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Abstract. In this paper we propose a mediator architecture for the querying and
integration of Web-accessible XML data sources. Our contributions are (i) the
definition of asimplebut expressive mapping language, followingthelocal asview
approach and describing XML resources as local views of some global schema,
and (i) efficient algorithmsfor rewriting user queries according to existing source
descriptions. The approach has been validated by the STyX prototype.

1 Introduction

During the last decade, there has been a significant focus on data integration. In a nut-
shell, dataintegration can be described asfollows: given heterogeneous and autonomous
information sources in a specific domain of interest, the goal is to enable usersto query
the data as if it resides in a single source, with a single schema. To achieve this goal,
a global schema of the data is defined, and related to the schemas of the individual
sources. Queries are formulated in terms of this global schema. Since the actua data
resides in the sources, queries are rewritten into queries over the source schemas, which
are then evaluated at the sources. The answers returned from the sources are combined,
transformed to be compatible with the global schema, and presented to the user. The
integration facilities, namely the global schema, the query translation and query process-
ing algorithms, are performed by a mediator, whose main task is to provide users with
a unique interface for querying the data. The fact that the sources concern a restricted
domain of interest, is crucial for the successful deployment of integration systems.

Well-known projects that deal with data integration include Information Manifold
[12], Tsimmis[14], Picsel [10], Agora[13] and MIX [3]. Asthegoa of integration isto
support declarative querying and automatic query and result transformations, a number
of dataintegration systems use the well-established tools available for such purposesin
the relational model, such as query and transformation languages.

Recently, XML [1] hasemerged asthe de-facto standard for publishing and exchang-
ing data on the Web. Many data sources export XML data, and publish their contents
using DTD’s or XML schemas. Thus, independently of whether the data is actually
stored in XML native mode or in arelational store, the view presented to the usersis
XML-based. The use of XML as a data representation and exchange standard raises
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new issues for data integration. A significant issue, as argued in [2], is the inadequacy
of XML to serve as aglobal integration schema.

In this paper we describe an approach to the integration of XML sources, based
on the local-as view [11] approach to data integration. Our main contributions are as
follows: (i) the use of ontologies for the global schema; (ii) the definition of a simple
but expressive language for describing XML resources as views of the global schema;
(iii) an approach to query processing, that includes query rewriting from the terms of
the global schema into one or more XML queries over the local sources, and (iv) the
generation of query execution plans that may decompose a single query into queries
over multiple sources. The approach has been validated by the STy:X prototype [9].

The paper is organized as follows : in Section 2 we illustrate the main ideas of the
approach by an example. Section 3 presentsthe integration data model, and the mapping
language for the description of XML resources as views over the global schema. The
query language, and the query processing algorithms are given in Section 4. The STyX
prototypeis sketched in Section 5. Related work is presented in Section 6, and Section 7
presents our conclusions.

2 System Overview

We illustrate our approach via an example dealing with the integration of XML -based
information sources on art and culture. Formal definitions and technical details are
deferred to subsequent sections.

2.1 XML Resources

Source S, located at http://mww.paintings.comisan XML resource about painters and
their paintings; its XML DTD isillustrated in Fig. 1.

<!ELEMENT Painter (Painting+)>

<!ATTLIST Painter name CDATA #REQUIRED>

<!ELEMENT Painting EMPTY>

<!ATTLIST Painting title CDATA #IMPLIED
year CDATA #IMPLIED>

Fig.1. XML DTD for source S1, located at URL http://mwmw.paintings.com

The XML DTD for the second source S,, located at URL http://www.art.com, is
described in Fig. 2.

Asiscommon in dataintegration scenarios, asingle source may provide only part of
the information available on a subject. Furthermore, sources differ not only in terms of
contents, but also in terms of structure and terminology. Given the hierarchical structure
of XML, such differences of structure may be more significant that those that exist
in relational sources. For an example of a difference of contents, note that source Sy
might record information on the location of paintings, which is absent in source S;. As
for structure, note that in source S paintings are organized by museums, not by their
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<!ELEMENT Museum (MuseumName, City, Painting+)>
<!ELEMENT Painting (Title)>

<!ELEMENT MuseumName #PCDATA>

<!ELEMENT City #PCDATA>

<!ELEMENT Title #PCDATA>

Fig.2. XML DTD for source Sz, located at http://www.art.com

painters as in source .S;. Consequently, while in the hierarchy of S; a painting occurs
below its painter, in source S, if the source were interested in adding the painter for
each painting, the painter would occur below the painting.

2.2 TheGlobal Schema

The main task of an integration mediator isto provide users with a unique interface for
querying the data, independently of itsactual organization and location. In our approach,
thisinterface, or global schema, isdescribed asan ontology. Asused here, an ontology
denotes a light-weight conceptual model and not a hierarchy of terms or a hierarchy of
concepts.

day

String
year date created_by (created) url )
String=—— Date = Event image e String
th A : | mage
String M ] (image of) type String
i ! roduced i
Act or ca.rrled_out Activity p% Man Made bj ect hastitle String
A: ‘ (carried_out_by) (produced_by) ¢ museumName String
I - - located_at
I influenced_by (influenced) | z:iai . ? Museum
person ——= String (location of) % String
has name city

Fig. 3. An Ontology for Cultural Artifacts

Fig. 3 illustrates (part of) a global schema for cultural artifacts inspired by the
ICOM/CIDOC Reference Model!, an international standard for museum documenta-
tion. The schemais represented as alabeled graph. In this graph, the nodes correspond
to concepts and value types, and the edges depict roles, attributes, and simple inheri-
tance (i.e., isa) links. Roles are binary relations between concepts; attributes connect
conceptsto value types. Both are depicted by solid arcs. Inheritance (isa) links connect
concepts and are depicted by dashed arcs. Each role has an inverse depicted in Fig. 3
within parentheses.

The conceptsin thisschemainclude Actor, its subconcept Person, and Man_Made-
_Object. Anactor (instance of concept Actor) carries out an activity (instance of concept

! hitp://cidoc.icsforth.gr/crm_intro.html
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Activity) to produce aman made object (instance of concept Man_Made_Object). These
relationships are represented by roles carried_out and produced, respectively. The name
of a person (instance of concept Person) is represented by the attribute has_name.

