≥ 2w) then break;
6 TraverseRootSubtree(QDS, index.rootnode[i], queue[],

&q, Nq);

7 Barrier to synchronize the search workers with one another;
8 q = pid mod Nq ;

9 while (true) do
10 ProcessQueue(QDS, index, queue[q]);
11 if all queue[].finished=true then

12 break;
13 q ← index such that queue[q] has not been processed yet;

The pseudocode of search workers is shown in Algorithm 6,

and the work they perform is illustrated in Figures 4(b)

and 4(c). At each point in time, each thread works on a single

queue. Initially, each queue is shared by two threads. Each

search worker first identifies the queue where it will perform

its first insertion (line 2). Then, it repeatedly chooses (using

Fetch&Inc) a root subtree of the index tree to work on by

calling TraverseRootSubtree (line 6). After all root subtrees

have been processed (line 7), it repeatedly chooses a priority

queue (lines 9, 13) and works on it by calling ProcessQueue

(line 10). Each element of the queue array has a field, called

finished, which indicates whether the processing of the

corresponding priority queue has been finished. As soon as

a search worker determines that all priority queues have been

processed (line 12), it terminates.

We continue to describe the pseudocode for

TraverseRootSubtree which is presented in Algorithm 7

and illustrated in Figure 4(b). TraverseRootSubtree is

Algorithm 7: TraverseRootSubtree

Input: QuerySeries QDS, Node node, queue queue[], Integer

∗pq, Integer Nq

1 nodedist = FindDist(QDS, node);
2 if nodedist > BSF then

3 break;
4 else if node is a leaf then

5 acquire queue[∗pq] lock;
6 Put node in queue[∗pq] with priority nodedist;
7 release queue[∗pq] lock;
8 // next time, insert in the subsequent queue

9 ∗pq ← (∗pq + 1) mod Nq ;
10 else

11 TraverseRootSubtree(node.leftChild, queue[], pq,Nq);
12 TraverseRootSubtree(node.rightChild, queue[], pq,Nq)

recursive. On each internal node, nd, it checks whether the

(lower bound) distance of the iSAX summary of nd to the

raw values of the query (line 1) is smaller than the current

BSF , and if it is, it examines the two subtrees of the node

using recursion (lines 11-12). If the traversed node is a leaf

node and its distance to the iSAX summary of the query

series is smaller than the current BSF (lines 4-9), it places

it in the appropriate priority queue (line 6). Recall that the

priority queues are accessed in a round-robin fashion (line 9).

This strategy maintains the size of the queues balanced, and

reduces the synchronization cost of node insertions to the

queues. We implement this strategy by (1) passing a pointer

to the local variable q of SearchWorker as an argument

to TraverseRootSubtree, (2) using the current value of q

for choosing the next queue to perform an insertion (line 6),

and (3) updating the value of q (line 9). Each queue may be

accessed by more than one threads, so a lock per queue is

used to protect its concurrent access by multiple threads.

We next describe how ProcessQueue works (see Al-

gorithm 8 and Figure 4(c)). The search worker repeatedly

removes the (leaf) node, nd, with the highest priority from the

priority queue, and checks whether the corresponding distance

stored in the queue is still less than the BSF. We do so,

because the BSF may have changed since the time that the

leaf node was inserted in the priority queue. If the distance

is less than the BSF, then CalculateRealDistance (line 3)

is called, in order to identify if any series in the leaf node

(pointed to by nd) has a real distance to the query that is

smaller than the current BSF. If we discover such a series

(line 4), BSF is updated to the new value (line 6). We use a

lock to protect BSF from concurrent update efforts (lines 5, 7).

Previous experiments showed that the initial value of BSF is

very close to its final value [25]. Indeed, in our experiments,

the BSF is updated only 10-12 times (on average) per query.

So, the synchronization cost for updating the BSF is negligible.

