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Abstract best of our knowledge, our work is the first attempt to apply
query personalization to XML search. In this paper, we take

XML search is increasing in popularity as more and the first necessary steps to achieve this goal by modeling
larger XML repositories are becoming available. The ac- user profiles and enforcing them efficiently and effectively
curacy ofXML search varies across different systems and in XML search.
a lot of effort is put into designing scoring functions tai- Personalization is used in applications such as telecom-
lored to specific users and datasets. We argue that there is munications to direct user calls based on the caller context
no one scoring function thatfits all and advocate incorpo- (e.g., physical location, time of day). In Web search, the
rating user profiles into XML search to personalize query ranking of query answers may be modified based on the
answers by accountingfor user profiles. user's navigational behavior during a session. Relational

First, we propose a frameworkfor defining user profiles query personalization has been studied extensively [9, 15]
and for enforcing them during query processing. Second, and shown to be effective in practice.
we adapt the well-known topk pruning to account for user Query personalization through user profiles has different
profiles. Finally, we present effectiveness and efficiency ex- aspects that restrict or expand its applicability. Enforcing
periments which show that query personalization in XML a user profile ranges from simply modifying the original
search dramatically improves the accuracy ofquery results ranking of query answers, to returning a substantially dif-
while incurring negligible processing overhead. This work ferent set of answers. Consider the example document in
is in the context of the PIMENTO project which aims at im- Fig. 1. The document describes cars for sale. Information
proving the relevance of searching structured and unstruc- on each car may include the manufacturing date, the owner
tured content. information, the price, horsepower, make, and color. Other

information may be embedded in the car description.
1 Introduction A user interested in buying a car which is in a good

condition and which costs less than $2000 can formulate
XML search is becoming widely popular due to the in- the following XQuery Full-Text [21] query:

creasing amount of XML data and to a growing interest Q: //car[./description[ftcontairns(., "good condition")
in designing appropriate scoring methods and ranking al- ftcontains(., "low mileage")] & ./price < 2000]
gorithms. The accuracy of XML search varies across sys- Answers to such a query need to be ranked by their rele-
tems and a lot of effort is put into designing scoring func- vance to "good condition" and to "low mileage". Assuming
tions tailored to specific datasets. E.g., the INEX effort [11] that the user is located in New York City (NYC) and that
aims at improving the search relevance of IEEE XML data he has a preference for red cars, it is natural to expect that
collections. However, none of the existing XML search regardless from the scoring function used by the underly-
solutions leverages user information to determine relevant ing query engine, the user should receive red cars for sale
query answers. As an example, a painter who searches in NYC ranked higher than other cars. On the other hand, a
for "black paint" would receive the same results as a home user may be willing to buy a car which is located in a dif-
builder. Similarly, a user looking for a used car would re- ferent state provided it has a higher horsepower than cars
ceive the same listing regardless from his car preferences for sale in NYC. Consequently, the process of query per-
(color, make, mileage). In this paper, we argue that there is sonalization may either expand or restrict the original set
no one scoring function that fits all and advocate the idea of of query answers and some ranking preferences may be en-
incorporating user profiles into XML search in order to cus- forced when returning query results. In our formalization,
tomize query answers and improve search quality. To the a user profile is composed of two kinds of preference rules
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Figure 1. Example of a Car Sale Database

- scoping rules (SRs) and ordering rules (ORs). SRs are In this paper, we do not address the creation of user pro-
used to expand (e.g., I am willing to drop the low mileage files. Our contributions are:
requirement) or restrict (e.g., I only want to see cars for 1. We formalize user profiles in terms of scoping rules
sale located in my area) the original result. ORs are used to (SRs) and ordering rules (ORs) and define query per-
enforce ranking preferences (e.g., I prefer red cars or cars sonalization as the process of rewriting a user query
with higher horsepower). SRs may be conflicting. For ex- using SRs and ranking query answers using ORs.
ample, one SR may only be applicable to queries specifying 2. We describe an algorithm to detect and resolve con-
a certain condition, while some other SR may remove this flicting SRs and ambiguous ORs.
condition from the query. The order in which these two 3. We define OR-aware topk pruning to guarantee effi-
SRs are applied to a query may lead to different results. We cient query personalization.
propose to detect and resolve such conflicting SRs. Sim- 4. We run effectiveness experiments on INEX [11]
ilarly, ORs may be ambiguous. For example, a user may datasets and queries which show that enforcing user
prefer cars with a high horsepower and also prefer cars with profiles achieves good precision and recall, and effi-
a low mileage. The database of cars for sale may contain ciency experiments on XMark datasets which show
a Honda with a higher horsepower than a Mustang. How- that personalization induces negligible processing
ever, the mustang may have a lower mileage than the Honda. overhead.
The preference between them is then unclear. We propose Section 2 provides an overview of existing work in query
to resolve ambiguous ORs before enforcing them in query personalization. Our data model and definition of user pro-
personalization. files are given in Section 3. Section 4 contains a summary

