
XML Subtree Queries: Specification
and Composition

Michael Benedikt and Irini Fundulaki

Bell Labs, Lucent Technologies, USA

Abstract. A frequent task encountered in XML processing is to fil-
ter an input document to produce a subdocument; that is, a document
whose root-to-leaf paths are root-to-leaf paths of the original document
and which inherits the tree structure of the original document. These
are what we mean by subtree queries, and while they are similar to
XPath filters, they cannot be naturally specified either in XPath or in
XQuery. Special-purpose subtree query languages provide a natural id-
iom for specifying this class of queries, but both composition and evalu-
ation are problematic. In this paper we show that for natural fragments
of XPath, the resulting subtree query languages are closed under compo-
sition. This closure property allows a sequence of subtree queries to be
rewritten as a single subtree query, which can then be evaluated either by
a subtree-query specific evaluator or via translation to XQuery. We pro-
vide a set of composition algorithms for each common XPath fragment
and discuss their complexity.

1 Introduction

In many aspects of data and document processing, one requires queries that
describe a subdocument (subtree) of the document on which the queries are eval-
uated. For instance, a data integration application might describe a view of mul-
tiple (virtual) XML documents into a single document by specifying subtrees
of the documents of each source to be merged; an access-control view might be
imposed on top of this, filtering out part of the resulting integrated document for
access control purposes, while an end-user query may ask for yet another subtree
of the filtered view. The ultimate result delivered to the end-user is logically the
composition of the three queries.

Motivation: Consider a source document D for the XMark [16] schema illus-
trated in Fig. 1 and suppose that a subscriber to this dataset is only permitted
to see the subtree of the original document that includes information about the
European region. This view is the result of query Q1, which evaluates the XPath
expression /site/regions/europe and closes the result set upwards and down-
wards. The result of this subtree query on document D is given in Fig. 1 (where
the returned nodes are marked in grey).

One group of users in the subscribing company is permitted to see only the
data about (i) the items that are not associated with a quantity, and (ii) the

G. Bierman and C. Koch (Eds.): DBPL 2005, LNCS 3774, pp. 138–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



XML Subtree Queries: Specification and Composition 139

item

quantity location descr

item

quantity location descr

item

quantity location descr

1 2 3Greece France United Statestext parlist parlist

holly walk ..

text

fragment pamper ..

text

pamper new ...

listitem listitem

site

regions

europe namerica

item

quantity location descr

item

quantity location descr

item

quantity location description

1 2 3Greece France United Statestext parlist parlist

holly walk ..

text

fragment pamper ..

text

pamper new ...

listitem listitem

site

regions

europe namerica

Fig. 1. XMark Document D and the subtree associated with Q1 for D

locations of items. This subdocument is returned by query Q2 that takes all
nodes above or below the result of XPath expression: //item[not(quantity)] |
//item/location. Finally, an end-user wants to obtain the subtree that contains
the items that have either a location or a description. This subdocument is
returned by evaluating query Q3, which takes the result of XPath expression
//item[location | descr] and closes the result set upwards and downwards.

For this family of queries, XQuery does not give a natural syntax. In fact,
XQuery does not, strictly speaking, allow the expression of subtree queries at
all, since in an XQuery result fresh node identifiers will always be generated.
Fig. 2 shows an XQuery expression that would mimic the subtree query Q2,
matching the intended result up to the renaming of node identifiers. Observe
that, even allowing a result that is correct only “up to node identifiers”, the
translation of XPath expressions used to specify subtree queries to the XQuery
representation of these subtree queries is not straightforward: in the presence of
union, we need to retain the order of the elements from the original document in
the output result, while a naive translation of the subtree query would result in
different parts of different components of the union being contiguously ordered in
the result. The complexity of the translation escalates for subtree queries based
on XPath with negation, upward axes and union.

It is fairly clear that one does not wish to write XQuery representations of
subtree queries directly. An obvious solution is to use the XPath expressions
themselves as the user syntax. The subtree query language is thus parameterized
by a fragment of XPath and converts an XPath nodeset query into a subtree
query that “filters” the input document by the XPath expression to return a
subdocument.

Subtree queries can be evaluated via conversion on top of an arbitrary XQuery
or XSLT processor. However, this “evaluation via translation” is unsatisfactory
in terms of query performance. Since subtree queries are analogous to XPath
expressions, it is natural that they be evaluated using processing techniques
similar to those used for XPath. In a generated XQuery expression as in Fig. 2,
however, the subtree nature of the query is hidden and cannot be exploited by
the XQuery processor.