The global schema can be viewed as a simple object-oriented data model. Hence, a
global schema can be viewed as defining a database of objects, connected by roles, with
the concept extents related by subset relationships as per the isa links in the schema.
Since it is an integration schema, thisis a virtual database. The actual materialization
existsin the sources.

Roles can be composed, provided they satisfy certain compatibility constraints. Such
compositions are derived roles. For example, carried_out.produced isaderived role that
connects Actor to Man_Made_Object. Combining concepts with (simple or derived)
rolesinduces derived concepts. For example, Actor.carried_out.produced can beviewed
asthe sub-concept of Man_Made_Object made of those objectsthat are reachable from
some actor by an instance of this derived role. Both derived roles and derived concepts
are referred to as schema paths.

The augmentation of the given schema with the derived roles and concepts gives a
derived schema. It is significant for the integration, since it provides an interpretation
for the mapping rules (see the following) that describe the sources in terms of schema
paths, hence for query processing, as discussed next.

2.3 Mapping Rules

Our integration approach describes XML sources as local views on the global schema.
Among thedifferent possibilitieslistedin[7] for defining such mappings, we have chosen
the path-to-path approach. The description of a source consists of mapping rules that
associate paths in the source DTD, expressed in XPath [6], with paths in the global
schema (schema paths). For example, the rules illustrated in Fig. 4 map paths in the
source Sy described in Fig. 1 to paths in the global schemaof Fig. 3.

Rq: http://www.paintings.com/Painter asu; — Person

Rs: u1/@name aSuso — has_name

R3: u1/Painting aSus — carried_out.produced
R4: uz/0@title aSuy — has_title

Rs: uz/@year asus — created_by.date.year

Fig. 4. Set of Mapping Rules for source http: //mww.paintings.com

A rule consists of a name, aleft hand side (LHS) and aright hand side (RHS). The
LHS containsan XPath pattern [ 6] that starts at acontext which iseither aconcrete URL,
asinrule R, or avariable, asinrule Ry. The X Path pattern is called the location path of
therule. The LHS of arule aso contains a variable declaration (the use of variableswill
be explained later). The RHS of a mapping rule is a path in the global schema, called
the schema path of the rule.

Mapping rules define instances of concepts and relationships between them. As an
examplefor thefirst case, consider therule R, inFig. 4. It statesthat the elements of type
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Painter, children of theroot elementsof the XML documentsin.S; are (descriptionsof)
instances of concept Person. As an example for the second case, rule R, specifies that
the value obtained by evaluating X Path pattern @name on some XML element « returned
by rule R;, correspondsto avalue of attribute has_.name of x (x isan instance of concept
Person). In the same way, rule R3 connects all instances obtained by rule R; to all
instances of concept Man_Made_Object obtained by following the path carried_out-
.produced.

Thisview of mapping rules alows usto define the semantics of XML fragmentsand
their structural relationships in terms of the global derived schema. Thus, R, defines a
subset of the extent of concept Person, while rule R3 relates elementsin this subset by
the derived role carried_out.produced to a subset of the extent of Man_Made_Object.

2.4 Query Processing

Users formulate queries on the global schema using a simplified variant of OQL, the
standard for querying object databases. For example, here is a query @, that asks for
“titles of the man made objects created by Van Gogh” :
Q1 select ¢
from Person a, a.has_.name b,
a.carried_out.produced.has title ¢
where b = “Van Gogh”

We now discuss the options available for answering such a query, given a set of
sources S and mapping rules that relate them to the global schema.

Thefirst, simple, solution isto evaluate this query over each sourcein .S. Thismeans
that, given asource s € S, we need to rewrite it into an XML query that s can answer.
The idea behind this rewriting is the following: Each variable in the query is bound to
some schema path. We search for mapping rules or concatenations of mapping rules,
that can be used to trandl ate these schema pathsto local pathsin the source DTD. Thisis
done by matching the schema pathsin the query against the schema paths of the mapping
rules. A successful matching associates a query variable with arule, or a concatenation
of rules. A binding is a vector of such associations for query variables. A full binding
associates each variable in the query to some rule or concatenation of rules. It can be
used to rewrite the query into a query to be evaluated by the XML source.

For example for (), above and for source S; we see that instances for variable a
are found by rule Ry, for variable b by R, and for variable ¢ by the concatenation of
rule R with rule Ry4. The resulting binding is [a — R1,b — Ra,c¢ — Rs3.R4]. By
substituting the schema path of each query variable with the location path (LHS) of the
corresponding rule, we obtain query Q1 (a):

Q1(a): sdlect ¢
from http://www.paintings.com/Painter a,
a./@name b, a./Painting/@title c,
where b = “Van Gogh”

Query Q1 (a) can be easily translated into the X Query expression Q1 (b):
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Q1(b): FOR $alN document (’http://www.paintings.com’)/Painter,
$b IN $a/ename,
$cIN $a/Painting/@title
WHERE $b ="“Van Gogh”
RETURN $c

Such a matching/rewriting process should be attempted for each source. Then the
answers are gathered and returned to the user.

In some cases, however, we cannot obtain a full binding for a given source. Then
a second solution for query evaluation is to decompose the query into several queries
that are evaluated against different sources. Consider the following query @, which
asks for “ titles of objects created by Van Gogh, as well as the name and the city of the
museum where they are exposed” :

Qg: select d, f, g
from Person a, a.has_.name b,
a.carried_out.produced ¢, c.has title d,
c.located_at e, e.museumName f, e.City ¢
where b =“Van Gogh”

Source S cannot provide information about the locations of objects, hence thereis
no mapping rule whose schema path (RHS) matchesthe schema path located_at of query
variable e. Thus, we can only obtain apartial answer from this source, by evaluating the
query Q2 (a) illustrated in Fig. 5. To obtain afull answer we haveto join partial answers
from different sources.

