
A Semantic Network Approach to
Semi-structured Documents Repositories*

Vassilis Christophides, Martin DSrr, Irene Fundulaki

Institute of Computer Science
Foundation for Research and Technology - Hellas

Vassilika Vouton, P.O.Box 1385
GR 711 10 Heraldion, Crete, Greece

email: (christop,mar tin,fundul) @csi.forth.gr

A b s t r a c t . Using database technology for the administration of digital
libraries offers many advantages in a multi-user and distributed environ-
ment. However, conventional DBMS are not particularly suited to man-
age semi-structured data with heterogeneous, irregular, evolving struc-
tures as in the case of SGML documents found in digital libraries. To
overcome the difficulties imposed by the rigid schema of conventional
systems, several schema-less approaches have been proposed. Using in-
stead unconstrained, extensible schemata offered by object-oriented se-
mantic network systems, we are able both to map document specific
structures as database classes, and to model the associated constraint
information as integrated schema annotations. In this paper we present
the benefits of this approach to create, access and process heterogeneous
SGML documents, and in particular to exploit the shared semantics of
evolving SGML structures. A respective apphcation is currently being
implemented in the context of the AQUARELLE project.

1 Introduction

With the emergence of the World Wide Web (WWW), the amount, complex-
ity and variety of digital libraries information currently available increase dra-
matically. Information collected in documents is handled by editors, navigators,
search engines, etc. In most cases, the analysis of the sequential da ta stored
in files is based on encoding formats and associated grammars. The Standard
Generalized Mark-up Language (SGML) is becoming the prevailing standard
[25] for digital documents creation, modification and exchange in a platform and
system independent way. SGML encodes the structure of documents by mark-
ing their contents using tags according to Document Type Definitions (DTD).
For instance, one of the most popular applications of SGML is HTML [32]
used in W W W . It seems that the structuring of text has more explanatory
than constraining character, a reason why HTML browsers e.g. are tolerant to
unknown tags, and heterogeneity, polymorphism and irregularity becomes the

* Work partially supported by European TELEMATICS Project A QUARELLE.

306

rule for document structures (see for example cultural SGML doculnents DTDs
[28, 35]). The distinction between data and structure seems to disappear, at least
for the end-users: strict typing becomes counterproductive; complex and large
schemata are created; queries and updates frequently address both, data and
schema [3]. As it has been pointed out by many researches [42, 37, 14, 9, 10],
the use of Database Management Systems (DBMS) for the administration of
digital libraries offers many advantages: concurrent access and on-line updates,
version management, declarative query languages, users authentication, recov-
ery and protection of the stored information. However, conventional (relational
or object-oriented) DBMS are not well suited to manipulate and exchange data
with implicit, heterogeneous, irregular and rapidly evolving structure, as it is
the case with semi-structured documents found in digital libraries.

During the last years, several schema-less approaches have been proposed
[4, 12] for the management of semi-structured data in order to overcome the
obstacles imposed by traditional rigid typing. We believe that omitting a pri-
ori a schema definition results in serious performaxlce drawbacks and loss of
functionality 2, even if the schema is given implicitly as in the case of SGML DTDs.

For this reason, we consider a more flexible approach based on object-oriented
semantic network systems offering unconstrained schemata, which are extensible
at runtime. With this approach, the structure of data a) can be defined a priori
or dynamically created afterwards, b) is not strictly imposed and can easily be
changed without reconstructing the whole database, and c) can be queried like
normal data.

Furthermore, the capturing of document fragments in a database schema
allows to integrate seamlessly the pure document storage with a wide range of
applications associated with a document life-cycle, as collaborative authoring,
configuration management and information reuse, workflow management, etc.
[8]. As these applications are more and more distributed, heterogeneous SGML
document interchange and integration becomes a major issue.

In this paper, we present a semi-structured document management system
on top of the Semantic Index System (SIS) [24] that aims to cope with the above
requirements. SIS is a persistent storage system, offering transaction manage-
ment and concurrency control, which is based on an object-oriented semantic
network data model [30]. We focus on SGML [25] documents, but our results
can be applied as well to other compliant standards such as HyTime [26] or XML
[2].

Our contribution is twofold: a) we define a conceptual model to manage
SGML documents as semi-structured data in the SIS under an unconstrained
schema (i.e. container classes), image of the associated DTD, which is annotated
by the constraint or control information (i.e. processing data) of the correspond-
ing SGML constructs in the DTD b) we show how this model can be used for
automatic and semi-automatic merging of multiple DTDs into one SIS database
by exploiting the shared semantics of equivalent SGML document fragments.