The problem is compounded when one composes subtree queries. Suppose one
wishes to perform a user query like Q3 on a chain of views given by queries Q2



140 M. Benedikt and I. Fundulaki

for $a in doc(′xmark.xml′)/site[regions[europe[item[self :: ∗[not(quantity)] |
self :: ∗[quantity][location]]]]] return

< site >
{ for $b in $a/regions[europe[item[self :: ∗[not(quantity)] |

self :: ∗[quantity][location]]]] return
< regions >

{for $cin$b/europe[item[self :: ∗[not(quantity)]| self :: ∗[quantity][location]]]return
< europe >

{ for $d in $c/(child :: ∗[self : item[not(quantity)]],
child :: ∗[self :: item[quantity][location]]) return

if ($d[self :: item[not(quantity)]]) then $d else
if ($d[self :: item[quantity][location]]) then
< item > { for $e in $d/location return $e } < /item > else 1} }

< /europe > }
< /regions > }

< /site >

Fig. 2. XQuery representation for Q2

and Q1. For efficiency and security reasons, one might wish to send the com-
posed query Q3 ◦ Q2 ◦ Q1 to the source, instead of evaluating the queries within
the application or middleware. Following the “XQuery-translation approach” to
subtree queries outlined above, one would compose by translating each Qi to an
XQuery expression, use XQuery’s composition operator to obtain the composed
query, and evaluate with a general-purpose XQuery engine. But now the fact
that this composition is actually another subtree query is completely buried.
What we require, then, is a composition algorithm that works directly on the
XPath surface syntax of these subtree queries, generating a new subtree query
within the same language. The resulting queries could be evaluated either via a
special-purpose evaluator, or via translation to XQuery.

In this work, we deal with composition algorithms for subtree queries based
on fragments of XPath 1.0 [6]. We show that for natural fragments of XPath, the
resulting subtree query languages are closed under composition, and present the
associated composition algorithms. In [2] we present experimental evidence that
these composition algorithms provide benefits both when the composed queries
are evaluated with a special-purpose subtree query engine, and also when they
are translated to XQuery and evaluated with an off-the-shelf XQuery proces-
sor. Unlike for XQuery, composition algorithms for subtree queries are non-
trivial – indeed we will show that for some choices of the XPath fragment, the
corresponding subtree query language is not closed under composition at all.
This is because our subtree query languages have no explicit composition op-
erator; furthermore, since the XPath fragments we deal with are variable-free,
the standard method of composition by means of variable introduction and pro-
jection is not available1. Our algorithms make heavy use of both the subtree

1 Note that we do not deal with the compositionality of XPath location paths on the
same document, but of the corresponding subtree queries.



XML Subtree Queries: Specification and Composition 141

nature of the queries and the restrictions imposed by the different XPath frag-
ments.

Summarizing, the main contribution of the paper is a set of composition algo-
rithms for each variant of the subtree query language (depending on the XPath
fragment), which allow us to compose subtree queries to form new subtree queries
in the same language, and also allow the composition of a subtree query with an
XPath user query.

Although we study here a particular XPath-based subtree query language,
we believe our composition algorithms should be applicable to other contexts in
which XPath is used implicitly or explicitly to define subdocuments of documents
(e.g. [1, 5]).

Organization: Section 2 presents the framework for subtree queries and the
fragments of XPath we will focus on. Section 3 presents the composition algo-
rithms and discusses complexity results. Finally we conclude in Section 4.

Related Work: Subtree queries cannot be expressed faithfully in XQuery, but
they can be expressed in various XML update language proposals [17]; indeed,
our work can be thought of roughly as giving special-purpose composition and
evaluation algorithms for the “delete-only” subset of these languages. We know
of no work dealing with the problem of efficiently composing declarative XML
updates. Our framework for subtree queries was first introduced in [8]. In [15, 14]
a very restricted family of these queries was studied in the context of the Bell
Labs GUPster project. [14] presents translation methods for subtree queries
(from this restricted family) to XQuery queries and XSLT programs.

Our work on composition stems partially from an earlier study of closure prop-
erties of XPath [4]. That work studies closure under intersection for XPath using
the standard nodeset semantics – the emphasis is on proving/disproving closure
not on algorithms or complexity bounds. In this work we deal with composition
for the corresponding subtree query languages, and give effective algorithms,
upper bounds, and lower bounds. Although composition is quite different from
intersection (e.g. composition is not commutative), we believe that the basic
ideas here can be used to give effective algorithms and bounds for the intersec-
tion problem as well. To our knowledge, composition algorithms for XQuery have
been considered only in [7], where an algorithm is given for a much broader frag-
ment of XQuery. It is not presented stand-alone, but in conjunction with query
generation in a publishing setting. The algorithm of [7] would not preserve
the XPath-based sublanguages we give here. Not only are these sublanguages
easier to analyze and optimize than general XQuery, they are also much eas-
ier to evaluate – since our subtree queries are based on XPath 1.0, they can
be evaluated with linear time combined complexity [9]. Even in the presence
of data value comparisons, languages based on XPath 1.0 have low evaluation
complexity [10]. The fact that XPath 1.0 is variable-free leads to the low com-
plexity, but also makes the composition problem much more difficult than for
XPath 2.0.