Enforcing SRs and ORs is not a straightforward task due of the problems studied in this paper. In Section 5 we dis-
to the number of rewritings of the user query that may need cuss the static analysis of preference rules. Section 6 de-
to be generated using SRs, and to the possibly inefficient an- scribes our algebra and OR-aware topk operator as well as
swer re-ranking implied by the application of ORs. There- query evaluation algorithms. Experiments are provided in
fore, we leverage existing query relaxation work [3, 19] to Section 7. We conclude in Section 8.
enforce SRs efficiently. Ultimately, the user is only inter- 2 Related Work
ested in the top answers. Consequently, understanding how
to combine user profiles with topk processing is a key aspect Two approaches have been proposed for the definition of
of efficient query personalization. A key point is, while it user preferences in the relational world. In the qualitative
is necessary to be able to prune intermediate query results approach [9, 12, 13], preferences are specified as prefer-
which will not make it to the top best answers [8, 10, 17], ence relations, which are defined by means of either log-
the introduction of ORs requires to revisit well-established ical formulas [9] or preference constructors [12, 13]. Us-
topk pruning conditions such as the threshold algorithm de- ing this approach, a user can specify relative preferences of
fined in [10]. Even if their query score is low, user-preferred the form: 'I like X better than Y'. In the quantitative ap-
answers should not be pruned. Therefore, we formalize proach [1, 4, 5, 7, 10, 16, 17] preferences are mostly ab-
query processing in an algebra and define OR-aware topk solute and are specified in terms of scoring functions that
operation that achieves effective pruning while guarantee- associate a score with every answer. Koutrika et. al. in [15]
ing soundness of our query evaluation, i.e., always returns extend this approach by associating degrees of interest with
the correct topk answers. preferences, the latter expressed as conjunctions of predi-
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cates on relations of interest. In addition to these two ap- leaf node x in a TPQ Q has a condition associated with it.
proaches, authors in [14] propose a type of preferences in The condition may be:
the form of query rewriting rules which are used to syntac- * A conjunction of constraint predicates of the form
tically restrict the user query by conditionally adding new value relOp u where value denotes the content of the leaf
predicates. node x, relOp is one of > < < >, and u is a value

Query personalization in the qualitative and quantitative from an appropriate domain.
approaches is achieved by re-ordering query answers. In * A conjunction of keyword predicates of the form
the case of qualitative preferences, Chomicki [9] proposes ftcontai§ns ( "k" ), where "k" is a keyword, which states that
the winnow operator that is incorporated in the relational al- the node x contains an occurrence of the keyword "k" at
gebra to select the most preferred tuples according to the any document depth.
preference formulas specified by the user. In [13] the en- The former condition expresses hard con-
forcement of user preferences is taken into account outside straints such as ./price < 2000 while the latter
the query engine. In the context of quantitative approaches, expresses keyword and phrase conditions such as
optimization techniques for topk queries [7, 8, 16, 17] and ftcontains(., "NYC") & ftcontains(., "low mileage").
their successors have been developed. Authors in [15] fol- A TPQ thus consists of a conjunction of structural, key-
low a hybrid approach where they use quantitative user pref- word, and constraint predicates. Fig. 2 shows the extended
erences to syntactically rewrite the user query, and then use TPQ for query Q given in the introduction.
the preferences' degree of interest to re-rank the results.

In our work, we adopt a hybrid approach for capturing
user preferences in which we define a user profile to be a set car

of scoping and ordering rules. To the best of our knowledge, description price
this is the first work to combine qualitative preferences with ftcontains("good condition") < 2000
query rewriting rules that go beyond those proposed in [14]. &ftcontains("low mileage")
Rules in [14] are defined in a logic-based language and are
of the form H ÷- B where H and B denote the head Scoping Rules (SRs)
and the body of the rule resp. and the expression in the Ql:ifpc(car, description)&ftcontains(description,"lowmileage")
head of the rule must be replaced with the query expressed then remove ftcontains(car, "good condition")
in the body of the rule. This language cannot capture the 2: ifpc(car, description) &ftcontains(description,"good condition")
predicates that we support in our work (see Section 3). Fur- then addftcontains(description, "american")
thermore, our scoping rules can relax, tighten or simply

(3: ifpc(car, description) &ftcontains(description, "good condition")
t o o c g e n a n y then removeftcontains(description, "low mileage")

modify the query by dropping, adding and replacing respec-
tively potentially complex query predicates. Our ordering Ordering Rules (ORs)
rules fall into the category of qualitative preferences, and as

' srWl: x. tag=car & y. tag=car & x. color=red & y. color c>red * x (Xyin [9, 12] they define a partial order between XML nodes jT2:x.tag=car & y.tag=car &x.mileage <y.mileage y
of the same type. In contrast to these works, we are the cr3: x. tag=car & y. tag=car & x. make =y. make & x. hp >y. hp x V y
first to address ambiguity of ordering rules. Furthermore, jr4: x. tag=car & y. tag=car &ftcontains(x, "best bid") 0- x D Y
none of these works proposes efficient topk processing that r5: x.tag=car & y.tag=car &ftcontains(x, "NYC") w x X y
considers both answer scores and user ordering rules. Figure 2. TPQ, SRs and ORs for the running