In Algorithm 9, we depict the pseudocode for

CalculateRealDistance. Note that we perform the real

distance calculation using SIMD. However, the use of SIMD

does not have the same significant impact in performance as

in ParIS [7]. This is because pruning is much more effective

in MESSI, since for each candidate series in the examined

Algorithm 8: ProcessQueue

Input: QuerySeries QDS, Index index, Queue Q
1 while node = DeleteMin(Q) do

2 if node.dist < BSF then

3 realDist = CalculateRealDistance(QDS, index, node);
4 if realDist < BSF then

5 acquire BSFLock;
6 BSF = realDist;
7 release BSFLock;
8 else
9 q.finished = true;

10 break;

Algorithm 9: CalculateRealDistance

Input: QuerySeries QDS, Index index, node node, float BSF
1 for every (isax, pos) pair ∈ node do
2 if LowerBound SIMD(QDS, isax) < BSF then

3 dist =
RealDist SIMD(index.RawData[pos], QDS);

4 if dist < BSF then

5 BSF = dist;
6 return (BSF)

leaf node, CalculateRealDistance first performs a lower

bound distance calculation, and proceeds to the real distance

calculation only if necessary (line 3). Therefore, the number

of (raw) data series to be examined is limited in comparison

to those examined in ParIS (we quantify the effect of this

new design in our experimental evaluation).

IV. EXPERIMENTAL EVALUATION

In this section, we present our experimental evaluation.

We use synthetic and real datasets in order to compare the

performance of MESSI with that of competitors that have been

proposed in the literature and baselines that we developed. We

demonstrate that, under the same settings, MESSI is able to

construct the index up to 4.2x faster, and answer similarity

search queries up to 11.2x faster than the competitors. Overall,

MESSI exhibits a robust performance across different datasets

and settings, and enables for the first time the exploration of

very large data series collections at interactive speeds.

A. Setup

We used a server with 2x Intel Xeon E5-2650 v4 2.2Ghz

CPUs (12 cores/24 hyper-threads each) and 256GB RAM. All

algorithms were implemented in C, and compiled using GCC

v6.2.0 on Ubuntu Linux v16.04.

[Algorithms] We compared MESSI to the following algo-

rithms: (i) ParIS [7], the state-of-the-art modern hardware data

series index. (ii) ParIS-TS, our extension of ParIS, where we

implemented in a parallel fashion the traditional tree-based

exact search algorithm [16]. In brief, this algorithm traverses

the tree, and concurrently (1) inserts in the priority queue the

nodes (inner nodes or leaves) that cannot be pruned based

on the lower bound distance, and (2) pops from the queues

nodes for which it calculates the real distances to the candidate

series [16]. In contrast, MESSI (a) first makes a complete

pass over the index using lower bound distance computations

Query data series

Raw Data

..
.

Tree leaves

tree

index

1. Compute BSF

(a) Approximate search for calculating
the first BSF

Leaf

node

Leaf

node

Leaf

node

Internal

node

Search worker

4. if node dist < BSF

insert node to PQ[++i%Nq]

… …

2. Traverse tree index

3. Calculate
node
distance

PQ[0]

Priority Queues

PQ[0]PQ[0]PQ[0]

Root

Internal

node

(b) Tree traversal and node insertion in priority
queues

PQ[0]

Search worker

1-NN answer

LB_dist
LB_dist
LB_dist
LB_dist

R_dist

R_dist

6. Calculate real
node distance

Leaf

node BSF

5. remove leaf
node from PQ

7. Update BSF

Priority Queues

Raw Data

…

PQ[0]PQ[0]PQ[0]
8. Output the answer

(c) Node distance calculation from priority queues

Fig. 4. Workflow and algorithms for MESSI query answering

and then proceeds with the real distance computations; (b)

it only considers the leaves of the index for insertion in the

priority queue(s); and (c) performs a second filtering step using

the lower bound distances when popping elements from the

priority queue (and before computing the real distances). The

performance results we present later justify the choices we

have made in MESSI, and demonstrate that a straight-forward

implementation of tree-based exact search leads to sub-optimal

performance. (iii) UCR Suite-P, our parallel implementation

of the state-of-the-art optimized serial scan technique, UCR

Suite [15]. In UCR Suite-P, every thread is assigned a part of

the in-memory data series array, and all threads concurrently

and independently process their own parts, performing the

real distance calculations in SIMD, and only synchronize at

the end to produce the final result. (We do not consider the

non-parallel UCR Suite version in our experiments, since it

is almost 300x slower.) All algorithms operated exclusively in

main memory (the datasets were already loaded in memory,

as well). The code for all algorithms used in this paper is

available online [26].