2 At this point we must note the costly a-posteriori extraction of Data Guides [23] for
easier query formulation and effective optimisation.

307

The powerful SIS viewing mechanisms can be used to query and update the
content and the structure of SGML documents, which may be instances of arbi-
trary DTDs, and this at any level of detail the user needs.

The latter is very useful in order to import/export SGML document frag-
ments together with the associated portion of the DTD. Even more, having an
unconstrained schema for SGML documents, DTD variants as well as changes
of the document structures can be incorporated on demand in the running sys-
tem. In the same spirit irregularities of SGML document structures (i.e. SGML
exceptions) can be easily captured by modifying the related schema on demand.
For that sake, the classes, images in SIS of the corresponding SGML element
declarations in the DTD, are created dynamically under the discipline of a fixed
SGML specific metaschema. The underlying Semantic Index System (SIS) pro-
vides the required functionality. In applications requiring to enforce more specific
SGML constraints, appropriate tools can use the processing data that is directly
associated with the corresponding images of the SGML elements in the SIS.

The remainder of this paper is organised as follows. Related work is presented
in section 2 outlining current strategies to map SGML to database constructs.
A brief presentation of SGML is given in Section 3 by an example of a DTD
for the description and documentation of museum collections. In Section 4 we
describe the general knowledge representation mechanisms offered by the SIS-
Telos data model. Section 5 introduces our model to map SGML DTDs and
documents to SIS schemata and databases. In Section 6 we show how we can
merge multiple DTDs into SIS according to our model and we analyse relevant
application cases. A first implementation of an SGML to SIS loader is described
in Section 7. Finally, conclusions and future work are given in Section 8.

2 R e l a t e d W o r k

There is a growing interest in the development of text applications using DBMS
technology. Since SGML provides a document exchange model rather than a
general purpose data model [34], the use of SGML DTDs directly as database
schemata [6, 29] is quite limited. The main question that arises is then, how
SGML documents can be represented on a DBMS model in an optimal way.
It has been illustrated by previous research work on this field, that the hierar-
chical structure of SGML documents can be more naturally represented using
object-oriented models than relational ones [9]. Many recent studies focus on
the representation of SGML documents on object-oriented DBMSs [14, 31, 10].
As practised so far, there exist two conflicting mapping strategies: a so-called
"generic mapping" (i.e. minimally-structured) and a "DTD-specific" one (i.e.
maximally-structured).

The former [18, 1, 21] uses one database schema (to represent a labeled tree)
for all possible DTDs while the latter [14, 16] creates a new schema for each DTD.
The advantages of the generic mapping are obvious: easier implementation of
loaders, simpler manipulation of heterogeneous or irregular document structures
as well as of multiple DTDs, genericity of the provided services. However, the

308

semantics of document structure is handled outside the database schema by com-
pliant tools: editors, browsers, etc. Associated applications cannot refer directly
to documents in the database with a specific meaning. For this reason, the DTD-
specific mapping provides a one to one correspondence between SGML elements
(or tags) with database classes (or objects), which allows for more sophisticated
queries on document structure and content as well as for interesting optimi-
sation techniques [15]. Unfortunately, the generation of a database schema for
each DTD implicitly assumes that the structure of documents is static. Further-
more, capturing the data constraints imposed by the SGML constructs typically
require considerable extensions to the underlying data model of the database
system (e.g., introduction of union types).

We consider that the information contents of a DTD can be modelled by
azl explanatory or informative part defining container classes for the different
document fragments (i.e. SGML tags) and a constraint or control part captur-
ing structure constraints over these fragments (i.e. SGML constructs) in order
to process documents inside or outside the database. The "semi-structured"
mapping we present benefits fl'om the expressive power and flexibility of data
declarations in the SIS and combines the advantages of both approaches using
a generic mapping at the metalevet (DTD independent) and a specific mapping
(DTD dependent) at schema level. In addition, the annotation of the container
classes by their corresponding SGML declarations in the DTD allows to share
common grammatical rules for semantically equivalent document fragments after
the merging of different DTDs or DTD variants.