3 Class of Queries and User Profile example

The XQuery Full-Text family of languages [6, 21] aug- We model a user profile using two orthogonal and com-
ment keyword search with two components: (i) full-text plementary components. First, we use Scoping Rules (SR)
predicates such as proximity and order between keywords to let the user change the scope of her query by broaden-
and (ii) path conditions which narrow the search scope. ing/narrowing the search by relaxing tightening query pred-
We abstract the core of such queries using extended tree icates. E.g., a parent-child relationship may be relaxed to
pattern queries. A tree pattern query (TPQ) [2] is a pair ancestor-descendant or a leaf node may be dropped or a
Q = (N, E), where (N, E) is a rooted tree, with nodes in new predicate added [3, 19]. Examples of SRs are given
N labeled by tags, and with E = E, U Ed consisting ofpc- in Fig. 2.
edges (EJ) and ad-edges (Ed). A distinguished node in N Second, we use Ordering Rules (OR) to specify how to
corresponds to the answer element. Each edge e(x, Y) C E rank answers obtained from the system. This allows the user
can be seen as a structural predicate saying y must be a to override the system's default ranking criteria and express
child (resp., descendant) of x. We extend TPQs for query- her preferences for answers. Examples of ORs are given in
ing XML data together with free text: we assume that each Fig. 2.
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3.1 Scoping Rules C & pref Rel(x.attr, y.attr) -) x C_ y (3)

There are two kinds of SRs (see Fig. 2). Narrowing the where:
search is accomplished by add rules which restrict the user 1. C is a conjunction of conditions on x and y that equate
query by adding predicates. Broadening the search is ac- their common properties (we call C the common conditions)
complished by either delete rules which remove existing and c is a constant. An example of common condition on x
query predicates or by replace rules which replace exist- and y in rule w3 is that x and y are both cars with the same
ing query predicates by weaker ones. An add/delete rule make.
is of the form if (condition) then (action, conclusion) 2. relOp is one of the relops {<, >} (e.g., x.mileage <
where: (i) condition is either a conjunction of structural y.mileage) and
and constraint predicates, or the value true; (ii) action is 3. prefRel is a binary relation on the domain of x.attr
one of add and delete and finally (iii) conclusion is a con- (y.attr) which is a strict partial order, e.g., a partial ordering
junction of structural and constraint predicates. We as- on colors.
sume the conjunction of structural and constraint predicates We require relOp to be one of <, > since we want -C to
forms a connected graph so that after the rule is applied to be a strict partial order. E.g., the rule w3 in Fig. 2 says be-
a TPQ, what results is still a TPQ. A replace rule is of the tween cars of the same make, those with higher horsepower
form: if (condition) then replace E with E' where as are preferred.
previously, condition, E and E' are conjunctions of predi- The general form of keyword-based ORs (KOR) is
cates that form a connected graph. C & ftcontains (x, "k") -) x -C y, where C are the com-

The intuitive semantics of an add/delete rule are the fol- mon conditions as before. It says between answers x and
lowing: if a user query Q subsumes the condition of a rule, y, x is preferred to y provided it contains an occurrence of
then apply the conclusion of that rule to the query as spec- the keyword k. E.g., the rule 7 4 in Fig. 2 says that among
ified by action. In the case of replace rule, the intuition is all cars, the user prefers those that contain an occurrence of
the following: if a user query Q subsumes the condition of "best bid" while rule 7F5 says that among all cars, the user
the rule, then replace E, if present in the query, with E'. prefers those that contain an occurrence of "NYC".

For the subsumption checks, we can use the well-
known XPath containment algorithms (e.g., see [2, 18]). 3.3 Answer Ranking
In general, the application order of SRs might be sig- Each query answer acquires a score based on its query
nificant. E.g., consider rules pi and p2 in Fig. 2. match. It also gets a KOR score based on any KORs in the
Both pi and p2 are applicable to the TPQ in the user profile. The VORs in the user profile may impose an
same figure. Applying p2 first will add the predicate ordering on the query answers independently of the above
ftcontains (description, "american"). Applying pi to the two. How are we then to order answers? We consider two
resultremovesftcontaimns(description, "good condition"). possibilities. The order /, V, S indicates that we order an-
However, applying pi first renders p2 inapplicable. Thus, swers by their KOR scores first and then based on the VOR
the orders P1, P2 and P2, P1 yield different results. The user preferences. When two answers tie on their KOR score and
profile can associate a priority with SRs, thus forcing a fixed their VOR properties, we order them by query score. The
order of rule application, making the semantics of a set of other order we consider is V, , S.
SRs well defined.