[Datasets] In order to evaluate the performance of the pro-

posed approach, we use several synthetic datasets for a fine

grained analysis, and two real datasets from diverse domains.

Unless otherwise noted, the series have a size of 256 points,

which is a standard length used in the literature, and allows

us to compare our results to previous work. We used synthetic

datasets of sizes 50GB-200GB (with a default size of 100GB),

and a random walk data series generator that works as follows:

a random number is first drawn from a Gaussian distribution

N(0,1), and then at each time point a new number is drawn

from this distribution and added to the value of the last

number. This kind of data generation has been extensively

used in the past (and has been shown to model real-world

financial data) [6], [16]–[18], [27]. We used the same process

to generate 100 query series.

For our first real dataset, Seismic, we used the IRIS Seismic

Data Access repository [28] to gather 100M series representing

seismic waves from various locations, for a total size of

100GB. The second real dataset, SALD, includes neuroscience

MRI data series [29], for a total of 200M series of size 128, of

size 100 GB. In both cases, we used as queries 100 series out

of the datasets (chosen using our synthetic series generator).

In all cases, we repeated the experiments 10 times and we

report the average values. We omit reporting the error bars,

since all runs gave results that were very similar (less than 3%

difference). Queries were always run in a sequential fashion,

one after the other, in order to simulate an exploratory analysis

scenario, where users formulate new queries after having seen

the results of the previous one.

B. Parameter Tuning Evaluation

In all our experiments, we use 24 index workers and 48

search workers. We have chosen the chunk size to be 20MB

(corresponding to 20K series of length 256 points). Each part

of any iSAX buffer, initially holds a small constant number

of data series, but its size changes dynamically depending on

how many data series it needs to store. The capacity of each

leaf of the index tree is 2000 data series (2MB). For query

answering, MESSI-mq utilizes 24 priority queues (whereas

MESSI-sq utilizes just one priority queue). In either case,

each priority queue is implemented using an array whose size

changes dynamically based on how many elements must be

stored in it. Below we present the experiments that justify the

choices for these parameters.

Figure 5 illustrates the time it takes MESSI to build the

tree index for different chunk sizes on a random dataset of

100GB. The required time to build the index decreases when

the chunk size is small and does not have any big influence

in performance after the value of 1K (data series). Smaller

chunk sizes than 1K result in high contention when accessing

the fetch&increment object used to assign chunks to index

workers. In our experiments, we have chosen a size of 20K,

as this gives slightly better performance than setting it to 1K.

Figures 6 and 7 show the impact that varying the leaf size

of the tree index has in the time needed for the index creation

0
2

0
4

0
6

0
8

0

1
0

1
0
0

5
0
0

1
k

1
0
k

2
0
k

5
0
k

	1
0
0
k

	1
m

	2
m

	4
m

T
im

e
 (

S
e

c
o

n
d

s
)

Chunk size (number of series)

MESSI

ParIS−no−synch

Fig. 5. Index creation, vs. chunk size

0
1

0
2

0
3

0
4

0

5
0

1
0
0

2
0
0

5
0
0

1
k

2
k

5
k

1
0
k

2
0
k

5
0
k

1
0
0
k

T
im

e
 (

S
e

c
o

n
d

s
)

Leaf size (number of series)

Fig. 6. Index creation, vs. leaf size

1
0

1
0

0
1

0
0

0

5
0

1
0
0

2
0
0

5
0
0

1
k

2
k

5
k

1
0
k

2
0
k

5
0
k

1
0
0
k

T
im

e
 (

M
ill

is
e

c
o

n
d

s
)

Leaf Size (number of series)

MESSI−sq

MESSI−mq

Fig. 7. Query answering, vs. leaf size

0
1
0

2
0

3
0

4
0

2 5

1
0

2
0

5
0

1
0

0

2
0

0

5
0

0

1
k

T
im

e
 (

S
e
c
o
n
d
s
)

Buffer size (number of series)

Fig. 8. Index creation, vs. initial
iSAX buffer size

0

40

80

120

160

2 4 6 8 10 12 18 24 2 4 6 8 10 12 18 24

ParIS MESSI

T
im

e
 (

S
e

co
n

d
s)

Number of cores

Calculate iSAX Representations

Tree Index Construction

Fig. 9. Index creation, varying number of cores

and for query answering, respectively. As we see in Figure 6,

the larger the leaf size is, the faster index creation becomes.