142 M. Benedikt and I. Fundulaki

2 XPath-Based Subtree Queries

XPath: Subtree queries are based on XPath expressions, which describe the
nodes in the input document we wish to retain in the output. XPath expressions
are built up from an infinite set of labels (tags, names) Σ. The fragments of
XPath2 studied in this paper are all contained in the fragment denoted by X ↑

r, [ ],¬

that is syntactically defined as:

p ::= ε | ∅ | l | ∗ | // | .. | ..∗ | p/p | p | p | p[q]

where ε, ∅, l in the production rules above denote the empty path (‘.’ in XPath),
the empty set, and a name in Σ, respectively; ‘|’ and ‘/’ stand for union and
concatenation, ‘∗’ and ‘..’ for the child-axis and parent-axis, ‘//’ and ‘..∗’ for the
descendant-or-self-axis and ancestor-or-self-axis3, respectively; and finally, q in
p[q] is called a qualifier and defined by:

q ::= p | label = l | q and q′ | not(q)

where p is an X ↑
r, [ ],¬ expression and l is a name in Σ. All of the semantics of

these expressions are as usual in XPath (see, for example, [18, 6]).

XPath Fragments: We use the following notations for subclasses of the XPath
fragment X ↑

r, [ ],¬: all the fragments will include the subscript ‘[ ]’, to indicate that
the subclass allows qualifiers, where qualifiers always include q ::= p | label = l.

Subscript ‘r’ indicates support for recursion in the fragment (the descendant-
or-self ‘//’ and ancestor-or-self ‘..∗’ axes), superscript ‘↑’ denotes the support
for upward modality (the parent ‘..’ and the ancestor-or-self ‘..∗’ axes in the
case of subscript r) while the subscript ‘¬’ indicates that filters allow negation.

Thus the smallest class we consider is X[ ], which has only the child axis
and does not allow negation in filters. The classes Xr, [ ], X ↑

[ ], X[ ],¬ extend this
basic fragment with the descendant and the parent axes, and negation in filters,
respectively. Above these, we have the fragments Xr, [ ],¬ X ↑

r, [ ], and X ↑
[ ],¬ which

combine two of the three features. The relationship of these fragments is shown
in the left diagram of Fig. 3.

In [4] it is shown that X[ ] and X ↑
[ ] return the same node-sets when evaluated

on the root of a tree (root equivalence, which we will always use here by default).
It is also shown there that Xr, [ ] and X ↑

r, [ ] are equally expressive. By similar
means it can be shown that upward navigation can be removed from X ↑

[ ],¬, to
obtain an equivalent expression in X[ ],¬: this is discussed further in Section 3.4.
Thus, up to expressive equivalence, the fragments appear in the right diagram
in Fig. 3. In the figure, the fragments shown at the same vertex are equally
2 For syntactic convenience we permit nesting of unions in expressions, which is for-

bidden in XPath 1.0; in XPath 1.0 this would be simulated by rewriting these nested
unions as top level ones.

3 We introduce the notation ‘..∗’ for the ancestor-or-self axis here in the absence of an
abbreviated syntax for this in XPath 1.0.



XML Subtree Queries: Specification and Composition 143

X[ ]

X ↑[ ]

X ↑r,[ ]

X r,[ ]

X [ ],¬

X r,[ ],¬

X ↑[ ], ¬

X ↑r,[ ],¬

X[ ]  , X ↑[ ]

X r, [ ] , X ↑r, [ ] X ↑[ ], ¬ , X [ ],¬

X ↑ r, [ ], ¬

X r, [ ], ¬

Fig. 3. XPath fragments (left) and their relationship based on their expressive power
(right)

expressive. If an arrow connects two fragments F1 and F2, then F1 is strictly less
expressive than F2.

Semantics of Subtree Queries: We present here a framework for turning
XPath queries into subtree queries. Under the subtree semantics, the result of
the evaluation of an XPath expression q on a document D is document q(D)
(subdocument of D) obtained as follows:

1. evaluate q using the usual XPath semantics;
2. for each node n obtained from step 1, get its descendant and ancestor nodes

up to the root node of D;
3. finally, construct q(D) by removing all nodes of D that are not in the set of

nodes obtained from the previous step.

Note that the resulting document q(D) is a subdocument of D whose root-to-leaf
paths are a subset of the set of root-to-leaf paths of D and which inherits the
tree structure of D.

Subtree Query Notation: For two subdocuments D1 and D2 of D, D1 |D D2
is the subdocument whose nodes (edges) are the union of the nodes (edges) in
D1 and D2.

From this point on, when we write an XPath expression in this paper, we will
by default consider it as returning a document, using the subtree semantics. The
reader can thus think of subtree queries as particularly simple XML queries, with
a concise syntax. When we want to make clear whether an XPath expression E
is to be considered under the standard XPath semantics we write 〈E〉, and under
the subtree semantics we write 'E(. Similarly, we write 〈E〉(D) to denote the
result of evaluating E under the XPath semantics and 'E((D) to denote the
result of evaluating E on document D under the subtree semantics.

3 Composing Subtree Queries

For any XPath fragment F used to define the subtree queries, the subtree compo-
sition problem for that fragment can be defined as follows: given two expressions



144 M. Benedikt and I. Fundulaki

E1 and E2 in F , find a single subtree query E′ such that for any document D it
holds that:

'E′((D) = 'E1(('E2((D))

From this point on, we refer to expression E1 as the outer query and E2 as the
inner query (the former is evaluated on the result of the evaluation of the latter),
and use E1 ◦ E2 to denote the function satisfying the definition above.