For the exampl e, themissinginformationisrepresented by subquery Q- (b) illustrated
alsoin Fig. 5, that involves the variables ¢, e, f, g. The variable ¢ isincluded in Q5(b)
sinceit isthejoin variable between thetwo queries. Thus, we have decomposed theinitial
query into two subqueries Q2 (a) and Q2 (b). Assuming the latter query is successfully
evaluated over some source (e.g., source Ss), the results of the two queries are joined
on ¢ to provide a complete answer to the original query. If such adecomposition cannot
be found, the best we can do isto present to the user only the partial resultsfrom Q2 (a)
evaluated against the first source.

Note that to join two fragments from different sources requires to decide whether
the two fragments represent identical objects. Keys are introduced to identify objects.
In particular, results of queries Q2(a) over asource S; and of Q2 (b) over a source Sy
can bejoined only if the same key for man made objects can be provided by these two
sources. Thisimplies the use of keys, both in the global schema and in the sources (the
DTD’sin Fig. 1 and Fig. 2 do not define such keys). We introduce keys and their usage
in Section 3.2.

3 Integration Model

Thissectionisdevoted to the detail ed presentation of our integration model. Dueto space
limitations we leave out a detailed discussion concerning the choices of the integration
method, and the choice of having a light weight conceptual schema for the mediator
schema instead of an XML-based model. A detailed presentation of these choices is
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Q>(a): select d Qa(b): select f, g
from Person a, a.has.nameb from Man_Made_Object c,
a.carried_out.produced ¢, c.located_at e,
c.has_titled e.museumName f, e.City g

where b =*“Van Gogh”

Fig.5. Queries Q2 (a) and Q2 (b)

givenin [2]. Wefirst provide aformal definition of the global schemaand introduce the
notion of derived schema. Mapping rules are described afterwards and we finish this
section with a short discussion on keys.

Global Schemas

A global schemaisa6-tuple S = (C, R, A, isa, source, target), where: (i) C isa set
of concepts, (ii) R isaset of typed binary roles connecting conceptsin C, (iii) A isaset
of attributes of type String?, (iv) isa isabinary relationship between conceptsin C, (v)
source and tar get are two typing functions returning for each role/attribute its domain
concept and its range concept/type respectively.

A global schema can be represented as a graph of concepts connected by roles. The
semantics of a schemais defined by the set of databases that conform to it. Each such
database contains a set of objects (instances) for each concept in C. These objects are
related to each other by instances of rolesin R, and to values by instances of attributesin
A. Instances of roles and attributes satisfy the typing constraintsimplied by source and
target. Roles and attributes are multi-valued and optional. The isa relationship defines
a partial order in S, namely a directed acyclic graph. It carries subset semantics and
supportsrole and attribute inheritance. Namely, if c isa ¢’, then the set of objectsof cis
asubset of the set of objects of ¢/ and all roled/attributes defined in ¢’ arealso defined in
¢ (and its subconcepts). However, if ¢ isnot asubconcept of ¢’ such that source(r) = ¢
for aroler or source(a) = ¢ for an attribute a, then no object o’ of ¢ isrelated by an
instance of r or a to any object, or value respectively. We say that c, ¢’ areisa-related if
eitherc=¢, cisa ¢ or ¢ isa c.

Finally, we consider schema graphs to be symmetric : each role » € R has an
inverserole, denoted »—, in R. Obviously, target(r—) = source(r), and source(r~) =
target(r). Thisis useful for modelling the contents of XML resources as well as for
query formulation and, hence, beneficial to have in a conceptual schema.

Schema Paths and Derived Schemas. We distinguish two kinds of pathsin a schema:

— Arolepathisasequenceof rolesr = ry ... r,,whereforalrolesr; (1 <i < n—1),
target(r;) isa source(r;+1). Givenarolepathr = ry ... r,, wedefineitsinverse
rolepathr= =, ...r; wherer; istheinverseroleof r;

2 Wig. we assume that all attributes are of type string; an extension to the types proposed by the
XPath model or XML schema should be straightforward.
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— A concept path p is either of the form ¢, or a sequence c.r, where c is a concept and
risarole path, such that ¢ isa source(r). Thesource of pisc anditstarget iscin
thefirst case, and target(r) in the second case.

The composition of a concept path p and arole path r, denoted p o r, iswell-defined
provided that target(p) isa source(r).

A concept path p = c.r can be viewed as a derived concept (denoted by conc(p)),
standing for “ theinstances of target(p) that can bereached frominstancesof source(p)
by following therolesinp, inorder” . Obviously, every concept isalso aderived concept.

Inthesameway, arolepathr = r;. ... r, canbeviewed asaderived role (denoted by
role(r)) connecting instances of concept source(r1) to instances of concept target(ry,).
Similarly to derived roles, we can define derived attributes, by a role path followed by
an attribute. Like attributes, these do not have inverses. Clearly, every role (attribute) is
also aderived role (attribute).

Let p = c.r beaconcept path, ¢ be aprefix of r, and ¢ \ r denote r with ¢ removed.
If ¢ iseither target(c.q) or a superconcept thereof but a subconcept of source(q \ r),
then ¢’.(¢ \ r) is called a suffix of c.r. Obviously, target(p) isasuffix of p.

Given DB, a database of S, we can associate extents with derived conceptsin a
straightforward manner. We note the following facts concerning these extents. First, the
extent of conc(p) is asubset of the extent of target(p), hence also of its superconcepts
in S. Second, the extent of conc(p) is a subset of the extent of each of its suffixes. For
example, it iseasy to seethat p’=Activity.produced is asuffix of p=Person.carried_out-
.produced and all instances of p (objects produced by an activity carried out by a person)
areinstances of p’ (objects produced by activities).

Given a globa schema S, the derived schema (or extended schema) Sy =
(Cx, Rx, Ax, source, target,isay) is defined as follows : (i) Cy is the set of al
derived concepts, defined by the concept paths definable in S; (i) Ry (Ax) is the set
of all the derived roles (attributes) defined by the role (attribute) paths definable in S,
and source and target are defined as above; (iii) the isay relation contains the isa
relations from S, and additionally each pair ¢, ¢/, where c is a derived concept defined
by aconcept path p in S, and ¢’ is the derived concept defined by a suffix of p.