However, once the leaf size becomes 5K or more, this time

improvement is insignificant. On the other hand, Figure 7

shows that the query answering time takes its minimum value

when the leaf size is set to 2K (data series). So, we have

chosen this value for our experiments.

Figure 7 indicates that the influence of varying the leaf size

is significant for query answering. Note that when the leaf

size is small, there are more leaf nodes in the index tree and

therefore, it is highly probable that more nodes will be inserted

in the queues, and vice versa. On the other hand, as the leaf

size increases, the number of real distance calculations that are

performed to process each one of the leaves in the queue is

larger. This causes load imbalance among the different search

workers that process the priority queues. For these reasons, we

see that at the beginning the time goes down as the leaf size

increases, it reaches its minimum value for leaf size 2K series,

and then it goes up again as the leaf size further increases.

Figure 8 shows the influence of the initial iSAX buffer size

during index creation. This initialization cost is not negligible

given that we allocate 2w iSAX buffers, each consisting of

24 parts (recall that 24 is the number of index workers in the

system). As expected, the figure illustrates that smaller initial

sizes for the buffers result in better performance. We have

chosen the initial size of each part of the iSAX buffers to be

a small constant number of data series. (We also considered

an alternative design that collects statistics and allocates the

iSAX buffers right from the beginning, but was slower.)

We finally justify the choice of using more than one priority

queues for query answering. As Figure 11 shows, MESSI-mq

and MESSI-sq have similar performance when the number

of threads is smaller than 24. However, as we go from

24 to 48 cores, the synchronization cost for accessing the

single priority queue in MESSI-sq has negative impact in

performance. Figure 13 presents the breakdown of the query

answering time for these two algorithms. The figure shows

that in MESSI-mq, the time needed to insert and remove

nodes from the list is significantly reduced. As expected, the

time needed for the real distance calculations and for the tree

traversal are about the same in both algorithms. This has

the effect that the time needed for the distance calculations

becomes the dominant factor. The figure also illustrates the

percentage of time that goes on each of these tasks. Finally,

Figure 14 illustrates the impact that the number of priority

queues has in query answering performance. As the number

of priority queues increases, the time goes down, and it takes

its minimum value when this number becomes 24. So, we have

chosen this value for our experiments.

C. Comparison to Competitors

[Index Creation] Figure 9 compares the index creation time of

MESSI with that of ParIS as the number of cores increases for

a dataset of 100GB. The time MESSI needs for index creation

is significantly smaller than that of ParIS. Specifically, MESSI

is 3.5x faster than ParIS. The main reasons for this are on

the one hand that MESSI exhibits lower contention cost when

accessing the iSAX buffers in comparison to the corresponding

cost paid by ParIS, and on the other hand, that MESSI achieves

better load balancing when performing the computation of the

iSAX summaries from the raw data series. Note that due to

synchronization cost, the performance improvement that both

algorithms exhibit decreases as the number of cores increases;

this trend is more prominent in ParIS, while MESSI manages

to exploit to a larger degree the available hardware.

In Figure 10, we depict the index creation time as the dataset

size grows from 50GB to 200GB. We observe that MESSI

performs up to 4.2x faster than ParIS (for the 200GB dataset),

with the improvement becoming larger with the dataset size.

