
Preserving Scientific Data with XMLArch
∗

Peter Buneman James Cheney Carwyn Edwards Irini Fundulaki

{opb,jcheney,cedward1,efountou}@inf.ed.ac.uk

Abstract

Scientific databases are continuously updated either by adding new data or by deleting and/or modifying existing data.

It is fairly obvious that it is crucial to preserve historic versions of these databases so that researchers can access previous

findings to verify results or compare old data against new data and new theories. In this poster we will present XMLArch

that is used in archiving scientific data stored in relational or XML databases. XMLArch builds upon and extends previous

archiving techniques for hierarchical scientific data.

1 Introduction

The Web is now the most important means of publishing
scientific information. In particular, an increasing number

of scientific databases are published on the Web, allowing

scientists to exchange their research results. Most of these
databases are continuously updated either by adding new

data or by deleting and/or modifying existing data. In order

to preserve the scientific record it is crucial to keep versions
of these databases. Researchers should be able to validate

previous findings and to compare old data against new data

and new theories. It is reported in [3] that archiving is a
ubiquitous problem. Even databases that record ostensibly

fixed data, such as the results of experiments or simulations
have associated metadata, such as classification information

and annotation, and this metadata is almost always subject

to change.

In this paper we report on progress in constructing XM-
LArch, a generic system for archiving scientific data repre-

sented in XML. Based on this we have constructed a simple

tool that one can simply point at a relational database. It
extracts the data into a default XML format with associated

key information and then incorporates the XML into an in-

cremental archive. Not only does this preserve successive
versions of the database, it preserves them in a fashion that

is independent of any specific relational database manage-

ment system and makes possible temporal queries on data.

We use the IUPHAR pharmaceutical database [8] as

a concrete example to discuss the problems arising with

archiving real scientific data. IUPHAR (International Union
of Pharmacology) was founded in 1959 and one of its main

objectives is to foster international cooperation in pharma-

cology by promoting cooperation between societies that

represent pharmacology and related disciplines throughout
the world.

The IUPHAR database is continuously updated and it is

published two to three times a year. Archiving the different

versions of the database is crucial since it is widely cited
by researchers in their work who need to access its differ-

ent versions. The IUPHAR curators keep versions of the
database as database dumps (complete snapshots) and only

the latest version of the database is live. Such snapshots

unfortunately cannot easily be queried and it is extremely
cumbersome for one to access historic information, for ex-

ample the change history for a given receptor. It is also ev-

ident that there is a significant storage overhead in keeping
all the versions of the database.

Apart from this brute-force approach in archiving sci-

entific data, other approaches based on storing the differ-

ences (or deltas) between the different versions of text doc-
uments are also common. These approaches, that are based

on line-diff algorithms, clearly conserve space and scale

well. However, retrieving an older version might involve
either undoing or applying many deltas. In a similar man-

ner, finding how an element has evolved is also a problem

and may require complicated reasoning using the recorded
deltas. This is because the current approaches based on dif-

ferences do not preserve the structure of the database, hence
the identity of objects is lost.

In this poster we will demonstrate XMLArch that is used

in archiving scientific data stored in relational or XML

databases. The approach has been presented in [2] and
is based on the idea of merging all the database versions

into a single archive. It takes advantage of the hierarchi-

∗ This project has been supported in the Digital Curation Centre, which is funded in part by the EPSRC eScience core programme.

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

332



cal structure of the data and leverages the strong key struc-

tures which are common in the design of scientific datasets.
We will also present the benefits of combining archiving as

done in XMLArch and XML compression, using for the lat-

ter the state of the art techniques as surveyed in [5].

2 Archiving Scientific Data

In this section we give a high level overview of the

XMLArch archiver. As already mentioned, we choose the

archiving approach presented in [2]. This work dealt with
archiving scientific data that is stored in some hierarchical

data format (such as XML). In the case of relational data

we first need to extract the relational data into a hierarchical
format, in this case to XML. To do this we built a simple re-

lational database extraction tool, the output of which is then

passed into the archiving tool itself and optionally on to a
compressor.

The idea for the initial relational database extractor was

that it should not need to know anything at all about the se-
mantics of the domain data. To facilitate this the extractor

uses a simple schema-agnostic XML format to represent the

extracted relational data, making the implementation fairly
portable across different databases and domains. The only

input required is access to the relational database itself. The

motivation for this simplistic approach being that often the
person archiving a dataset has little or no prior experience

with the data (e.g. a Systems Administrator).