Our interest in the derived schema is motivated by the fact that some sources may
provide data only for derived concepts. The isa relationships in the derived schema
enable us to use these sources to provide answers in terms of the original concepts. For
example, evenif asourceprovidesonly informationabout Person.carried_out.produced,
thisallows usto obtain some instances of Man_Made_Object, although not necessarily
al. Note that answers obtained from sources in the local as view approach are partial
answersin any case.

3.1 Mapping Rules

A source is integrated to the system, by providing a set of mapping rules that describe
the rel ationshi ps between the source schemaand the global schema. There exist different
waysfor defining such viewsvarying intermsof size and preciseness of the definition but
also in the complexity of the query rewriting algorithm [7]. We have chosen essentially
the same approach asin [7], namely to associate paths in the global schema with paths
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in the source schemas. This allows usto both associate concepts with XML nodesin the
sources, and to associate relationships among concepts (expressed as roles or derived
rolesin the global schema) with XPath location paths in the XML sources.

Paths in a source are described in terms of XPath [6] location paths. We assume
familiarity with the XPath language. Described in a nutshell, an XPath location path is
composed of a sequence of location steps. Location steps have three parts: (i) an axis
specifies the relationship (child, descendant, ancestor, attribute etc.) between the nodes
selected by the location step and the context node, (i) anodetest specifiesanode’'s XML
type (element, attribute, and so on) and possibly its name, and (iii) optional predicates
which use XPath expressions to further refine the set of selected nodes.

Let V beaset of variables, and U beaset of URLS. A mapping ruleisan expression
of theform R : u/q as v — p, where: (i) R istherule’slabdl; (i) u € VUU, therule's
root, iseither avariable or aURL (u iscalled theroot of R); (iii) ¢ isan XPath location
path, called the location path of the rule; (iv) as v isabinding of v (R is called the
binding rule of v), where v € V isavariable; (v) p isaschema path. More precisely, it
isarolepath if u isavariable and aconcept path otherwise. A rule R iscalled arelative
mapping ruleif itsroot is a variable u, and an absolute mapping rule otherwise. In the
first case, u isthe root variable of R, and this occurrence of « is a use of the variable.
Let Ip(R), sp(R) denote R's location path and schema path, respectively.

Given aset of mapping rulesfor asource s, we definereachability (in s) for rulesand
variables, asfollows: (1) each rulewhoserootisaURL (the URL of s) isreachable; (2)
each variable bound by areachableruleisreachable; (3) finally, each rule whoseroot is
areachable variable is reachable. The set of mapping rulesis cyclic if this definition of
reachability leads to acycle. The simplest case of acycleisarule whose |eft-hand-side
containsv/A as v (provided that v can be reached from a URL by other rules). In this
work we consider only acyclic mappings.

A mapping M over Sy and for a source s is a set of mapping rules such that 1)
labels are unique (that is, no two rules have the same label), 2) all rules and variables
are reachable in M, 3) the concepts, roles and attributes used in its rules occur in Sy
and 4) it contains no cycles.

The concatenation of mapping rules is defined as follows : two rules R;
a/q1 as vi — p1, Ry : v1/q2 as va — py, can be concatenated, if the composi-
tion of their schema paths, p; o p, iswell defined®. Note the constraint that the root of
Rs isboundin R, and that concatenation is possible only if p, isarole path. The result
of the concatenation istherule Ry.Rs : a/q1/q2 as va — p1 o pa.

Given a mapping M, its closure is the set of al rules that can be obtained from
M by repeated concatenation. It is denoted by A *. Its expansion, denoted 1M, is the
set of absolute rulesin M* (M C M*) and can be computed by a bottom-up fixpoint
computation (since we only consider acyclic mappings, we are sure that afinite fixpoint
exists).

Given agloba schema S, amapping M over S can naturally be interpreted in the
derived schema S,y . Each absoluterulein M definesaderived concept, and each relative
rulein M* defines aderived role (attribute). Let us denote by S, therestriction of Sy
to the derived concepts, roles and attributes of M *.

3 We do not define any restriction on the concatenation of the rules’ location paths.
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For example, rule R;.R3 defines a derived concept, conc(Person.carried_out.-
produced) subconcept of Man_Made_Object, and rule R3 defines a derived role,
role(carried_out.produced), between concept Person and concept Man Made Object.
Rule R3.R, defines a derived attribute attr(carried_out.produced.has.title) of concept
Person.

A mapping M for asource s associated with URL «, allows usto view a collection
of XML fragments reachable from « as a database that conformsto Sj,. To define this
database, the population of each derived concept, conc(p), is defined as the union of the
set of fragments returned by all absolute rules R in M where sp(R) = p or p isasuffix
of sp(R).

The set of fragments X  returned by someabsoluterule R in M isdefined asfollows.
The root of an absolute rule R isthe URL u. Hence Xy is assigned the set of XML
fragmentsthat can be obtained by applying thelocation path [p( R) to the XML document
identified by u. The set X can be computed by a simple fixpoint computation, using
rulesin M. Since M* isfinite, alternatively the rules of A/ can be used directly.

Similarly, the relative rules of M * are interpreted as roles (or attributes) of Sy, in
this database of XML fragments, represented by location paths.

Beforeleaving thissubject, wenotethat accordingtothe LAV approach, XML extents
defined as abovefor the conceptsare viewed as subsets of thereal (but unknown) extents.
Indeed, as sources are added, and rules are added to a mapping, the extents grow. Inthe
LAV approach, any set of answers returned for a query is assumed to be a subset of the
full (but unknown) answer.

3.2 Keys

As illustrated in Section 2, keys are essential to decide whether two XML fragments
describe the same concept. We assume that sources are heterogeneous and autonomous,
and we do not expect that they provide us with persistent object identifiers that are
valid for all sources. The ID/IDREF XML attribute mechanisms are used for internal
references, but cannot serve for a key mechanism to perform joins between objects
that originate from different sources. Sources might specify meaningful keysin terms
of XML elements/attributes as proposed in [4,8,16], but one cannot expect different
autonomous sources to always use the same keys. For example a painting might be
identified by itstitlein one source, by itstitle and the year of creation in another source.