Systems with similar motivations or goals have been presented in [31, 10],
however the structure of SGML document fragments in SIS is derived directly
fl'om the declaration of elements in the DTD (unlike VODAK [10]) and the
semi-structured characteristics*of SGML documents (e.g. SGML exceptions) are
naturally taken into account (which is not the case with the constraint-based
model [31]). To our knowledge, generalised SGML repositories [20] offering data
management at both, the DTD and the document level, have not been studied
previously in the literature.

3 B a s i c S G M L C o n s t r u c t s

Standard Generalized Mark-up Language (SGML) is an international stan-
dard [25] used widely in text applications such as digital libraries, electronic
publishing, CALS, etc. SGML docmnents consist of two main parts: a Docu-
ment Type Definition (DTD) and document instances. A DTD (see Figure 1)
is essentially an extended context-free grammar [40] (i.e. with the connectors
",", "]", "&" and the occurrence indicators "?", "*", "+ ') declaring the generic
logical structure of documents, while the specific logical structure is encoded in
document instances by adding descriptive mark-up or tags. Tags are used to
specify the starting and ending positions of the logical fragments of a document.

Figure 1 illustrates a DTD for the description of museum collections that
will be used as a source for the examples in the remainder of this paper. It

309

<!DOCTYPE
i. <!ELEMENT
2. <!ELEMENT
3. <!ELEMENT
4. <!ATTLIST

5. <!ELEMENT
6. <!ELEMENT
7. <!ELEMENT
8. <!ATTLIST
9. <!ELEMENT
10.<!ELEMENT
11.<!ELEMENT
]2.<!ATTLIST
13.<!ELEMENT
14.<~ELEMENT
i5.<!ATTLIST

Musemcol
Musemcol
Musemobj
Artifact
Artifact

(Creation
Action
Actor
Actor
Person

[
- - (Musemobj)+>
- 0 (Name, Photo?, Located, Artifact?)+(Bibliogr)>
- 8 (Creation, Modific*, Acquis?, Destruc?)>
shape (round I rectang I cube) rectang
size (small I medium I large I huge) medium
material CDATA #IMPLIED
(weight I height I width I depth) NMTOKEN #IMPLIED>
I Modific I Destruc] Acquis) - 0 (Action)>
- 0 (Actor+ ~ Event)>
- - (Person I Institut)>
refactor IDREF #CONREF>
- 0 (Name, Place*, Born?, Died?)>

(Located [Born i Died) - 0 (Event)>
Institut - 0 (Name, Address?)>
(Person I Institut) id ID #IMPLIED>
Event - 0 (Time, Place)>
Place - 0 (Name+)>
Place id ID #IMPLIED

refplace IDREF #CONREF
longit NMTOKEN #REQUIRED
latit NMTOKEN #REQUIRED>

16.<!ELEMENT (Time I Name I Address) - 0 (#PCDATA)>
I?.<!ELEMENT Bibliogr - 0 ($PCDATA) -(Bibliogr)>
18.<!ELEMENT Photo - 0 EMPTY>
19.<!ATTLIST Photo image ENTITY #REQUIRED>
20.<!ENTITY fig SYSTEM "/u/SIS/CLI0/image" gif>
21.<!NOTATIGN gif PUBLIC "+//ISBN Z923/NGTATIGN Graphic Interchange Format//EN">
]>

Fig. 1. A DTD for Museum Collection documents

uses concepts from the cultural information system CLIO [17] and represents
a realistic though simplified view of museum information administered in form
of SGML documents. We briefly comment the Musemcol DTD and present the
basic SGML constructs [22] namely: elements (i.e. document logical fragments),
attributes (i.e. additional mark-up information) and entities (i.e. references to
content or mark-up data possibly stored outside the document).

A museum collection (line 1) consists of one or more (occurrence indicator
"+") museum objects (line 2). Each of them has (aggregation connector " , ") a
name, an optional photo (occurrence indicator "? ') , as well as data specifying the
event of its relocation to its current place. The exception (+) in the content model
of the element Musemobj allows to include bibliographic references everywhere
within a museum collection document. Additional descriptions of the nature of
a museum object, in the case it is an artifact (line 3), are the actions of creation,
possible modifications (occurrence indicator "*"), acquisition, and destruction
(line 5) as well as the physical dimensions of the object (line 4), given by the

3t0

SGML attributes shape, size, material, weight, height, width and depth. We
consider an action (line 6) to be associated with at least one actor and an event,
in any possible order (permutable aggregation cormector "~"). An actor (line 7)
may be a person or an institution (choice connector ' ' I")- A person (line 9) has a
name, an optional list of places, where she/he has lived, as welt as an associated
birth and death event (line 10). An institute (line 11) has also a name and
optionally an address. An event in turn (line 13) is determined by a time and a
place. A place (line 14) may have more than one (historical) names, as well as the
longitude and latitude attributes (line 15) to denote its universal geographical
co-ordinates. Time, name, address (line 16) and bibliographic references (line 17)
are strings where the SGML exception (-) forbids nested bibliographic references.