[Query Answering] Figure 11 compares the performance of

the MESSI query answering algorithm to its competitors, as

the number of cores increases, for a random dataset of 100GB

(y-axis in log scale). The results show that both MESSI-sq and

0
5

0
1

0
0

1
5

0

50GB 100GB 150GB 200GB

T
im

e
 (

S
e

c
o

n
d

s
)

Data Size/GB

ParIS

MESSI

Fig. 10. Index creation, vs. data size

1

10

100

1000

10000

100000

2 4 6 8 12 18 24 48(HT)

T
im

e
 (

M
il

li
se

co
n

d
s)

Number of cores

UCR Suite-P ParIS ParIS-TS MESSI-sq MESSI-mq

Fig. 11. Query answering, vs. number of cores

1
0

1
0

0
1

0
0

0
1

0
0

0
0

50GB 100GB 150GB 200GB

T
im

e
 (

M
ill

is
e

c
o

n
d

s
)

Data Size/GB

UCR Suite−p

ParIS

ParIS−TS

MESSI−sq

MESSI−mq

Fig. 12. Query answering, vs. data size

0

20

40

60

80

MESSI-sq MESSI-mq

T
im

e
 (

M
il

li
se

co
n

d
s)

Algorithms

PQ remove node

Distance calculation

PQ insert node

MESSI tree pass

Initialization

0%

20%

40%

60%

80%

100%

MESSI-sq MESSI-mq

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti

m
e

Algorithms

Fig. 13. Query answering with different queue type

0

20

40

60

80

100

1 2 4 6 8 12 16 24 48

T
im

e
 (

M
il

li
se

co
n

d
s)

Number of queues

SALD Random Seismic

Fig. 14. Query answering, vs. number of queues

MESSI-mq perform much better than all the other algorithms.

Note that the performance of MESSI-mq is better than that of

MESSI-sq, so when we mention MESSI in our comparison

below we refer to MESSI-mq. MESSI is 55x faster than

UCR Suite-P and 6.35x faster than ParIS when we use 48

threads (with hyperthreading). In contrast to ParIS, MESSI

applies pruning when performing the lower bound distance

0
4
0

8
0

1
2
0

SALD Seismic

T
im

e
 (

S
e

c
o

n
d

s
)

Dataset

ParIS

MESSI

Fig. 15. Index creation
for real datasets

1
0

1
0
0

1
0
0
0

1
0
0
0
0

SALD Seismic

T
im

e
 (

M
ill

is
e

c
o

n
d

s
)

Dataset

UCR Suite−p

ParIS

ParIS−TS

MESSI−sq

MESSI−mq

Fig. 16. Query answering for real
datasets

0

50

100

150

200

Random Seismic SALD
Dataset

ParIS

MESSI

#
o

f
lo

w
e

r
b

o
u

n
d

 d
is

t.
 c

a
lc

u
l.

 (
x
1

0
6
)

(a) Lower bound distance calcula-
tions

0

0.2

0.4

0.6

0.8

1

Random Seismic SALD

#
 o

f
re

a
l

d
is

t.
 c

a
lc

u
l.

 (
x
1

0
6
)

Dataset

ParIS

MESSI

(b) Real distance calculations

Fig. 17. Number of distance calculations

calculations and therefore it executes this phase much faster.

Moreover, the use of the priority queues result in even higher

pruning power. As a side effect, MESSI also performs less

real distance calculations than ParIS. Note that UCR Suite-P

does not perform any pruning, thus resulting in a much lower

performance than the other algorithms.

Figure 12 shows that this superior performance of MESSI

is exhibited for different data set sizes as well. Specifically,

MESSI is up to 61x faster than UCR Suite-p (for 200GB), up

to 6.35x faster than ParIS (for 100GB), and up to 7.4x faster

than ParIS-TS (for 50GB).

[Performance Benefit Breakdown] Given the above results,

we now evaluate several of the design choices of MESSI in

isolation. Note that some of our design decisions stem from

the fact that in our index the root node has a large number

of children. Thus, the same design ideas are applicable to the

iSAX family of indices [4] (e.g., iSAX2+, ADS+, ULISSE).

Other indices however [4], use a binary tree (e.g., DSTree),

or a tree with a very small fanout (e.g., SFA trie, M-tree), so

new design techniques are required for efficient parallelization.

However, some of our techniques, e.g., the use of (more than

one) priority queue, the use of SIMD, and some of the data

structures designed to reduce the syncrhonization cost can be

applied to all other indices. Figure 18 shows the results for the

query answering performance. The leftmost bar (ParIS-SISD)

shows the performance of ParIS when SIMD is not used.