A way to overcome this problem is to define global keys for concepts in the global
schema. A key for aconcept c isdefined asalist of derived attributes (called key paths)
that originate from concept ¢ and is denoted by key(c) = {a1, a2, ... a, }. W.I.g
we assume in this paper that a concept is associated with at most one key, and al its
subconcepts (including the derived ones) share the same key.

In our global schema, we could state for example, that an instance of concept
Person is identified by attribute has_name: key(Person)={has_name}. Instances of
concept Man_Made_Obiject are identifiable by their title and their year of creation:
key(Man_Made_Object)= {has_title, created_by.date.year}. Images have no key,
i.e. key(Image)=0.
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4 Query Processing

Our query processing approach is presented in this section. We first introduce the user
query language (section 4.1). Two query processing strategies are then discussed. Inthe
first approach (section 4.2), the solution to a query is the union of the complete answers
from individua sources. If no complete answer can be obtained from a source, then
the source is abandoned. In contrast, the second approach (section 4.3) alows also for
incomplete answers from a given source. If asource s can only partially answer aquery,
then the query is decomposed in two parts one to be fully answered by s and the other
part being sent to the other sources. The partial results from different sources are then
joined by the mediator using global keys.

4.1 Query Language

The users query the virtual database as presented via the global schema, using simple
tree queries, based on select-from-where clauses following an OQL-like syntax.
Queries are of the form:

Q: select Tiy Ty e
from pq 24,
Ljy P2 T2y «ue
Lj;-Di Ly oee
where ¢y and ¢; and ...

The z;’s are query variables and each p; in the from clause is a path in the global
schema(schemapath), called thebinding path of =-; and denoted bp(«x; ). Thefirst variable
x; istheroot variable of the query, and its binding path p; is aconcept path. For each
i > 1,thereisasingleclausez,.p; =;, and p; isarole path. Wecall x;, the parent of ;.
We assume the parenthood relation between variables forms a tree, with x, asitsroot.
x1 ranges over the extent of the derived concept conc(p;), and z;, 7 > 1, ranges over the
instances defined by traversing instances of the derived role p; from the instances of its
parent.

We assume queriessatisfy thefollowingrestrictions. First, norestructuringisallowed
in the select clause. Although this may add expressive power to the language, we feel
it is not strictly needed for our application. Certainly, it is orthogonal to the issue of
retrieving data from sources, addressed in this paper.  Second, the where clause is a
conjunction of simple predicates, where asimple predicate is of the form z;0d in which
0 e {=,<,>,<,>} anddisan aomic value. Thus, it is not possible to express joins
by equalities between variables, i.e., by predicates of theform z; = x;. Thisrestrictsthe
expressive power of the query language but simplifies the rewriting and evaluation of
queries. Third, schema paths occur in the from clause, but not in the select clause or the
wher e clause of aquery. It is easy to show that a query with schema paths in the select
and the wher e clause can be rewritten into an equivalent query in which they appear
only inthe from clause. Last, the language has no quantifiers, aggregates, or subqueries.
However, avariable z; present in the from clause isimplicitly existentially quantified.
Thus, queries with certain kinds of existential quantification can be expressed in the
above form.
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Sincenojoinsarealowed inthewher e clause, aquery whose variablesform aforest
can be decomposed into a cross product of several tree queries. the restriction to tree
rather than forest queries resultsin no loss of expressive power.

The result of a such a query is a set of tuples of the form {[a;, a;, . .. ax]} where
ai, aj, . .. a areinstances of the variablesin the query’s select clause and can be either
atomic values, or XML fragments.

In the sequel, the following representation of tree queriesis used. A tree query @
isrepresented as a labeled tree, T'(Q) = (X, par, bp, ops) where X isthe set of query
variables (tree nodes), par is the parent binary relation between nodes defined above,
bp(z) is the binding path of 2 and ops is a set of operations associated with variable
x, defined as follows : for a variable z in the select clause m € ops(x), and for each
condition 26d in thewhere clause, 0,94 € ops(x).

4.2 Variableto RulesBindings

We now proceed to the details of query processing. We first present a simple approach
in which a source contributes to the answer only if it can fully answer the query.

To evaluate a query, we need to rewriteit into an XML query that some sources can
answer. Obviously, in general only some of the sources contain the data requested in
the query. Each such source returns a subset of the possible answers; the union of the
answers from all relevant sources is presented to the user (see Section 5).

For thisrewriting, we use the mapping rules. For aquery @ and asource s, we define
avariable to rule binding, or shortly variable binding, as a mapping 3 from a set of
query variablesto M*. We consider only bindings such that dom(3) is either empty or
is the set of nodes of some prefix* of 7'(Q). The empty binding is denoted by 3. If 3
binds all variablesin @ then it is called afull binding, otherwiseit isapartial binding.

The properties of a binding 8 are the following : if dom() is not empty, then g8
associates each variablein it with arule of M*, such that the following hold:

1. if x is the root of query @, then §(x) is an absolute mapping rule such that
conc(sp(B(x))) isan conc(bp(z)), i.e., the derived concept defined by sp(5(x))
is a subconcept of the derived concept defined by the binding path bp(x) in Sy,

2. ese let par(z) = o/, then B(x) isarelativerule, and

— theroot variable of rule 5(x) isbound in rule 5(z'),
— therole path (RHS) of therule 5(z) is equal to the binding path bp(z),
— and finally, the concatenation of the two rules 3(z’) and 5(x) is well-defined.

In the first case, = is the root of @ and bound to some (possibly derived) concept
by its binding path bp(z) that has the form ¢ or c.r. An absolute rule R can provide
instances for this concept if its concept path (RHS) sp(R), viewed as aderived concept,
isasub-concept of bp(x) (i.e. if thelatter isasuffix of sp(R) or it defines a superconcept
thereof). Note that we use here both derived concepts and the isa relationship between
them. Thus, the derived schema defined in Section 3 is essentia for our approach to
query processing.