This point and extract behavior makes the extractor
behave very much like conventional relational database

backup tools. The eventual aim is that as much as possi-

ble of the relational information in the database will be pre-
served along with the XML snapshot. The theory being that

as long as the data is preserved along with some form of

structural description, possibly no more than a textual de-
scription of the relations, then someone in the future will

be able to reconstruct the relations around the data. Obvi-

ously if we can store as much of the schema as possible in
a standard form this reduces the work needed to recreate it.

One last aim was that the data extractor should not at-

tempt to do too much. Tools already exist from virtually
every relational database vendor to extract data into XML.

The extractor component of this project should be seen as a

simplest possible tool to use in order to get the data out of
the database in the absence of other more suitable options.

Once the relational data is extracted it is archived by the

XML archiver submodule of XMLArch using an approach
based on the one introduced in [2]. The archiving tech-

niques presented in that work stem from the requirements

and properties of scientific databases: first of all, much sci-
entific data is kept either in well-organized hierarchical data

formats, or it has an inherent hierarchical structure; second,

this hierarchically structured data usually has a key structure
which is explicit in the design. The key structure provides a

canonical identification for every part of the document, and

it is exactly this structure that is the basis of the technique

in [2].

In [2] the idea behind archiving is based on:

1. identifying the correspondence and changes between

two given versions based on keys and

2. merging the different versions using these keys in one
archive.

Identifying correspondences between versions using

keys is different from the diff-based ([7]) approaches used in
most of the existing tools. Diff-based approaches are based

on minimum edit distances between raw text lines and use

no information about the structure of the underlying data.
Our key based approach on the other hand attempts to unify

objects in different data versions based on their keyed iden-

tity. In this way, the archive can not only preserve the se-
mantic continuity between the elements but also efficiently

support queries on the history of those elements.

The merging of different versions into one archive is
again different from the diff-based approaches that store

the deltas from version to version independently. Occur-

rences of elements are identified using the key structure and
stored only once in the final archive. A sequence of num-

bers (timestamp) is used to record the sequence of versions

in which an element appears. This timestamp is conceptu-
ally stored with every element in the hierarchy. Taking ad-

vantage of the hierarchical nature of the data, the timestamp

in an element is stored only when it is different from that of
its parent. In this way, a fair amount of space overhead is

avoided by inheriting timestamps.

The final archive is stored as an XML document. XML
was chosen as the archive format for a number of reasons:

for one thing the hierarchical models used in many biolog-

ical databases are very similar to the XML data model. In
addition, XML is currently the most prevalent textual for-

mat for hierarchical data. Because of this there are a sig-

nificant number of commercial and open source tools that
are readily available to manipulate XML. Given that one

of the most important considerations when archiving is to
make sure that the data is retrievable at a later date, using a

widespread, human readable text-based format would seem

to increase the likelihood that the data will be accessible in
the future.

The final XML archive is then optionally passed into

standard text or XML compression tools to further reduce
the storage requirements of the archive. As the same prin-

ciples for archiving as noted in [2] are used by the XML

archiver, the same benefits in terms of storage overhead re-
ductions noted in that work apply. As was shown in [2]

the resulting output is often particularly well suited to XML

specific compressors such as XMill [9]. This is unsur-
prising given the hierarchical models underlying the source

databases and is supported by the findings of [4].

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

333



field

name

receptor_id 2179

name

chapters

name

receptors

record, {field[@name=chapter_id]=1274} record, {field[@name=receptor_id]=2179}

Version 1

dataset

field

name

chapter_id 1274

field

name

21:ADR:3:A1Dcode

table, {@name=chapters}

field

name

chapter_id 1274

field

Adrenoceptors

name

name

table, {@name=receptors}

name

receptors

record, {field[@name=chapter_id]=1274} record, {field[@name=receptor_id]=2179}

Version 2

field

name

chapter_id 1274

field

name

21:ADR:4:A2Acode

field

name

receptor_id 2181

dataset

field

name

chapter_id 1274

field

name

name

table, {@name=receptors}

name

chapters

Adrenoceptors

table, {@name=chapters}

Archived Versions 1 and 2

name

chapters

field

name

chapter_id 1274

field

table, {@name=receptors}

field

name

chapter_id 1274

field

name

code 21:ADR:3:A1D

dataset, t={1,2}

field

name

chapter_id 1274

field

name

code

field

name

receptor_id 2181 21:ADR:4:A2A

field

name

receptor_id 2179

record, {field[@name=chapter_id]=1274} name

chapters

record, {field[@name=receptor_id==2179}, t={1} record, {field[@name=receptor_id]=2181}, t={2}

name

Adrenoceptorsname

table, {@name=chapters}

Figure 1. Archived Versions of the IUPHAR database

3 An Example: Archiving the IUPHAR
database

In this section we present an example to demonstrate
how XMLArch is used to archive IUPHAR relational data.