Since the same historical places and persons (or cultural institutions) may
be involved in the description of several museum objects in a collection~ the
SGML addressing mechanism is used to assign identifiers to document compo-
nents (attributes of type ID lines 12, 15) and make references to theses iden-
tifiers elsewhere in the document (attributes of type IDREF lines 8, 15). The
value specification # C O N R E F for the attributes refaetor (line 8) and refplace
(line 15) indicates that the corresponding elements actor (line 7) and place (line
14) have no content, when these attributes have values. Finally, SGML entities
as fig (line 20) allow to include the associated photos (attribute image line 19)
for museum objects and take into account their related notation (e.g., gif line
2I) when the document is manipulated by an SGML editor or viewer.

We must note that the wide use in DTDs of the SGML element choice con-
nector (" i ') and optional occurrence indicator ("?") combined with the use of
SGML exceptions and attributes specified as #CONREF~ result in documents
with a quite complex, polymorphic and irregular logical structure. These mod-
eling primitives of SGML give the documents their semi-structured character.

4 A B r i e f P r e s e n t a t i o n o f t h e S I S D a t a M o d e l

The Semantic Index System (SIS) [24] is a persistent storage system based on the
object-oriented semantic network data model Telos [30]. SIS-Telos data model
[5] provides: unbounded classification hierarchy (metaschemata see schemata as
data and allow to develop a schema under this specific discipline) multiple in-
stantiation (one object-class can be instance of more than one classes using the
attributes of all its classes-metaclasses), multiple inheritance, as well as optional
and multivalued attributes which can also have their own attributes. Note that
SIS attributes are first class citizens and they can have their own classification
classes (or metaclasses) stated as attribute categories (or metacategories). SIS
attributes represent something like a generalisation of the notion of fields and
references in conventional DBMS.

The notion of a schema in SIS is ultimately unconstrained. It is only required,
that the from- and to-value of any attribute are declared instances of the classes
foreseen by the schema, directly or through inheritance. The query engine sup-
ports retrieval by multiple and recursive conditions, as well as navigation through

311

the entire network of semantic relations defined in our model by attribution, as
well as the class-instance and class-subclass relations. The graphical user inter-
face, with various customisable and extensible views, allows the visualisation of
complex graph structures such as SGML DTDs and instances.

5 Mapping SGML D T D s to SIS Schemata

In this section we define our conceptual model to represent SGML DTDs and in-
stances in the Semantic Index System (SIS) [24]. We follow the idea, that DTDs
can be interpreted as an analogue to database schemata, and documents to
database instances. However, the major obstacle to establish this correspondence
are the differences between the modeling primitives, especially data constraints
(i.e. the SGML element connectors and occurrence indicators) used in a docu-
ment exchange model, such as SGML, and a general purpose data model, such
as SIS-Telos [30]. Rather than using the DTDs directly as database schemata or
extending the underlying model of the DBMS to capture the data constraints
imposed by the SGML constructs (see section 2), we consider an SIS-Telos model
where the information contents of a DTD can be modelled by an explanatory
or informative part defining container databases classes (images of the SGML
elements in the DTD) for semi-structured documents fragments and a control or
constraint part (corresponding to the SGML element declarations in the DTD)
for the processing of the container classes instances, under an SGML point of
view, inside or outside the database.

The explanatory and the control part of our model are defined in SIS as
two tightly coupled conceptual metastructures. The former, stated in the sequel
as container model, allows to define for each DTD an SIS schema where the
declared classes and their attributes serve as DTD-specific explanations and se-
mantic indices on the encountered instances. The container classes allow then
to represent documents as trees of nodes characterised by attributes. The ex-
planatory nature is supported by the fact, that SIS classes are not bound to one
particular type (i.e. tuples) and SiS attributes are optional and repeatable by de-
fault. This implies, that any object (or attribute) can be classified under multiple
classes (or categories) - in particular one schema may cover only parts of a graph
of interconnected data. Due to that, the required flexibility of a "generic map-
ping" is maintained for heterogeneous or irregular documents, without loosing
the semantic support of a "DTD-specific" schema (see section 2).