4 A tree T" isaprefix of atree T if it isasubtree of T" and its root is the same as that of 7.
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In the second case, the assumption that if 5 is defined on x then it is defined on the
parent of z follows from the requirement that its domain is a prefix of T(Q). In this
case, the declaration of z in @ has the form z’.q x, and bp(x) = ¢. Answers for  can
be obtained from answers for 2/, by following the binding path ¢ of x.

A partia binding 3 is called maximal if there does not exist abinding 4’ such that
dom(B) C dom(B') and B(z) = B'(x) for dl = in dom(B). It is evident that a full
binding isamaximal binding.

Variable Binding Algorithm. We will now describe a variable binding algorithm
B(Q), s) which takes as an input a query () and a mapping M for a source s and re-
turns a set of maximal bindings. A binding 3 is represented as a vector of associations
of variables to rules, [x; — Ry,...xz, — R,]. The agorithm isillustrated in more
detail in Fig. 6. Firgt, the variables of the query tree are arranged in pre-order: the root
isfirst, and every other node occurs after its parent. The algorithm starts from the empty
binding, and once a set of partial bindings have been constructed, it tries to extend each
one, using the ordering of the variables. The extension of apartial binding 5 by [z — R)
isdenoted 8 x [z — R].

Inthefirst step, we extend 3, to theroot variable 2. For each absoluterule R in M*
such that the derived concept defined by sp(R) is a subconcept of the derived concept
defined by the concept path bp(z1) in Sys, we create the binding [z; — R] and add it
to the set of bindings for ;. If no absolute rule is found such that the above conditions
hold, then the algorithm stops, and returns the empty set. Then, we iterate through the
sequence of variables, from the left. Let the current, not yet treated, variable be x;, and
let y beits parent. For each binding 5 constructed so far, if y & dom (/) then 5 cannot
be extended to x; (recall that a binding is always defined on a prefix of T'(Q)). Else,
let binding 3 associate rule R’ with y. Then, for each relative rule R of M*, such that
bp(x;) = sp(R), if R and R’ can be concatenated (i.e, R’ binds the variable that is the
root of R, and their schema paths can be composed), we extend ( by [z; — R]. Inthis
case, 3 can be dropped, since the new binding extends it. Note that the edge from y to
x; istraversed in this step, and only in this step.

B(Q, s) finds the maximal bindings for a query @ and a mapping M on source s.
The proof is straightforward. Consider abinding 3 in the result set of B(Q, ). If there
exists avariable x that we could add in dom(3), this means that there exists some rule
R suchthat 3(parent(z)).R iswell-defined, then by the algorithm « would already be
in dom(3) which is a contradiction, from the above assumption.

Let us illustrate the algorithm with query Q- presented earlier, and the mapping
rules for source S; illustrated in Fig. 4. Rule R; returns answers for variable a. The
rule’s schema path is Person which is equal to a’s binding path (Person). Rule R,
returns answers for b, since (1) its schema path has.name is equal to the variable's
binding path, (2) itsroot variable u; isbound in rule R;, and (3) the composition of the
schema paths of rules Ry and Rs iswell defined, since attribute has_.name is defined in
concept Person. In a similar manner, we find that variable c is bound to rule R3 and
variable d to rule R,. For variable e, we do not find a mapping rule whose schema path
isequal to the variabl€e’ s binding path (located_at). Theresult B(Q-, S ) isthesingleton
{ﬁl} = {[a — Rl,b — RQ,C — Rg,d — R4]}
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Input : the sequence of variables of query @, in pre-order: x1, ... , Tn;
the closure of mapping rules M ™ of some mapping M for source s;
Output : the set B of maximal bindings for @ and M

Algorithm : B:=0;
for each absoluterule R € M
if concept path bp(x1) isequa to or isasuffix of path sp(R)
I* conc(sp(R)) is a subconcept of conc(bp(z1)) */
add [z, — R]to B;
fori=2,...,n{
[* Temp contains all maximal bindingsup to x;—1 */
Temp := B;
y .= parent of z;;
for each binding 8 € T'emp wherey € dom(g) {
for eachrule R in M *where sp(R) = bp(z:)
if the composition of 3(y).R iswell defined
/* 3 isextended to z; and added to B */
add 8 x [z; — R]to B;
if 3 was extended to x;
remove (3 from B;
}
}

return B;

Fig. 6. Variable binding Algorithm B(Q, s)

4.3 Query Decomposition

Let S be the set of sources mapped to the global schema. Algorithm B(Q), s) returns for
each source s in S the set of maximal bindings. Each such binding G is either full, i.e.
dom(f3) contains all variablesin @ (then s can answer the query using (), or partial.
In the latter case, 5 provides us with partial answers, i.e. does not provide answers for
all variables in the query. To complete these partial answers, we decompose the query
@ into (i) a prefix query that source s can answer using binding /3, denoted Q,,(3), and
(i) aset of suffix queries, denoted QS ().

As an example, take the result of agorithm B(Q2, S1) calculated for query Qo,
and source S; published by the mapping rulesillustrated in Fig. 4. It contains a partial
binding ; defined on aproper subset of the variablesintheinitial query : for aninstance
of variable ¢ we missinstances for variable e (and its descendants).

To obtain the complete answer, we define (1) aprefix query that source S; can answer
using 3 (query Q,(61) = Q2(a) illustrated in Fig. 5) and one suffix query (query Q2 (b)
illustrated in Fig. 5). The prefix query Q,(3) isaprefix of T(Q) and is defined on the
set of variablesin dom(3). The suffix queries of a prefix Q,(5) in @ are defined as
follows. Let N be the set of variables in Q,(3) which contain at least one child in @
but not in Q,,(8) (wecall N the boundary of @, (3)). Then we define a suffix query for
each variable z in NV asthe subtree of @ rooted at = and containing all descendants of «
notin Q,(3). It is easy to see that query Q2 (b) illustrated in Fig. 5 is a suffix query of
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Q2(a) in Q. Observe that for a given prefix query there might exist zero, one or more
suffix queries.