4 Problems Studied
3.2 Ordering Rules

Our goal is to assist the user in enhancing her query an-
ORs are of two kinds: value-based and keyword- swering experience in searching XML documents. We have

based. A value-based OR (VOR) specifies that a user proposed two complementary components for configuring
might prefer those answers satisfying a specific property an effective user profile: (i) the scoping rules (SRs) and (ii)
to other answers, where the property is the value of an at- the value-based and keyword-based ordering rules (ORs).
tribute/element. E.g., in doing a car search, the user may Given a set of SRs E and a query Q, the intended effect
prefer red cars to others (illustrated by Wi in Fig. 2). More of SRs is that rules in E should be used to rewrite Q be-
generally, the user may have her own preference relation on fore it is evaluated. At the same time, the user should not
colors, in general, a partial order. 7 2 is another example be penalized for having configured a profile. If there are
where the user indicates a preference for cars with a lower few or no answers satisfying the rewritten query, we should
mileage. still consider answers satisfying the original query. Thus,
A value-based OR can have one of the following forms: query answering w.r.t. a set of SRs really entails evaluat-

ing a flock of related queries. The first problem we study
C & x.attr = c & y.attr 7y c x Y (1) is how to pin down this query flock exactly. This is com-

C & x.attr relOp y.attr - x C y (2) plicated by the fact that sometimes rules may conflict with
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each other: applying a rule may render another rule inap- Q,pI(Q),p2(pI(Q)), ...P...,P(Pn-I( (pI(Q)), where we
plicable. We would like to define the exact semantics of assume that the order of rule application imposed by the
answering a query in the presence of SRs, with an emphasis priorities is P1, ..., Pn. The idea is that all the queries in the
on topk answers. query flock must be evaluated and answers ranked accord-

Second, the value-based ORs may sometimes result in ing to the ORs.
ambiguity. Intuitively, this happens whenever there is a pair
of answers x, y such that x is preferable to y according to 5.2 Ambiguity of Value-based ORs
some ORs and y is preferable to x according to some others. Consider the value-based ORs Wi and 72 in Fig. 2 ex-
We would like to have an efficient algorithm for detecting pressing preferences among cars. The rules appear quite
ambiguity of value-based ORs and a means of resolving it. reasonable. However, consider a pair of cars c, d such that

Suppose we have a user profile H = (Z,, O,,Ok)'with c has color red, but a higher mileage than d. Then accord-
scoping rules E, value-based ORs O and keyword-based ing to w1, c -- d, while according to w2, d -- c. Thus,
ORs Ok Let Q be a TPQ. The third problem we study is there are database instances where the intended preference
to develop efficient query evaluation strategies for Q in the -among elements is not clear. We consider such ORs "am-
presence of H, with an emphasis on topk answers. biguous". More precisely, a set of value-based ORs O, is
5 Static Analysis ambiguous provided there is a database instance D and a

The first two problems from the previous section are pair of elements e, f e D such that D U O is inconsis-
studied in the next two subsections. tent. Notice that if O is ambiguous, it does not mean 0,

itself is inconsistent. E.g., if we have a database D without
5.1 Scoping Rules and Query Flocks any red cars, or a database D where all red cars have a lower

The main issue that arises in rewriting a query w.r.t. a set mileage than other cars, then O U D is indeed consistent.
of SRs is that one rule's application may render another rule We say O is unambiguous if it is not ambiguous. Intu-
inapplicable. We say that a rule p is applicable to a query itively, it means no matter which database D we consider,
Q if the condition in p is subsumed by Q. In Section 3, we O, U D is consistent, i.e., the preference among elements in
have seen that different order of applying SRs to a query can D is precisely defined by O,
result in different rewritten queries. A second issue that can It is important to detect whether a set of value-based ORs
arise is that a rule may "conflict" with another. For an SR is ambiguous and if so have the user assign priorities to
p and a query Q, we denote by p(Q) the result of applying ORs to make them unambiguous. We discuss an algorithm
p to Q. Given a set of SRs and a query Q, we say a rule for dealing with ambiguity next. Denote a value-based
p1 conflicts with p2 w.r.t. Q provided: (i) both PI, p2 are OR as local(x) & local(y) & comp(x, y) -- x -C y, where
applicable to Q, and (ii) p2 is not applicable to p1(Q). E.g., loca (x) denotes constraints involving only variable x (e.g.,
consider the query and SRs in Fig. 2. Both p1 and p2 are x.tag = car, x.color = red, etc.) and comp(x, y) de-
applicable to the query as it subsumes their conditions. p1 notes constraints involving both x and y (e.g., x.mileage <
conflicts with P2 since P2 is not applicable to the result of y.mileage). We rename variables if necessary so different
applying p1 to the query. ORs use disjoint sets of variables, to avoid confusion.