Thus there is a variant of this problem for each XPath fragment; indeed, there
are many XPath fragments where no such E′ exists for such queries. Closure un-
der composition fails for tree patterns (see below); it also fails for XPath with
ancestor and descendant axes, but without qualifiers. Our goal is to give effi-
cient algorithms that solve the composition problems for important fragments
of XPath. We begin with a composition algorithm for tree patterns in Sec-
tion 3.1, extend this to unions of tree patterns in Section 3.2, and to Xr, [ ],¬

in Section 3.3. In Section 3.4 we show how these techniques extend to fragments
in our diagram with upward axes. A related problem is the composition of an
XPath query with a subtree query in which the outer query E1 and the desired
E′ are both interpreted under XPath semantics. The algorithms presented here
discuss the composition of subtree queries. We leave the simple extension to the
composition of XPath queries with subtree queries for the full paper.

3.1 Subtree Composition for Tree Patterns

As a step towards a composition algorithm for subtree queries based on XPath
without negation, we begin with a composition algorithm for tree patterns. The
algorithm is based on finding homomorphisms of the outer query into the inner
query (as done in query containment algorithms for conjunctive queries).

Tree Patterns: A tree pattern is a tree with labels on nodes and edges. Nodes
are labeled by names of Σ. Edges are either child edges labeled with ∗, or descen-
dant edges, labeled with //. There is also a set of selected nodes which denote
the nodes returned by the pattern. A special case are the unary tree patterns
(see [4, 3]) that have a single selected node. A general tree pattern Q is eval-
uated as follows: for each match of one of the patterns in Q, we return any of
the nodes labeled as the selected node. Tree patterns return nodesets, and can
be translated into XPath queries in Xr, [ ]. Thus we can consider them under the
subtree semantics as well. For two patterns P1 and P2, we write 'P1( = 'P2( to
mean these are equivalent under the subtree semantics.

We now note that tree patterns are not closed under composition: if one con-
siders the tree patterns E1=//listitem and E2=//parlist, then it is easy to see
that there is no tree pattern E′ for which 'E′((D) = 'E1(('E2((D)). Closure
under composition can be obtained by adding top-level union. A union of tree
patterns is a set of tree patterns, and similarly a union of unary tree patterns
is a set of unary tree patterns. Such a query returns the union of the result
of its component patterns. In [4] it is shown that unions of tree patterns with



XML Subtree Queries: Specification and Composition 145

descendant edges have exactly the same expressiveness as the XPath fragment
Xr, [ ] consisting of expressions built up with descendant and child axes, while
the XPath fragment X[ ] is equivalent to tree patterns with only child edges. Our
next goal will be to give a composition algorithm for unions of tree patterns (and
hence for Xr, [ ] and X[ ]).

We say that a unary tree pattern is a path pattern if all its nodes are linear-
ordered by the edge relation of the pattern and where the selected node is not
necessarily a leaf node. Path patterns P have the property that for all unary
tree patterns Q1, Q2, and for any document D:

'P (('Q1 | Q2((D)) = 'P (('Q1((D)) |D 'P (('Q2((D))

The equality follows because, according to subtree semantics, for some instance
D, if the witness of the selected node of P is in Qi(D), then so are the witnesses
of its ancestors and descendants in P . We will see that this gives a particularly
simple algorithm for the composition of a path pattern P with a unary tree
pattern Q.

Embeddings: Given a tree pattern Q, an expansion of Q is an extension Q′ of
the pattern with additional nodes, which must be either a) adjacent wildcard
nodes as descendants of selected nodes or b) additional wildcard nodes inserted
between two nodes, ancestors of selected nodes, that were connected in Q with
a descendant edge. We refer to the nodes in Q′ − Q as expansion nodes.

A pattern embedding from a path pattern P to a unary tree pattern Q is a
mapping m from all the nodes in P to some expansion Q′ of Q, where 1) the
range of m includes all the expansion nodes of Q′ 2) m preserves child edge
relationships from P to Q′, maps nodes related by descendant edges in P to
transitively related nodes in Q′, and maps the root of P to the root of Q′ 3)
the label of node n in P is consistent with that of m(n) (i.e. either they match,
or the label of either n or m(n) is the wildcard) 4) all nodes in the range must
be comparable to a selected node (i.e. be either ancestors or descendants of the
selected node).

Given m, P and Q, let m(P, Q) be the tree pattern obtained from Q′ by
adding, for every expansion node k in Q′ that is a wildcard such that m(n) = k,
the label of n. The selected node of m(P, Q) is (a) the selected node in Q, if m(n)
is an ancestor of the selected node in Q′, or (b) m(n), if m(n) is a child wildcard
expansion node in Q′. In the presence of a DTD, we can optimize using DTD-
based pruning: we can check whether any parent/child or ancestor/descendant
edge in m(P, Q) contradicts the dependency graph of the DTD (which can be
pre-computed), and discard m(P, Q) from the result if there is such a clash.