Joining the results. The results of the prefix query and the suffix queries must be
joined. In order to perform the join between a prefix and a suffix query the following
two conditions must hold: (1) the concept to which the root of a suffix query is bound,
should have a key, and (2) the sources on which the join is performed should provide
complete values for this key.

The key values of an instance of a concept ¢ are obtained by considering key(c)
as a query ranging over al key paths in it. The result of a key query is of the form
{[x1, 22, .., 5]}, wherethe z}s areinstances of the variablesto which the key pathsare
bound in the key query. For example, the query illustrated bel ow returns the key values
for an instance = of concept Man_Made_Object:

key(Man_Made_Object): select ¢,y

from Man_Made Object z,
x.hastitle ¢, z.created_by.date.year y

Given a(prefix or suffix) query @ whoseresultisof theform {[a1, as, . . . a,,] } where
thea)s areinstances of the variablesin the query’s select clause and akey query key(c),
where ¢ isthe concept on which thejoin will be performed, @ is extended to Q' so asto
get, aswell astheq;’s, the key valuesfor the fragments, instances of concept ¢, accessed
by Q. Theresult of @’ is of the form {[a1, a2, ... an, z1,22,... ,z,]} Wherethe z;’s
areinstances of thekey query variables (variables bound to the key pathsin key(c)). For
example, the prefix query obtained after extending query Q2 (a) of Fig. 5 by the key of
concept Man_Made_Object is given below®.

ext(Q2(a)): select d, t,y

from Person a, a.has_nameb,
a.carried_out.produced ¢, c.has title d,
c.has_title t, c.created_by.date.year y
where b = “Van Gogh”

Query Execution Plans. Let @ beaquery and S be a set of sources. A decomposition
of @ w.r.t. some maximal binding 3 isacouple D(Q, 8) = [Q,(5), QS(5)] such that
Qp(B) isaprefix query of @ onsource s in S and QS(3) isthe set of suffix queries of
Q,(8) in Q. For example, D(Q, /1) = [Q2(a), {Q2(b)}] isadecomposition for query
Q- and the maximal binding 3; defined on source S;. Observe that OS(3) is empty if
B isafull binding for Q.

Let D(Q,B) = [@p(5), QS(8)] be a decomposition of Q. Then @Q,(5) can be
translated into a source query using binding 5. For each suffix query in QS(3) either a
full binding is found or the suffix query has still to be decomposed. Let Q; be a suffix
query in QS(8) and k; = [z, . .. ;] denote the key query variables bound to the key
paths of concept ¢; associated to the root variable of ();. Then Q,(5) Ky, @Q; denotes
thejoin operation between @,,(5) and Q; (we assume that both queries are extended by

5 This query can be optimized by keeping the variables that are common to the key query and
the prefix query (the case of variables d and ¢ in the example above).
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the appropriate key queries). A prefix query rewriting LR (Q, 3) for a decomposition
D(Q, ) isdefined asthejoin between aprefix query and all suffix queries@;,1 < i < n,
in @S(B) (if Bisafull binding for @ then QS(3) isempty and LR(Q, 5) = Qp(5)):

LR(Q, ) = Qp(B) Wi, GR(Q1,S) Wiy - .. Mg, GR(Qn, S))

Then the initia query @ can be rewritten as GR(Q,S) defined as the union of all
prefix rewritings for sourcesin S':

gR@Q.9 =1 U £r@n)

SES BEB(Q,s)

Let a query execution plan (QEP) be defined as follows: (1) a query ¢ that can be
answered by a single source (that is a query for which there exists afull binding) isa(n
atomic) QEP; (2) the union of two QEP'sisaQEP®; (3) thejoin of two QEP'sisaQEP”.
Basically, sources answer atomic queriesin a QEP and the mediator performsjoins and
unions. A QEP can involve several atomic queries sent to a given source. It might be
interesting to combine such queries in a single query. This implies the reorganization
using classical properties such as distributivity of union w.r.t. join. Such properties and
reorganizations as well as other optimizations are beyond the scope of this paper.

Given aset of sources .S and aquery @, thea gorithm P(Q) shownin Fig. 7 computes
a query execution plan for Q. For each source s and maximal binding 5 € B(Q, s), a
QEP P(3) of the prefix rewriting LR(Q, 3) is computed: if 8 is afull binding (i.e.
complete answers are obtained), theresult isquery Q. Else, if 5 isapartia binding, then
query ( is decomposed into a prefix query @, (3) and a set of suffix queries QS(5)
(thesequeriesare al so extended by thekey queriesas shown before). The query execution
plan of @) against source s is obtained by joining Q,, () with the query execution plan
for each suffix query Q' € QS(3) (variable &’ denotesthekey query variablesof Q’). To
calculatethe query execution plan of asuffix query @’ theagorithmiscalled recursively.
Finally the obtained plan is added to the existing plan by union.

Observe that there are two reasons to interrupt the calculation of a query execution
plan for a given source s and binding 8. The most trivial case is that there exists no
maximal binding for @ in s. The second reason is that there exists at least one suffix
query which cannot be satisfied (empty query execution plan).

5 System Architecture

In this section we sketch the architecture of the prototype STyX [9] (Fig. 8) that im-
plements the data integration approach described previously. XML Web resources can

5 Remember that union is heterogeneous, that istwo sets of tuples answering the same query but
resulting from different sources might have different structures for the i-th component.