By employing SIMD, ParIS becomes 60% faster than ParIS-

SISD. We then measure the performance for ParIS-TS, which

is about 10% faster than ParIS. This performance improvement

comes form the fact that using the index tree (instead of the

SAX array that ParIS uses) to prune the search space and

determine the data series for which a real distance calculation

must be performed, significantly reduces the number of lower

bound distance calculations. ParIS calculates lower bound

distances for all the data series in the collection, and pruning

is performed only when calculating real distances, whereas

in ParIS-TS pruning occurs when calculating lower bound

distances as well.

MESSI-mq further improves performance by only inserting

in the priority queue leaf nodes (thus, reducing the size of

the queue), and by using multiple queues (thus, reducing the

synchronization cost). This makes MESSI-mq 83% faster than

ParIS-TS.

[Real Datasets] Figures 15 and 16 reaffirm that MESSI

exhibits the best performance for both index creation and

query answering, even when executing on the real datasets,

SALD and Seismic (for a 100GB dataset). The reasons for

this are those explained in the previous paragraphs. Regarding

index creation, MESSI is 3.6x faster than ParIS on SALD

and 3.7x faster than ParIS on Seismic, for a 100GB dataset.

Moreover, for SALD, MESSI query answering is 60x faster

than UCR Suite-P and 8.4x faster than ParIS, whereas for

Seismic, it is 80x faster than UCR Suite-P, and almost 11x

faster than ParIS. Note that MESSI exhibits better performance

than UCR Suite-P in the case of real datasets. This is so

because working on random data results in better pruning than

that on real data.

Figures 17(a) and 17(b) illustrate the number of lower bound

and real distance calculations, respectively, performed by the

different query algorithms on the three datasets. ParIS calcu-

lates the distance between the iSAX summaries of every single

data series and the query series (because, as we discussed

in Section II, it implements the SIMS strategy for query

answering). In contrast, MESSI performs pruning even during

the lower bound distance calculations, resulting in much less

time for executing this computation. Moreover, this results in a

significantly reduced number of data series whose real distance

to the query series must be calculated.

The use of the priority queues lead to even less real distance

calculations, because they help the BSF to converge faster to

its final value. MESSI performs no more than 15% of the

lower bound distance calculations performed by ParIS.

[MESSI with DTW] In our final experiments, we demonstrate

that MESSI not only accelerates similarity search based on

Euclidean distance, but can also be used to significantly

accelerate similarity search using the Dynamic Time Warping

(DTW) distance measure [30]. We note that no changes are

required in the index structure; we just have to build the

envelope of the LB Keogh method [31] around the query

series, and then search the index using this envelope. Figure 19

shows the query answering time for different dataset sizes (we

use a warping window size of 10% of the query series length,

which is commonly used in practice [31]). The results show

that MESSI-DTW is up to 34x faster than UCR Suite-p DTW

0

200

400

600

800

T
im

e
 (

M
il

li
se

co
n

d
s)

Algorithms

Fig. 18. Query answering per-
formance benefit breakdown

1
1

0
1

0
0

1
0

0
0

50GB 100GB 150GB 200GB

T
im

e
 (

S
e

c
o

n
d

s
)

Data Size/GB

UCR Suite DTW

UCR Suite−p DTW

MESSI DTW

Fig. 19. MESSI query answering time
for DTW distance (synthetic data, 10%
warping window)

(and more than 3 orders of magnitude faster than the non-

paralell version of UCR Suite DTW).

V. RELATED WORK

Various dimensionality reduction techniques exist for data

series, which can then be scanned and filtered [32], [33] or

indexed and pruned [6], [7], [11], [16], [17], [23], [24], [34],

[35] during query answering. We follow the same approach

of indexing the series based on their summaries, though our

work is the first to exploit the parallelization opportunities

offered by modern hardware, in order to accelerate in-memory

index construction and similarity search for data series. The

work closest to ours is ParIS [7], which also exploits modern

hardware, but was designed for disk-resident datasets. We

discussed this work in more detail in Section II.

FastQuery is an approach used to accelerate search oper-

ations in scientific data [36], based on the construction of

bitmap indices. In essence, the iSAX summarization used in

our approach is an equivalent solution, though, specifically

designed for sequences (which have high dimensionalities).

The interest in using SIMD instructions for improving the

performance of data management solutions is not new [37].