Example 1. Consider the unary tree pattern Q4 = /site/regions//item[quantity]
and the path pattern Q1 = /site/regions/europe given previously (they are both
shown as tree patterns in Fig. 4). A double line signifies a descendant edge, a single
line a child edge and the selected nodes are starred. To calculate the embedding
from Q1 to Q4, we expand Q4 to Q′

4 (given in Fig. 4). The dotted lines between the



146 M. Benedikt and I. Fundulaki

site

regions

europe*

site

regions

item*

quantity

Q4Q1

site

regions

europe*

site

regions

*

item*

Q1 Q4’

quantity

site

regions

europe

item*

quantity

Pattern m(Q1,Q4)

Fig. 4. Path pattern Q1 and unary tree pattern Q4 (left), the expansion Q′
4 of Q4 and

the embedding of Q1 into Q4 (middle) and the pattern m(Q1, Q4) (right)

nodes of Q1 and Q′
4 show the embedding from Q1 into Q4. The pattern m(Q1, Q4)

obtained from the embedding of the path pattern Q1 into the unary tree pattern
Q4 is illustrated in Fig. 4.

Lemma 1. Let P be a path pattern and Q =
⋃

Qi be a union of unary tree
patterns Qi. For any document D and node n in 'P (('Q((D)), there is some
pattern embedding m from P to Q and node n′ returned by m(P, Q), such that n
is either an ancestor or descendant of n′ in D. In particular P ◦ Q is the union
of m(P, Q) over all pattern embeddings m.

In the case where neither P nor Q contain descendant axes there is at most
one embedding m of P to each Qi which can be found in time linear in |P | +
|Qi| by proceeding top-down in parallel in P and Qi, where in Qi we proceed
down the path towards the selected node. We can be more efficient by noting
that to find embeddings of P into Qi, we care only about the query nodes in
the path to the selected node of Qi. Hence we can abstract away the subtrees
outside of this path (i.e. the filters associated with the nodes), and leave them as
additional annotations on the nodes of Qi, to be used only after the embedding
is found.

The algorithm runs in time bounded by the size of the number of embed-
dings of the outer query into the inner query. This number is exponential in
the worst case (e.g. bounded by min(2|outer|2|inner|, (2|inner|)|outer|), since the
embeddings are order-preserving). The following result shows that a blow-up is
unavoidable:

Proposition 1. For queries I and O, let F (I, O) denote the minimum size of
a tree pattern query expressing the composition O ◦ I, and let f(n) denote the
maximum of F (I, O) over I and O of size at most n. Then f(n) ∈ Ω(2%n/2&).

The proof is by considering the composition of outer query E1 =
//A1// . . . //An and inner query E2 = //B1// . . . //Bn where the Ai and Bj

are tags. It is easy to see that a tree pattern contained in E1 ◦ E2 can represent
only one interleaving of the B’s and A’s, hence a composition must include a
distinct pattern for each interleaving, and there are more than 2n of these. Note
that if n′ is the size of the queries, then n = n′/2.



XML Subtree Queries: Specification and Composition 147

3.2 Subtree Composition for Positive XPath

For P a general unary tree pattern, and Q =
⋃

Qi, one needs to deal with the
fact that distinct paths in P may be witnessed in distinct Qi. Hence we find
it convenient to first calculate the possible fusings of the inner query and then
look at embeddings into these fused patterns. The fusings of the inner queries
are represented as tree patterns with multiple selected nodes (recall that these
are interpreted semantically in the subtree languages by taking all root-to-leaf
paths through any of the selected nodes).

Example 2. Consider the union of tree patterns q = q1 | q2 (inner query) below
and the unary tree pattern p =/site/regions/europe/item[location]/descr/text.

q1 = /site/regions/europe/item[quantity]/location
q2 = /site/regions/europe/item/descr

One can observe that distinct paths in p are witnessed in distinct qi’s: location
sub-elements of item elements are returned by q1 and descr sub-elements are
returned by q2. The queries obtained by fusing q1 and q2 are:

qa =/site/(regions/europe/item[quantity]/location |regions/europe/item/descr)
qb = /site/regions/(europe/item[quantity]/location | europe/item/descr)
qc = /site/regions/europe/(item[quantity]/location | item/descr)
qd = /site/regions/europe/item[quantity]/(location | descr)

In general, a fusing of tree patterns P1 . . . Pn is determined by an equivalence
relation E on the underlying nodes in expansions P ′

1 . . . P ′
n of the patterns, such

that equivalent nodes have consistent labels, every equivalence class contains a
node in some Pi, and such that: if for two nodes n and n′ it holds that nEn′,
then the parent of n is E-equivalent to the parent of n′. The corresponding fusing
is obtained by identifying equivalent nodes and arranging node and edge labels
via the strictest node and edge relation represented in the equivalence class. The
selected nodes are the equivalence classes of selected nodes in any P ′

i . It can be
shown that the conditions above guarantee that the resulting quotient structure
is a tree pattern. The fusings between two patterns can be enumerated using a
top-down algorithm that finds all matches for the siblings of the root of one tree
with descendants of the root in another tree, and then recursively searches for
matches of the subtrees of these siblings. This can be extended to multiple pat-
terns by using the equation Fusings(F1 | F ) =

⋃
P∈Fusings(F ) Fusings(F1, P ).

We can trim the number of fusings by restricting to those that correspond to
some embedding of root-to-leaf paths from the outer query into nodes of the in-
ner query. Each such embedding generates an equivalence relation on the inner
query, by considering which nodes are mapped to by the same element of the
outer query.