Conflict among SRs can be captured using a directed Let locaI*(x) (resp., comp*(X, y)) denote the set of con-
graph where each node is an SR. There is an arc (pi, pj) straints involving only x (resp., both x and y) that are
iff pi conflicts with pj. If this conflict graph is acyclic, then implied by local(x) & local(y) & comp(x, y). E.g., from
we can topologically sort the nodes and apply the SRs to a x.color = red & y.color 7y red & y.hp = 200 & x.hp <
query in the topological sort order. y.hp, we can infer local*(x) = x.color = red & x.hp <

However, there may be cycles in the conflict graph. E.g., 200 and comp*(X, y) = x.hp < y.hp & x.color 7y y.color.
p1 and p3 in Fig. 2 conflict with each other. To mitigate this Let wi=local(xi) & local(yi) & comp(xi, yi) -) xzi - yi,
problem, we require the user to assign priorities to rules. i = 1, 2 be a pair of rules. We say that variables yi
Given that different order of rule application may result in and x2 are compatible provided the conjunction of con-
different rewritten queries, we believe it's important for the straints locaI*(yi) & locaI*(X2) & x2 = yi is logically con-
user to have a say in which order is used. Rule priorities sistent. E.g., revisit wrI: x.tag - car & y.tag = car&
resolve the problem of conflict cycles by forcing a specific x.color = red& y.color 7y red -x -- y and 72: u.tag =

order of rule application. We henceforth assume either the car& v.tag = car& u.mileage < v.mileage -) u C-- v.
set of SRs is conflict-free or that there is a user assigned The variables y and u are compatible since local*(y)
priority forcing a specific order of rule application. Iocal(y) is y.tag = car& y.color 7y red and local*(u)

Given a query Q and a set of SRs Z, possibly local(u) is u.tag = car. The conjunction y.tag
together with rule priorities, the query flock associ- car & y.color 7y red&u.tag = car& y = u is obvi-
ated with Q and E consists of the family of queries ously consistent. Definea constraint graphG(O) fora set
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of value-based ORs O as follows. Its nodes are the vari- and 75 for our running example query from Fig. 2. For
ables occurring in the rules O. Whenever x -C y appears query plans, since the distinguished node (car in our ex-
on the right-hand-side of a rule, G has an arc (X, y) labeled ample) is the one being topk-pruned, we wanted to choose
-C. Whenever x, y are variables appearing in different rules plans which facilitate this pruning and allow the distin-
and are compatible, G has an undirected edge {X, y} la- guished node bindings to be pipelined throughout. Two
beled =. By an alternating cycle we mean a cycle of the such (equivalent) plans are given in Fig. 4. We first
form (vI, Vk,vI), k > 2, k an even number, such that: overview Plan ] and defer the discussion on Plan 2 for later.
(i) the edges (vi, vi+±) are directed arcs labeled -C for odd For both plans, notice that joins with keywords are score
i and (ii) the edges {vi, vi+ } are undirected edges labeled contributors (e.g., ftcontains("good condition")) while
= for even i, and (iii) the edge (vk, vI) is undirected and is other joins aren't (e.g., the structural semijoin between cars
labeled =. We have the following result. and price).

Lemma 5.1 (Ambiguity): Let O, be a set of value- Plan ] starts by evaluating the user query (cars in good
based ORs and G(O,) the associated constraint graph. condition and costing less than $2000), then it enforces

Then O is ambiguous iffC contains an alternating cycle, the SRs P2 and p3 by using an outer-join which makes
"american" and "low mileage" optional. The outer-join en-

Using a straightforward adaptation of depth-first search, sures american cars with low mileage as well as other cars
we can readily detect ambiguity in time O(#edges). Sup- are captured, and assigns a higher score to american, low
pose a set of value-based ORs defined by a user is ambigu- mileage cars.
ous. Then by assigning a priority to the rules, alternating In order to enforce ORs in the plan, we introduce two
cycles can be broken. E.g., the rules {7rI, 72 } form an am- new operators: vor for value-based ORs and kor for
biguous set. The reader can easily check that y, u are com- keyword-based ones. Answers are then sorted by /, V, S.
patible (shown above) and that v, x are compatible as well. Finally, the last operator, topkPrune selects the top best
This creates an alternating cycle in the constraint graph. It answers and prunes the remaining ones. Additionally, the
results in ambiguity since if we have a red car with high sort operator needs to sort an input list parametrically, i.e.,
mileage and a non-red car with low mileage, the intended by /, V, S or by some other order. Fig. 3 summarizes the
order is not clear. The alternating cycle and hence the am- new operations in the algebra.
biguity can be broken if we assign, e.g., priority I to 72 and A typical optimization is to prune intermediate answers
2 to wFl. Intuitively, this means low mileage cars preferred that will not make it to the topk result as early as possible
to high mileage cars. All else being equal, red cars are pre- in the plan. In the case where no user profile is being en-
ferred to non-red ones. forced, query answers need to be returned ranked by their

6 Query Plan Generation and Evaluation query score S. Early pruning can be achieved by enhancing
the topkPrune operation as given in Algorithm 1. This is in

Invelopthectio,e giv anRoverve to query santics the same spirit as traditional topk pruning [8, 10, 17]. This
develop a techniquer "OR-aware" algorithm is very simple and is based on two key points: (i)
a summary of query evaluation, maintaining a list of current top k answers, topkList, and,