The latter conceptual structure, stated in the sequel as processing model, al-
lows to represent the different grammatical rules encountered in a DTD according
to the SGML metagrammar, as a direct annotation on the classes of the con-
tainer model, which represent the equivalent DTD items the rules refer to. These
rule representations are not further instantiated, but serve as an information and
configuration service to all processing components on top. This is enabled by the
fact, that the SIS allows to at tr ibute schema items with non-instantiable items.
It must be stressed, that this direct linking between the container and the pro-
cessing data is a definite advantage (and only there) on a system, where the

312

schema changes at run-time and the schema and the classification of data items
can be queried. For applications requiring to enforce more specific SGML con-
straints, appropriate tools can use the processing data directly associated with
the corresponding images of the SGML elements in SIS.

To conclude, annotating the document fragments stored in SIS via the ex-
planatory model with the corresponding rules in the DTD offers a good com-
promise between a "generic" and a "specific" mapping with many advantages:

- mfiform storage of SGML docmnents with heterogeneous or irregular logical
structures and SGML processing data on document structure and content;

- merging of different DTDs (i.e. schema integration) or definition of DTD
variants (i.e. schema, evolution) by sharing common grammatical definitions;

- queries on DTDs/instances enabling document fragment exchange with the
associated portions of the DTD;

- structured views on SGML documents, which may be instances of arbitrary
DTDs.

In the sequel we detail the representation in our conceptual model of SGML
DTDs. We focus on the container and processing aspects of the different SGML
constructs namely elements and attributes both at the metaschema (DTD inde-
pendent) and schema (DTD dependent) levels using as example the Musemcol
DTD presented in section 3.

5.1 S G M L Elements

SGML elements are used to identify the logical fragments of documents as well
as to declare the structural relationships among them. Each element has a name
and a content defined by an associated model (see element Musemcol, line 1 of fig-
ure 1). The left part (i.e. the container) of figure 2 represents the various SGML
elements encountered in a DTD (metactass SGMLElemen t) while the right (i.e.
the processing) their corresponding SGML models (metaclass E lementMode l) .
Instances of the metaclass S G M L E l e m e n t are the container classes images of
the DTD elements, as for example Musemco!, and instances of the Element -
Model are the associated element models, as ibr example (Musemobj+). The
attribute metacategory "ehnRule" is defined to establish the relation between a
container class and its corresponding SGML content model (i.e. a link between
the container and the processing model). The container classes are instantiated
for each element instance (tag) encountered in a document.

Since the logical structure of SGML documents is essentially a tree, we spe-
cialise S G M L E l e m e n t to the metaclasses Terminal for the leaves of the tree
and NonTermina l for its intermediate nodes. In our example, the class Photo
is an instance of the former, while the class Musemobj is an instance of the latter.
In the metaclass NonTermina l we define the attribute metaeategory %lmCon-
tent" to refer to all structural relations of a container class to those classes defined
in its content model. This means, that for each different class being referenced,
a specific attribute is defined which allows to store and query the respective in-
stances separately. This is one of the major differences to the "generic mapping".

313

Fig. 2. The container and processing model fo~ SGML elements

For instance, the class Musemobj is consequently linked with its contained classes
Name and Photo through the instantiable attribute categories named "name" and
"photo" (which in turn are instances of the metacategory "ehnContent ') . Note
that the fact that all attributes are optional and repeatable per default in SIS
obviates the introduction of null values and bulk data types (as in traditional
ODBMS). Furthermore, SIS classes are not bound to one particular type. This
is one of the major differences to the "DTD-specific mapping".

Terminal elements can be either empty or textual. Therefore the metaclass
T e r m i n a l is further specialised to Textua l , where the metacategory "etmCon-
ten~ '~ refers a metaclass S t r i n g T y p e with the only instance Telos_String, as
for example in the case of the container class Name. This means, that textual
terminal elements have an attribute which contains the actual string.

We consider now the representation of element models. An element model
is a grammatical rule, either an SGML data type declaration for a textual (i.e.
CDATA) terminal or empty (EMPTY) terminal element, that does not have con-
tent, or a more complex SGML declaration for a non-terminal. The specialisation
of E l e m e n t M o d e l to the metaclasses D e c l a r e d M o d e l and C o n t e n t M o d e l
is straightforward. In addition, the metaclass M i x e d M o d e l represents element
models (i.e. ANY) allowing a free mixture of textual data and any of the SGML
elements defined in the DTD.