" Werestrict join to the non commutative af orementioned definition of join: theroot of the second
QEP should belong to the boundary of the first QEP and each of them should correspond to a
concept for which akey has been defined.
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Input: aquery Q and aset of sources S
Output: aquery execution plan for Q;
Algorithm: QEP(Q,S) =0,
for all sourcess € S {
if BQ,s) # 0 {
[* there exists at least one maximal binding for @ in s */
for al bindings 8 € B(Q, s) {
if gisafull binding P(3) := Q;
dse { P(8) :== Qu(B);
for al suffix queries Q" € QS(B)
if P(3) # 0
[* there exists a non-empty query plan */
/* for all subqueriesupto Q' */
if QEP(Q',S) # 0
/* there exists a query plan of Q" */
P(B) = P(8) By QEP(Q', S);
else P(B) :=0;
}
QEP(Q,S) = QEP(Q,S) U P(p)

}
}
return QEP(Q, S);

Fig. 7. Query Execution Plans Generation

be published on the fly by creating/modifying/deleting mapping rules between source
fragments and the global schema using the Source Publication Interface. The global
schema can be consulted through the Schema Manager which is aso responsible for its
loading in a STyX portal. The mapping rules are first validated by the Rules Manager
which isalso responsible for their storage. The publication of aresource also consistsin
providing an XSLT transformation program?® that can be used for formatting source data
in the query result®. Query processing is done in several steps: first user queries can be
formulated using a standard Web browser. They are either created by a generic Query
Interface, or simply stored in the form of a hypertext link (URL). The Query Interface
communicates with the Schema Manager allowing the user to browse the global schema
for the formulation of a query. The Query Interface forwards the query to the Query
Parser which performs a syntactical analysis of the query with some type-checking
w.r.t. the global schema and produces alanguage neutral intermediate representation of
it. The query isthen forwarded to the Query Execution Plans Generator, which creates
the query execution plan. The Integration Modul e rewritesthe queriesinto Quilt Queries

8 XSL Transformations (XSLT : http://www.w3c.org/TR/xslt)
% If the query result contains XML fragments from a source, then those are transformed using
the source’s XSL Stylesheet.
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Query Interface e o Source Publication Interface

Formatted result ‘ User query Mapping rules
v
‘ Query Parser ‘

Schema Rules
XSLT Processor Query Execution Plans Manager Manager
Generator
‘ Integration Module ‘ Portal Mapping rules
¢ ¢ Schema XSL stylesheets

‘ Kweelt Query Engine ‘

XML Fragments XPath Location Paths

Fig. 8. STyX Portal Architecture

and sends them to the Kweelt Query Engine'® for evaluation®!. The resulting XML frag-
ments are sent to the Integration Module that combines the results. This module, based
on the query and the mapping rules, inserts schema specific tags, and then the XSLT
Processor (Cocoon'?) finally transforms the result into an HTML document which is
displayed to the browser of the user.

The STyX prototype was implemented in Java JDK 1.2. XML technologies such as
XSLT, XPath and the Xalan XML Stylesheet processor'® were used.

6 Reated Work

Dataintegration has become an important issue during the past years and alarge number
of integration systems have been proposed. These systems can be classified according
to the architectures used for query processing: data warehouse systems materialize al
source data before query processing, whereas mediators propose a virtual database and
push queriesto the source level based on sophisticated query rewriting algorithms. Our
approach clearly belongs to the second category.

Mediator systems are classified according to the way sources are described to the
mediator and queriesareevaluated [11]. Tsimmis[14], MIX [3], YAT [5] and Picsel [10]
follow the global as view approach and are not directly comparableto ours. On the other
hand, Information Manifold [12] follows the local as view approach. In this system the

10 Kweelt Query Engine : http://db.cis.upenn.edu/K weelt/.

1 The Kweelt query engine can eval uate the subset of X Query expressions presented in this paper.
12 http://xml.apache.org/cocoon

13 http://xml.apache.org/xalan-j/index.html
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global schemais aflat relational schema, and Description Logics is used to represent
hierarchies of classes. The sources are expressed as relational views over this schema.
Query rewriting is done by the Bucket algorithm which rewrites a conjunctive query ex-
pressed in terms of the global schemausing the source views. It examinesindependently
each of the query subgoals and triesto find rewritings but loses some by considering the
subgoals in isolation. The MiniCon algorithm [15] improves the Bucket algorithm by
exploiting the input/output dependencies between the query subgoals for reducing the
search space of possible rewritings. Algorithm B(Q, S) presented in this paper resem-
bles to MiniCon since it exploits the parent/child dependencies of query variables for
query decomposition.

The Agora [13] system, offers an XML view for relational and XML data and user
queries are XQuery expressions. Although XML is used as the global data model, an
extended use of the relational model is made: the XML view istrandated into ageneric
relational schema, XML resources are described asrelational viewsover thisschemaand
XQuery expressions aretrandlated to standard SQL querieswhich are then decomposed,
optimized and evaluated. Our system and query rewriting algorithm extensively exploit
the tree structure of XML data which is described as local views of a more powerful
conceptual schema with inheritance.

Last, the Xyleme[7] systemisbased on adata-warehouse sol ution for theintegration
of XML data (“all XML dataof the Web”). However, it can be considered as a mediator
system, since source data is stored without transformation and users can query this data
viadifferent views. Each view isdescribed by aDTD, called abstract DTD, and source
datais mapped to one or severa DTDs using path-to-path mapping rules. These rules
are similar to our mapping rules with the difference that they map absol ute source paths
(starting from the document root) to absolute paths in the abstract DTD (starting from
the DTD root el ement).

7 Conclusions

We proposed in this paper an alternate approach for integrating XML sources following
the LAV approach. Instead of choosing for the global view, arelational or XML schema,
we advocated the use of an ontology-based mediation. The global schema is close to
an object-oriented schema on a terminology describing a common domain of interest
and usersissue queries on thisglobal schema. Our contributions are (i) aview definition
language, (ii) a rewriting algorithm, (iii) an algorithm for generating execution plans,
and (iv) a prototype validating the approach.

We are currently working on several extensions concerning our integration model.
First, wetry to extend the query language by allowing explicit joinsin the where clause
of a query. This does not change the binding agorithm, but increases the complexity
of query processing. A second issue we are looking at concerns the usage of maximal
bindings for query decomposition. Infact, the current version of the rewriting algorithm
generates query execution plans which favor information stored locally in the same
document. For example, if some source s provides asingle full binding for some query
Q, thealgorithmwill return theresult of @ in s, but will not try to join s with some other
source s’. Thisrestriction can be removed by allowing also partial bindings that are not
maximal, but will increase the number of possible decompositions significantly.
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