6.1 Overview of Query Semantics (ii) computing a score bound query-scorebound, which rep-
Recall that given a query Q and a set of SRs and ORs, resents the maximum score that could be acquired by an

we want to enforce relevant SRs in Q and return query an- intermediate answer a in the remaining parts of the query
swers ranked by V (score from value-based ORs), /C (score plan. If the score of an answer a, augmented with the max-

from keyword-based ORs), S (query score) or /, V, S. We imum score bound, does not exceed the score of the current
will focus on one ranking order /, V, S without loss of kth answer, that answer can be safely pruned since it will
generality, never make it to the topk final answers. Otherwise, if the

SRs are enforced by conceptually rewriting the query us- score of a exceeds the score of kth, the topk list is updated
ing the SRs. Recall, that SR rules may correspond to relax- with a.
ation or tightening. A key contribution is that we show SRs Algorithm 1 does not account for OR-contributed scores,
can be enforced by encoding the query flock into a single i.e., /, nor for value-based ORs, i.e., V. As such it is ap-
query plan, without requiring actual rewriting. ORs are en- plicable only when the (query) plan contains no kor's or
forced using new operations defined in the next section. The vor's. Intuitively, in our running example, red cars are pre-
result of a query is a list of answers ranked by c, V, S. ferred to non-red cars (w1I). Moreover, if a car is offered to

the best bidder (74) and it is located in NYC (75), then it
6.2 Algebra should be ranked higher than another car which is in a good

For ease of exposition, we consider two SRs, p2 and p3, condition and has low mileage but does not satisfy the loca-
one value-based OR, -rT and two keyword-based ORs, 174 tion and bidding preferences. In Algorithm 1, topkPrune is
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Operator Description

vor,, (R) applies a value-based OR by augmenting current answers with their OR value

kor,. (R) applies a keyword-based OR by modifying the keyword-based OR score value of current answers
topkPrune (R) applied on sorted input, returns a topkList containing the topk answers based on current sorting condition
sortparam(R) sorts input list R based on parameters param.

Figure 3. The Algebra

Algorithm 1 topkPrune using S only this case. The key intuition here is to use the same pruning
Require: topkList, intermediate answer a, query-scorebound condition on K as the one used for S and account for the
Ensure: top k answers ranked by query score S precedence of K over S in ranking query answers.

1: if (a.S + query-scorebound< kth.S) then
2: prune a; Algorithm 2 topkPrune using V and S
3: else
4: if (a.S > kth.S) then Require: topkList, intermediate answer aEnsure: top k answers ranked by V, S
5: insert a in topkList (at the right place); 1: if (a ==v kth) then
6: kth answer is no longer in topkList 2: apply Algorithm 1
7: keep kth answer in the flow 3: else
8: else 4: if (kth -Cv a) then
9: keep a in the flow 5: prune a;

10: end if 6: else
11: end if 7: if (a -Cv kth) then

8: insert a in topkList (at the right place)
9: kth answer is no longer in topkList

not aware of the two ORs 74 and 7F5 as it only uses the query 10: keep kth answer in the flow
score S to decide which answers to prune. Thus, it may 11: else
prune cars satisfying ORs. Therefore, in order to enable the 12: if (kth and a are incomparable w.r.t. -'<v) then
application of topkPrune anywhere in the query plan, its 13: apply Algorithm 1
definition needs to be modified to become OR-aware. We 14: end if
are now ready to describe our pruning algorithms, in partic- 15: end if
ular, the non-trivial interaction between enforcing ORs and 16: end if
topk pruning. 17: end if

6.3 Pruning Algorithms Algorithm 3 uses the same pruning principle as Al-

In order to make topkPrune OR-aware, we need to gorithm 1 and augments Algorithm 2 to make sure that
modify it in two ways. Algorithm 2, shows how value- keyword-based ORs take precedence over value-based ORs
based ORs such as wFl, are taken into account in pushing and over query scores. The principle used in Algorithm 3
topkPrune down a query plan when the query does not is to compute a maximum score bound as a combination
contain keyword-based ORs. We use the notation a --v of the maximum scores that might be contributed by the
kth to indicate that answer a has an OR value that is prefer- remaining keyword-based ORs. More precisely, the oper-
able to that of kth answer (e.g., a is a red car while kth ation topkPrunel applied right before kor14 in Plan 2 in
is not). Similarly, a ==v, kth means their OR value is Fig. 4 uses a kor-scorebound which is the sum of the highest
equally preferable (e.g., both are red cars). We say a and scores contributed by both w4 and 7r5 while the topkPrune2
kth are incomparable w.r.t. -<v if they are incomparable operation applied right before kor,5 uses a kor-scorebound
w.r.t. the partial order defined by the value-based OR. equal to the highest score contributed by kor,5 only. Note