The last restriction shows that when the outer query is a single tree pattern,
the size of the output of the composition algorithm can be bounded by the
number of functions taking root-to-leaf paths in the outer query to nodes in an



148 M. Benedikt and I. Fundulaki

expansion of the inner query. This in turn is bounded by (2|inner|)|outer|. In the
case that the outer query is a union of tree patterns with multiple components,
note that '(O1|O2) ◦ I((D) = '(O1 ◦ I)((D) |D '(O2 ◦ I)((D), so we can treat
each component of the outer query separately. For a union of tree patterns Q,
let br(Q) be the number of trees in Q and l(Q) be the maximum size of any tree
in Q. The argument above shows that a composition can be produced in time
at most br(O)(2|I|)l(O). Again a worst-case exponential lower bound in output
size holds (using the same example as in Proposition 1).

From the algorithm above, we can get composition closure for X[ ] and Xr, [ ],
since each XPath query in these fragments can be translated into a union of tree
patterns. However, the translation to tree patterns itself requires an exponential
blow-up, since our X[ ] and Xr, [ ] allow the ’|’ (union) operator to be nested
arbitrarily (in contrast to XPath 1.0, where union is permitted only at top-
level). One can give modifications of these embedding algorithms that work
directly on X[ ] and Xr, [ ], and give only a single-exponential blow-up; we omit
these variations for space reasons and explain only the corresponding bounds. We
redefine br and l, and extend them to filters, using br(E1 | E2) = br(E1)+br(E2),
br(E1/E2) = max{E1, E2}, l(E1 | E2) = max{l(E1), l(E2)},l(E1/E2) = l(E1)+
l(E2). br and l are both preserved in filter steps and are equal to 1 for step
expressions. For filters, ∧ and ∨ are handled analogously to ’|’ and ’/’ above.
Then the number of embeddings from Xr, [ ] expression O into Xr, [ ] expression I

in this more general sense is again bounded by br(O)(2|I|)l(O), and so this gives
a bound on the running time of an embedding-based algorithm for X[ ] and Xr, [ ]

as well.

3.3 Extending to Fragments with Negation

When we turn towards fragments with negation, we again have to deal with the
fact that the outer query can interact with different components of the inner
query. Consider for example the outer query Q3 and the inner query Q2:

Q3 = //item[location | descr] Q2 = //item[not(quantity)] | //item/location

both first presented in Section 1. One can observe that information about item
elements requested by the outer query Q3 can be found in both subqueries of the
inner query Q2. However, in this case we can make use of negation to rewrite
the inner query in such a way that different components of a union are “dis-
joint”, and hence that all parts of a match lie in the same component. Once this
normalization is done, we will have a straightforward inductive approach, with
more succinct output. The fact that the algorithm for fragments with negation
is simpler is not surprising, since generally we expect that the addition of more
features to the language will make composition easier, while potentially making
the composed queries harder to optimize.

Normalization Step: We define first the notion of strongly disjoint queries
that we will use in the following in order to perform the normalization step.



XML Subtree Queries: Specification and Composition 149

Two XPath queries q and q′ are said to be strongly disjoint if for any document
D, for any nodes n returned by q and n′ returned by q′ on D, the root-to-
leaf paths to n and n′ meet only at the root. An XPath expression E is said
to be in separable normal form (SNF) if for every subexpression of E of the
form E1 | . . . | En, the Ei are pairwise strongly disjoint. Normalization is done
by taking a subexpression E1 | E2 | . . . | En and breaking up any leading
filters into boolean combinations to ensure that the filters are either disjoint
or identical, grouping together expressions with the same filter, and recursing
on the remaining subexpression. The significance of strong disjointness is the
following simple lemma:

Lemma 2. Suppose E1 and E2 are in separable normal form and P, E1, E2 are
in the fragment Xr, [ ],¬. Then, for all documents D it holds that:

'P (('E1 | E2((D)) = 'P (('E1((D)) |D 'P (('E2((D))

Using this we get a simple algorithm for composing any subtree query in the
fragment Xr, [ ],¬ with any E in separable normal form. The algorithm is shown
in Fig. 5, making use of an auxiliary function used for filters.

Example 3. Consider the outer query Q3 and the inner query Q2 given previ-
ously. When the inner query is translated into separable normal form, we obtain:

Q′
2 = //item([not(quantity)]/(ε | location) | [quantity]/location)

The query resulting from the application of the inductive algorithm, the appli-
cation of the simplification rules from [4] (E/∅ = ∅, E | ∅ = E and E | E = E)
and the final composed query are shown in Fig. 6.

The example above shows that our algorithms rely on post-processing using
some basic simplification rules. Currently we use the rules from [4].

An important feature of the algorithm is that it runs in polynomial time in
the size of the queries, under the assumption of normalization (for un-normalized
queries, there is a provable exponential blow-up as before). Furthermore, it does
not require normalization of the outer query, only the inner one. Another key
advantage of this algorithm is that it can be easily extended to deal with data
value equality and inequality: we have to add an extra case to handle filters
E1 = E2 or E1 -= E2 to the auxiliary function given in Fig. 5, and these are
handled by a trivial recursive call. Indeed, one can show that there are subtree
queries using data value equality but no negation, whose composition requires
negation to be expressed.