However, it is only more recently that relatively complex

algorithms were extended in order to take advantage of this

hardware characteristic. Polychroniou et al. [38] introduced

design principles for efficient vectorization of in-memory

database operators (such as selection scans, hash tables, and

partitioning). For data series in particular, previous work has

used SIMD for Euclidean distance computations [21]. Follow-

ing [7], in our work we use SIMD both for the computation of

Euclidean distances, as well as for the computation of lower

bounds, which involve branching operations.

Multi-core CPUs offer thread parallelism through multiple

cores and simultaneous multi-threading (SMT). Thread-Level

Parallelism (TLP) methods, like multiple independent cores

and hyper-threads are used to increase efficiency [39].

A recent study proposed a high performance temporal index

similar to time-split B-tree (TSB-tree), called TSBw-tree,

which focuses on transaction time databases [40]. Binna et

al. [41], present the Height Optimized Trie (HOT), a general-

purpose index structure for main-memory database systems,

while Leis et al. [42] describe an in-memory adaptive Radix

indexing technique that is designed for modern hardware.

Xie et al. [43], study and analyze five recently proposed

indices, i.e., FAST, Masstree, BwTree, ART and PSL and

identify the effectiveness of common optimization techniques,

including hardware dependent features such as SIMD, NUMA

and HTM. They argue that there is no single optimization

strategy that fits all situations, due to the differences in the

dataset and workload characteristics. Moreover, they point

out the significant performance gains that the exploitation

of modern hardware features, such as SIMD processing and

multiple cores bring to in-memory indices.

We note that the indices described above are not suitable

for data series (that can be thought of as high-dimensional

data), which is the focus of our work, and which pose very

specific data management challenges with their hundreds, or

thousands of dimensions (i.e., the length of the sequence).

Techniques specifically designed for modern hardware and

in-memory operation have also been studied in the context of

adaptive indexing [44], and data mining [45].

VI. CONCLUSIONS

We proposed MESSI, a data series index designed for in-

memory operation by exploiting the parallelism opportunities

of modern hardware. MESSI is up to 4x faster in index

construction and up to 11x faster in query answering than the

state-of-the-art solution, and is the first technique to answer

exact similarity search queries on 100GB datasets in ∼50msec.

This level of performance enables for the first time interactive

data exploration on very large data series collections.

Acknowledgments Work supported by Chinese Scholarship

Council, FMJH Program PGMO, EDF, Thales and HIPEAC

4. Part of work performed while P. Fatourou was visiting

LIPADE, and while B. Peng was visiting CARV, FORTH ICS.

REFERENCES

[1] T. Palpanas, “Data series management: The road to big sequence
analytics,” SIGMOD Record, 2015.

[2] K. Zoumpatianos and T. Palpanas, “Data series management: Fulfilling
the need for big sequence analytics,” in ICDE, 2018.

[3] T. Palpanas and V. Beckmann, “Report on the first and second interdisci-
plinary time series analysis workshop (itisa),” SIGMOD Rec., ”Accepted
for publication, 2019.

[4] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim, “The
lernaean hydra of data series similarity search: An experimental evalu-
ation of the state of the art,” PVLDB, 2018.

[5] ——, “Return of the lernaean hydra: Experimental evaluation of data
series approximate similarity search,” PVLDB, 2019.

[6] K. Zoumpatianos, S. Idreos, and T. Palpanas, “Ads: the adaptive data
series index,” VLDB J., 2016.

[7] B. Peng, T. Palpanas, and P. Fatourou, “Paris: The next destination for
fast data series indexing and query answering,” IEEE BigData, 2018.

[8] J.-D. Fekete and R. Primet, “Progressive analytics: A computation
paradigm for exploratory data analysis,” CoRR, 2016.

[9] A. Guillaume, “Head of Operational Intelligence Department Airbus.
Personal communication.” 2017.

[10] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans, “Time series
epenthesis: Clustering time series streams requires ignoring some data,”
in ICDM, 2011, pp. 547–556.

[11] J. Shieh and E. Keogh, “iSAX: disk-aware mining and indexing of
massive time series datasets,” DMKD, no. 1, 2009.