Given an intermediate answer a that is being considered that in order to generate Plan 2, other rewritings are needed
for pruning and the current kth answer kth, Algorithm 2 such as pushing selections and commuting topkPrune and
augments Algorithm 1 by enabling its pruning routine when join operations.
a and kth share the same VOR value, or when kth has an 64 Query Evaluation Algorithm
OR value that is incomparable to that of a. Finally, in the
case where a or kth has an OR value that is preferable, the A core of our contribution is the pruning algorithms pre-
appropriate pruning takes place. sented in the previous section. We summarize here how
We are now ready to describe the complete version of all our algorithms fit together and some key points that

topkPrune. This version accounts for the presence of will be explored in Section 7. We rely on inverted indices
keyword-based and value-based ORs. Algorithm 3 shows on keywords and on an index per distinct tag. We im-
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Algorithm 3 topkPrune using /, V, S the INEX document collection for an empirical evaluation
Require: topkList, intermediate answer a of our approach, and the XMark data to show performance
Ensure: top k answers ranked by V, IC, S results for the different topkPrune algorithms.

1: if (kor-scorebound == 0) then
2: if (a./C == kth./C) then 7.1 Effectiveness on INEX Collection
3: apply Algorithm 2
4: end if The objective of this experiment was to verify the effec-
5: else tiveness of our approach in a real world scenario, for which
6: if (a./C + kor-scorebound < kth.lC) then we chose the INEX collection. The INEX collection con-
7: prune a; sists of full articles from IEEE Computer Society journals
8: else and conference proceedings covering a range of topics in9: replace kth answer with a in topkList the field of computer science. INEX is an initiative whose10: kth answer is no longer in topkList aim is to provide means, in the form of a large XML test

12: end if collection and appropriate scoring methods, for the evalua-
13: end if tion of XML retrieval systems. The participating organiza-

tions create topics (i.e. queries), perform retrieval runs and
topkPrune provide relevance assessments.

3 The INEX topics consider either content only (i.e.,
topkPrue or

Plan 1
r Plano2keywords) or content and structure. A content and structure

PlanI
sort Plantopic consists of a NEXI [20] query, an explanation of

kor5 =p< P<ftcontains the requested information in plain English, and finallyI "~~~~~~~~~~~~~~~~~~~~~~~~t
kor \4 /\ a narrative that describes the criteria used by the INEX

7r4 ~~~~kor p< desciption

rr5 ftcontains american assessors to determine whether an answer to the query isl topkPrune2dtkP .idcption\ relevant. Consider for example the INEX topic below:

-K =p; mileage < inex-topic topic-id "131" query-type "CAS" >
-KZ `

/ \< title > //article[about(.//au, "JiaweiHan")]
Xftcontains kor4 X ftontains| //abs[about(]., "data mining")] < /title >

=K Ades.rip)tio\n Ie description\ < description > We are looking for the abstracts of theKVp1 good documents about data mining and written by Jiawei Han.
so swdescription \ I ~~~~~~~~~~~~conditionK K31Rftcontal.ns g or'i < /description >

d.._iptionK < narrative > To be relevant, the component has to be
>2000 g < the abstracts written by Jiawei Han about"data mining"

> 2000 Any topics of data mining(e.g. association rules,
data cube etc.) should beconsidered as relevant.

< /narrative >< /inex-topic >
Figure 4. Equivalent Query Plans

According to the narrative of the topic, an abstract is rel-
evant to the query if it contains keywords related to data

plemented indexed nested loop joins. Joins are pipelined. mining (such as association rules, knowledge discovery,
The vor and kor operations are implemented as joins and data cube, etc.). From this, one can derive the following
outer-joins respectively. Joins involving query keywords or keyword-based OR:
keyword-based ORs contribute to the score of their output. if (x.tag = abs & y.tag = abs & (ftcontains (x, " data cube")
The topk list is maintained by the topkPrune operation. &ftcontains (x, "association rule")
When the input to topkPrune is sorted, additional pruning dftcontais (x, "data mining"))) then x -: y
can be achieved. More precisely, given a sorted input to This is just a shorthand for three ORs containing one
topkPrune, if an intermediate answer is to be pruned then of the three ftcontains predicates. An INEX assessment
there is no need to produce the remaining answers, as they records for a given topic and a given IEEE article (docu-
will be probably inferior. This bulk pruning may result in ment), the degree of relevance of the document component
important savings which make up for the overhead of en- to the INEX topic. A component is judged on two dimen-
forcing SRs and ORs to achieve query personalization. sions: relevance and coverage. Relevance judges whether

7 Experiments the component contains information relevant to the query
7Experiments subject and coverage describes how much of the document
We implemented PIMENTO as a collection of Java component is relevant to the query subject.

classes. We performed experiments on a 1.6GHz Pentium We experimented with 8 INEX topics to examine
PC with 512MB of RAM under Fedora Core 3. We used whether we could capture the narrative of the topic in terms