3.4 Composition for Fragments with Upward Axes

We now discuss how these algorithms extend to the remaining fragments
in Fig. 3. For P, Q ∈ X ↑

[ ], one approach is to first apply the algorithms of [4, 13]
to remove upward qualifiers, and then proceed as for X[ ]. Similarly, by removing
upward axes from X ↑

r, [ ] and applying the embedding algorithm for Xr, [ ], we get



150 M. Benedikt and I. Fundulaki

function ◦ind(O:Xr, [ ],¬, I : Xr, [ ],¬ in SNF )
returns Xr, [ ],¬ expression
[1] switch O
[2] case O1|O2 return(◦ind(O1, I) | ◦ind (O2, I))
[3] case [F ]/O2 return([◦f (F, I)]/ ◦ind (O2, I))
[4] case A/O2

[5] switch I
[6] case I1|I2 return (◦ind(O, I1) | ◦ind (O, I2))
[7] case [F ]/I2 return ([F ]/ ◦ind (O, I2))
[8] case ∅ return (∅)
[9] case ε return (O)
[10] case A/I2 return (A/ ◦ind (O2, I2))
[11] case B/I2, B $= A return (∅)
[12] case //I2 return ((A/ ◦ind (O2, //I2)) | ◦ind (O, I2))
[13] end switch
[14] case //O2

[15] switch I
[16] case I1|I2 return (◦ind(O, I1) | ◦ind (O, I2))
[17] case [F ]/I2 return ([F ]/ ◦ind (O, I2))
[18] case ∅ return (∅)
[19] case ε return (O)
[20] case A/I2 return (A/ ◦ind (O, I2) | ◦ind (O2, I))
[21] case //I2 return (//(◦ind(I,O2)| ◦ind (O, I2)))
[22] end switch
[23] case ε return(I)
[24] case ∅ return(∅)
[25] end switch

end

function ◦f (F : Xr, [ ],¬ filter, I : Xr, [ ],¬ query in SNF )
returns X ↑

r, [ ],¬

[1] switch F
[2] case ¬F1 return(¬ ◦f (F1, I)
[3] case F1 op F2, op ∈ {and, |} return(◦f (F1, I) op ◦f (F2, I))
[4] case E return (◦ind(E, I))
[5] end switch

end

Fig. 5. Inductive Algorithm and Inductive Filter Composition

an algorithm for X ↑
r, [ ]. For X ↑

[ ],¬, one can also remove upward axes (although
this is not stated explicitly in [13, 4]). Indeed, a simple inductive algorithm can
compute from a X ↑

[ ],¬ query Q a query Q′ that is equivalent to Q in every con-
text (not just the root), such that Q′ is a union of queries either of the form
[F0]/../[F1]/. . . /../[Fn]/En, where Fi are filters in X[ ],¬ and Ei is an expression
in X[ ],¬, or of the form [F ]/E. When one restricts to applying Q′ at the root,
the components of the union of the first form can be eliminated.



XML Subtree Queries: Specification and Composition 151

We refer to these as “eliminate-first algorithms’, since they eliminate up-
ward axes before composing, producing a composed query with no upward
axes. Although the upward-axis removal algorithms of [4, 13] themselves re-
quire an exponential blow-up, they produce from a query Q a new query Q′

without upward axes such that l(Q′) = l(Q) and br(Q′) < 2br(Q). Combin-
ing these bounds with the upper bounds on the number of embeddings, we see
that the output of eliminate-first composition algorithms has size bounded by
2br(O)(2 · 2|I|)l(O) = 2br(O)2(|I|+1)l(O), single-exponential in both inputs.

Result of the inductive algorithm:
Q3 ◦ Q2 = //item [ ( [not(quantity)]/(descr | ∅) | [quantity]/∅ ) |

( [not(quantity)]/(location | location) | [quantity]/location ) ]

Application of the simplification rules:
Q3 ◦ Q2=//item[ [not(quantity)]/descr | ([not(quantity)]/location | [quantity]/location)]

Composed Query:
Q3 ◦ Q2 = //item [ [not(quantity)]/descr | [not(quantity)]/location] |

//item[quantity]/location

Fig. 6. Queries resulting from the application of the inductive algorithm and the sim-
plification rules

An alternative is to compose queries first, and then (if possible, and if desired)
remove upward axes from the result. Somewhat surprisingly, if one simply wants
to perform composition for fragments with upward axes, one can do so in poly-
nomial time. We show this for the largest XPath fragment, X ↑

r, [ ],¬, leaving the
details for other fragments for the full paper. Note that X ↑

r, [ ],¬ does not elimi-
nate upward axes (consider, for example, the query asking for all location nodes
that have only item nodes as ancestors), so only an eliminate-first algorithm is
not applicable here. The polynomial time method for composing subtree queries
uses a trick from [12]. One can simply take the outer query and “pre-test” each
node to see if satisfies the inner query. Officially, for each query Q, let Qr be the
query obtained from changing occurrences of /R to the equivalent ∗/[label = R],
and then reversing each of the axes in Q that do not occur within a filter. Let
INQ be the query Qr[not(..)]. Clearly, the filter [INQ] returns true exactly when
a node is in the result of the XPath expression Q. If we take Q to be the inner
query, and we add the filter [(//|..∗)[INQ]] to each step of the outer query, we
are checking whether nodes witnessed in the outer query are actually in the re-
sult of the inner query. Hence the result is the composition. In the case where
the outer query has only downward axes, we need only add these filters to the
leaves of the syntax tree. Similar algorithms are available for fragments without
negation; for example, in the case of X ↑