[12] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
CSUR, 2009.

[13] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, M. B. Westover, and N. B.
Shamlo, “A disk-aware algorithm for time series motif discovery,”
DAMI, 2011.

[14] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search
in sequence databases,” in FODO, 1993.

[15] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista,
M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh, “Searching
and mining trillions of time series subsequences under dynamic time
warping,” in SIGKDD, 2012.

[16] J. Shieh and E. Keogh, “i sax: indexing and mining terabyte sized time
series,” in SIGKDD, 2008.

[17] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang, “A data-adaptive
and dynamic segmentation index for whole matching on time series,”
VLDB, 2013.

[18] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh,
“Beyond One Billion Time Series: Indexing and Mining Very Large
Time Series Collections with iSAX2+,” KAIS, vol. 39, no. 1, 2014.

[19] A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for massive
time-series data,” in SIGMOD, 2010.

[20] C. Lomont, “Introduction to intel advanced vector extensions,” Intel

White Paper, 2011.
[21] B. Tang, M. L. Yiu, Y. Li et al., “Exploit every cycle: Vectorized time

series algorithms on modern commodity cpus,” in IMDM, 2016.
[22] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality

reduction for fast similarity search in large time series databases,” KAIS,
2001.

[23] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas, “Co-
conut: A scalable bottom-up approach for building data series indexes,”
PVLDB, 2018.

[24] M. Linardi and T. Palpanas, “Scalable, variable-length similarity search
in data series: The ulisse approach,” PVLDB, 2019.

[25] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos, “Progressive
similarity search on time series data,” in EDBT, 2019.

[26] http://helios.mi.parisdescartes.fr/ themisp/messi/, 2019.
[27] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary

lp norms,” in VLDB. Citeseer, 2000.
[28] “Incorporated Research Institutions for Seismology – Seismic Data

Access,” http://ds.iris.edu/data/access/, 2016.
[29] “Southwest university adult lifespan dataset (sald),” http://fcon 1000.

projects.nitrc.org/indi/retro/sald.html, 2018.
[30] D. J. Berndt and J. Clifford, “Using dynamic time warping to find

patterns in time series.” in AAAIWS, 1994.
[31] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time

warping,” Knowledge and information systems, 2005.
[32] S. Kashyap and P. Karras, “Scalable knn search on vertically stored time

series,” in SIGKDD, 2011, pp. 1334–1342.
[33] C. Li, P. S. Yu, and V. Castelli, “Hierarchyscan: A hierarchical similarity

search algorithm for databases of long sequences,” in ICDE, 1996.
[34] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”

in SIGMOD, 1984, pp. 47–57.
[35] I. Assent, R. Krieger, F. Afschari, and T. Seidl, “The ts-tree: efficient

time series search and retrieval,” in EDBT, 2008.
[36] J. Chou, K. Wu et al., “Fastquery: A parallel indexing system for

scientific data,” in CLUSTER. IEEE, 2011, pp. 455–464.
[37] J. Zhou and K. A. Ross, “Implementing database operations using simd

instructions,” in SIGMOD. ACM, 2002.
[38] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking simd

vectorization for in-memory databases,” in SIGMOD. ACM, 2015.
[39] P. Gepner and M. F. Kowalik, “Multi-core processors: New way to

achieve high system performance,” in PAR ELEC, 2006.
[40] D. B. Lomet and F. Nawab, “High performance temporal indexing on

modern hardware,” in ICDE, 2015.
[41] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, “Hot: A height

optimized trie index for main-memory database systems,” in SIGMOD.
ACM, 2018.

[42] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases.” in ICDE, 2013.

[43] Z. Xie, Q. Cai, G. Chen, R. Mao, and M. Zhang, “A comprehensive
performance evaluation of modern in-memory indices,” in ICDE, 2018.

[44] V. Alvarez, F. M. Schuhknecht, J. Dittrich, and S. Richter, “Main
memory adaptive indexing for multi-core systems,” in DaMoN, 2014.

[45] S. Tatikonda and S. Parthasarathy, “An adaptive memory conscious
approach for mining frequent trees: implications for multi-core archi-
tectures,” in SIGPLAN. ACM, 2008.