1-4244-0803-2/07/$20.00 ©)2007 IEEE. 913



of our scoping and keyword-based ORs. We did not con- creased in the cases in which a node that was marginally rel-
sider thesauri or ontologies to expand the set of keywords evant w.r.t the query and keywords in SRs, became highly
included in the query. We considered stemming and upper- relevant because it was containing relaxed forms of those
case/lower-case options for the query keywords. We fo- keywords. In this case, it made the topk answers by remov-
cused on topics that request XML nodes that are descen- ing some other node that was containing exactly the query
dants of article sections. A component can be deemed irrel- keywords. After this empirical evaluation, one can conclude
evant, marginally relevant or highly irrelevant. We consider that we need to consider weights for our SRs and incorpo-
the components of the document whose relevance is not ex- rate those weights when the query score is computed.
plicitly reported as irrelevant. In the majority of the topics
the nodes that are deemed as relevant by the assessor are not 7.2 Performance results
only the ones requested by the query (for example, a topic
requests paragraphs containing a certain keyword, but in the This section studies the performance of early pruning in
assessment article figures are also returned as relevant). For the presence of keyword-based ORs. In particular, we ob-
this, we included distinguished nodes other than the ones served that pushing topkPrune in the plan does not always
requested by the query. pay off due to the distribution of scores contributed by each
We compared the answers obtained by applying the keyword-based OR.

scoping rules and the keyword-based ORs, to the answers
deemed relevant by an INEX assessment. For a given topic Query Q: ad(person,business) &ftcontains(business, "Yes")
and assessment, we measured how many of the XML nodes
that were deemed relevant in the assessment we missed Tr1: x. tag=person & y. tag=person & ftcontains(x, "male") t- x><y
(precision) and how many more XML nodes we retrieved cr2: x. tag=person & y. tag=person & ftcontains(x, "United States") - x < Y
(recall). We considered the best 5 answers for each XML jT3: x. tag=person & y. tag=person & ftcontains(x, "College") ,- x X y
element type that was requested by the query. Tr4: x. tag=person & y. tag=person & ftcontains(x, "Phoenix") P x (X Y

Table 1 shows the precision and the recall results for the 7r5: x. tag=person & y. tag=person & x.age =33 & yage <>33 -- (X y

INEX topics that we experimented with.
Figure 5. XMark Query Q

Precision Recall
Topic Missed Out of Retrieved Instead Of
130 0 7 16 7 160
13] 1 6 13 6 140-
132 3 12 16 12
140 6 20 18 20 120
141 0 5 17 5 14iooE
142 1 8 14 8 _ 10
145 0 6 15 6 E
151 0 6 11 6 Du60

Table 1. INEX results 4
20

One can observe that we achieve rather good precision o
results. On the other hand, we retrieve more document com- 101K 212K 468K 571K 823K iM 5.7M 10M

ponents than the ones included in the INEX assessment, Document Size
leading to poor recall results. In average, it was sufficient *#KORs lE #KORs 2E #KORs 3 E #KORs 4
to get the 5 best results for each XML node type that we
considered in order to get the relevant nodes and have a rel- Figure 6. Query time for PushtopKPrune, for
atively good recall ratio. increasing number of KORs and increasing

Nevertheless, we observed that the components retrieved document size
by applying the SRs and ORs which are not included in the
INEX assessment, have a non-negligible score for the key-
words of the query and the narrative. As a consequence, we We measure the performance of three plans: Naivetop-
are not sure whether these retrieved elements were consid- kPrune (Ntkp) where topkPrune is applied at the end of
ered as irrelevant by the author of the assessment, or were the plan, InterleavetopkPrune (ILtpk) where topkPrune
simply ignored. Another interesting observation that we is applied after each application of a KOR and, Pushtop-
made was that when we applied some form of relaxation KPrune (Ptkp) where topkPrune is pushed all the way the
(like stemming, or upper/lower case), then the precision de- plan. The query and ORs we are using are reported in Fig. 5.
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The first experiment is reported in Fig. 6. We used 8 Conclusion
XMark documents of increasing size. The experiment We presented a novel approach toXML search that lever-
shows that PushtopKPrune scales with an increasing doc- ages user information to return more relevant query an-
ument size and an increasing number of KORs (1 to 4). In swers. This approach is based on a formalization of user
particular, the difference in query response time between a profiles in terms of scoping rules which are used to rewrite
1MB document and a 5.7MB document is sub-linear. an input query, and of ordering rules which are combined

with query scoring to customize the ranking of query an-Fig. 7 reports the result of running four equivalent plans swrtopeicues.Wsh edhaenriguerr-
for the query in Fig. 5 on a 10MB document. The main ob- .
servation is that pushing topkPrune all the way down the files yields higher precision and recall on INEX queries and

we showed on XMark that personalization does not com-plan (PushtopKPrune) saves computation while applying poieqeyefcec.W nedt xlr hdao
it after each keyword-based OR (InterleavetopkPrune) in- s , , *
duces too much overhead. In particular, in this case, most using weights to perform a fine-tunning of the application
of the pruning is done by the first topkPrune operation of the SRs as described in the experiments.
and the additional topkPrune operations do not pay off. References
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