[ ], a root test not(..) is unnecessary, since
one can test statically whether a path leads back to the root by just “counting
steps”. For X ↑

[ ] and X ↑
r, [ ] one can combine this PTIME algorithm with upward-

axis removal, obtaining a composed query with no upward axes in exponential
time.



152 M. Benedikt and I. Fundulaki

These last composition algorithms are only useful when significant optimiza-
tion is in place in the query evaluation engine; the resulting composed query
clearly includes an enormous amount of upward and downward navigation, even
when the initial queries lack upward axes completely. We are still developing
optimization rules for fragments with upward axes and negation; However, to
the extent that special-purpose optimizers are developed for X ↑

r, [ ],¬, compos-
ing while staying within this fragment can be helpful. This example also serves
to emphasize that closure under composition becomes easier as the fragment
becomes larger. Taking the algorithms altogether, what we have shown is the
following:

Theorem 1 (Composition Closure). Let F be any of the XPath fragments
in Fig. 3, or either of the XPath fragment X ↑

r, [ ],¬ Xr, [ ],¬ extended with data
value equality. Then for any Q and Q′ in F there is Q′′ ∈ F such that for every
document D it holds that:

'Q(('Q′((D)) = 'Q′′((D)

In addition for every such Q, Q′ ∈ F we can get Q′′ ∈ F such that
〈Q〉('Q′((D)) = 〈Q′′〉(D)

4 Conclusion

In this paper we discussed the specification and composition of subtree queries
for common fragments of XPath. We provided composition algorithms for each
of the resulting subtree languages and showed that these languages are closed
under composition. Despite the complexity of the composition algorithms, ex-
periments in [2] show that we can have important benefits over XQuery trivial
composition (when the composed subtree query is translated into an XQuery
expression and evaluated with an off-the-shelf XQuery evaluator). The composi-
tion algorithms presented in this paper are used in the Incognito access control
system being developed at Bell Laboratories. Incognito uses the Vortex rules
engine [11] to resolve user context information and applies the composition al-
gorithms to compose user queries with access control views (all of these being
subtree queries) to compute the authorized user query that will be evaluated
against XML documents.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
Documents with Distribution and Replication. In SIGMOD, 2003.

2. B. Alexe, M. Benedikt, and I. Fundulaki. Specification, Composition and Evalua-
tion of XML Subtree Queries. Technical report, Bell Laboratories, 2005. Available
at http://db.bell-labs.com/user/fundulaki/.

3. S. Amer-Yahia, S. Cho, L. V. Lakshamanan, and D. Srivastava. Minimization of
Tree Pattern Queries. In SIGMOD, 2001.



XML Subtree Queries: Specification and Composition 153

4. M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath Fragments.
Theoretical Computer Science, 2003.

5. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents.
TISSEC, 5(3):290–331, 2002.

6. J. Clark et. al. (eds.). XML Path Language (XPath) 1.0. W3C Recommendation,
1999. http://www.w3c.org/TR/xpath.

7. M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W.-C. Tan. SilkRoute:
A framework for publishing relational data in XML . TODS, 27(4):438–493, 2002.

8. I. Fundulaki, G. Giraud, D. Lieuwen, N. Onose, N. Pombourq, and A. Sahuguet.
Share your data, keep your secrets. In SIGMOD, 2004. (Demonstration Track).

9. G. Gottlob and C. Koch. Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction. In PODS, 2002.

10. G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath
Queries. In VLDB, 2002.

11. R. Hull, B. Kumar, and D. Lieuwen. Towards Federated Policy Management. In
Int’l Workshop on Policies for Distributed Systems and Networks, 2003.

12. M. Marx. XPath with conditional axis relations. In EDBT, 2004.
13. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. XMDM,

2002.
14. A. Sahuguet and B. Alexe. Sub-document queries over XML with XSquirrel. In

WWW, 2005.
15. A. Sahuguet, B. Alexe, I. Fundulaki, P. Lalilgand, A. Shikfa, and A. Arnail. User

Profile Management in Converged Networks. In CIDR, 2005.
16. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark:

a benchmark for XML Data Management. In VLDB, 2002.
17. I. Tatarinov, Z. Ives, A.Y. Halevy, and D.S. Weld. Updating XML. In SIGMOD,

2001.
18. P. Wadler. Two Semantics for XPath. Technical report, Bell Laboratories, 2000.

Technical Memorandum.


	Introduction
	XPath-Based Subtree Queries
	Composing Subtree Queries
	Subtree Composition for Tree Patterns
	Subtree Composition for Positive XPath
	Extending to Fragments with Negation
	Composition for Fragments with Upward Axes

	Conclusion