To present our approach we use a simple example of

IUPHAR data.
We consider tables chapters and receptors shown be-

low (the primary keys for all tables are underlined).
The first stores the receptor families where each fam-

ily has a chapter id (primary key) and a name. Table

receptors stores the name and code of receptors. Attribute
receptor id is the primary key for the table and attribute

chapter id indicates the receptor family to which the re-

ceptor belongs to.

Source relational schema R:
chapters(chapter id, name)
receptors(receptor id, chapter id, name, code)

The XML DTD to which this data is published is shown
below:

1. <!ELEMENT dataset (table*)>
2. <!ELEMENT table (record*)>
3. <!ATTLIST table name #PCDATA>
4. <!ELEMENT record (field+)>
5. <!ELEMENT field #PCDATA>
6. <!ATTLIST field name #CDATA
7. keyfield (true|false) ’false’>

Element table stores information about a relational ta-

ble. Attribute name records the name of the table (line 3).

Each table element has one or more record elements (line
2) where such an element is defined for each tuple of the

corresponding relational table. A record element has one

or more field subelements (line 4). A field element is
defined for an attribute of the relational table with XML at-

tribute name to record the name of the relational attribute

(line 6). Attribute keyfield records whether the attribute
participates in the primary key of the relational table or not

(line 7).

In addition to this XML data, we also need a way to
identify the XML elements in the extracted XML document.

This is done by using the notion of XML keys introduced

in [1]. In this work an XML element is uniquely identified
by the values of a subset of its descendant elements.

For example, in our case a table element is uniquely

identified by its name attribute. A record element within

the table element defined for the relational table chapters
(i.e., the table element with value chapters for its name
attribute) is uniquely identified by the value of its field
subelement that corresponds to the relational attribute
chapter id . In a similar manner, a record element within

a table element that corresponds to the receptors relational

table is uniquely identified by the value of its field subele-
ment defined for the receptor id relational attribute. This

key information is defined by means of XPath [6] expres-
sions as advocated in [1]. In XMLArch the annotator com-

ponent, a sub component of the archiver, records with each

keyed element its XML key and value whenever applicable
(e.g. elements table and record). These key annotations

are used during the merging of a new version of the database

with the archived version to unify element identities.

We show in the upper part of Figure 1 two versions of
the database. The difference between Version 1 and Ver-

sion 2 is that receptor with receptor id equal to 2179 has

been deleted and receptor with receptor id equal to 2181
has been added.

The archived XML document is also shown in Figure 1.

One can observe that elements that exist in both versions are
stored only once (e.g., the table elements and the dataset
element). Notice that there is a timestamp (t = {1,2}) asso-

ciated with the dataset element that indicates that this ele-
ment (as well as all its descendants that do not have a times-

tamp) are present in both versions. Observe that the record

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

334



Figure 2. XMLArch Architecture

element deleted in the second version has a timestamp equal

to “1” (t = {1}) whereas the record element added in the

second version has timestamp equal to “2” (t={2}).

4 System Architecture

The architecture of the system is shown in Figure 2. The

Data Extractor is responsible for extracting the relational

data into the XML format discussed previously. This com-
ponent reads the schema of the database (tables and con-

straints such as primary keys) and the instances (i.e., tuples)

and exports the database in XML.

The exported data is then passed to the XML Archiver

that is responsible for creating the XML archive. This mod-
ule consists of the Key Annotator and Version Merger

submodules. The former is responsible for annotating each

XML element with its key, and the latter for merging the
latest XML archive (archive at time t) with the new version

to produce the archive at time t+1.

References

[1] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys

for XML. In WWW, 2001.

[2] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving

Scientific Data. TODS, 2004.

[3] The WWW Virtual Library of Cell Biology.

http://vlib.org/Science/Cell Biology/databases.shtml.

[4] J. Cheney. Compressing XML with Multiplexed Hierarchi-

cal Models. In In Proc. IEEE Data Compression Conference

(DCC), 2001.

[5] J. Cheney. An Empirical Evaluation of Simple DTD-

Conscious Compression Techniques. In WebDB, 2005.

[6] J. Clark and Steve DeRose. XML Path Language (XPath) 1.0.

W3C Recommendation, 1999. http://www.w3c.org/TR/xpath.

[7] J. W. Hunt and M. D. McIlroy. An algorithm for differential

file comparison. Technical Report CSTR #41, Bell Telephone

Laboratories, 1976.

[8] IUPHAR. Receptor Database.

http://www.iuphar-db.org.

[9] H. Liefke and D. Suciu. XMill: an Efficient Compressor for

XML Data. In SIGMOD, pages 153–164, 2000.

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

335