An element model is not further instantiated for documents, but it declares
the rule according to which an attribute (link) of the metacategory "elmCon-
teaL" was generated. Hence the container classes connected by such a link are
connected by an element rule as well. More than one such link may be generated

314

by the same rule as in the example of (Name, Photo?, Located, A r t i f a c t ?) .
But a link may also be generated by more than one rule, as will be later described
in the context of DTD merging (see section 6). This was a major motivation to
separate the container model from the processing model. The latter allows any
processing tool to access the locally applicable rules directly fl'om the respective
element instances (as SIS allows to query the instance-class relation), without
reparsing the whole document ahead. The idea is to store the rules in a form,
which needs no further parsing for interpretation (the rule names in figure 2
are only mnemonics), and allows to represent any shared information as shared
nodes and links in a minimal way. Consequently, we undertake the expansion
of complex rules described below. Nodes (classes) are chosen for self-consistent
constructs, and links (attributes) for those specifying different kinds of relations
between nodes.

Complex SGML models are defined using other elements (or the ~PCDATA
data type for strings that need eventually further parsing) possibly combined
with SGML connectors (i.e. "&", "1 '1, ", ') to declare permutation, choice and
aggregation of elements. Nested definitions of content models are also possible.
The metaclasses P r lmi t i veMode l and G r o u p M o d e l as well its corresponding
subclasses reflect this classification. The attribute metacategory "modeICompo-
neat" defines the relation of a GroupMode l , as (Musemobj+), with its (nested)
fragments, as (Musemobj). The fact that element names can appear both in the
declaration of other element models and in their own content model, is captured
through multiple instantiation under the corresponding metaclasses in the con-
tainer and the processing model of our conceptual model. For example, the class
(blusemobj) is a common instance of the metaclasses Terminal and Pr imi t ive-
Model .

Since content models can be qualified by occurrence indicators ("?", "+",
"*"), "modelComponenl" is further specialised to the attribute metacategories
"oplionalComponent", "repeatedComponent", and %ptional-repeatedComponent".
For example, the outgoing link of the (Museraobj+) to its element class (blttseraobj)
is an instance of the metacategory "repeatedComponent'. Attributes are used,
because the indicator defines the way in which the model refers to the associated
elements (i.e. kind of relation).

Finally, SGML defines textual primitive data types such as #PCDATA. The
corresponding SIS-Telos primitive Telos_String has the correct container behav-
ior, but not the SGML processing semantics° Hence SGML textual primitives
are modelled as static part of the processing model and linked via the attribute
category "mapped_to" to the SIS-Telos class Tetos_String. The latter is referred
in the container model and used for actual instantiation.

The issue of SGML Exceptions
Associated with the content model of an SGML element may be a llst of

exceptions. Exceptions allow to modify the content model of elements as well as
of their subelements and can be viewed as a syntactic sugar of SGML leading
to more human-readable forms of DTDs. More precisely, inclusions (see line 2

315

~blbl i ogr" "-bibl i ogr"

Fig. 3. The container and processing model for SGML element exceptions

of figure 1) allow one or more SGML elements (e.g., bibliographic references)
to appear anywhere within the content of an element (e.g., Musemobj) or its
subelements (e.g., Artifact), while exclusions (see line 17 of figure 1) preclude
them from the element content (e.g., nested bibliographic references) and the
from content of its subelements. Exceptions are one of the most salient features
of SGML that gives to documents their semi-structured character (i.e. irregular
structures). In order to store SGML documents in an DBMS, SGML excep-
tions are usually compiled (see "DTD-specific mapping" section 2) to produce
an equivalent DTD without exceptions [27]. Then, this quite complex DTD is
mapped to a DBMS schema. In our approach we represent the SGML exceptions
encountered in a DTD only in the processing model (i.e. right part of figure 3) by
the attribute metacategory "ruleException" while their effect on element struc-
ture is captured dynamically in the container model during the loading of the
corresponding document instances.

Since an SGML exception essentiMly associates the model of an element
with the corresponding included or excluded elements, "ruleException" is defined
from the attribute metacategory "elmRule" to E lementModel . The different
exception types are represented by specialising "ruleEzception" to the metacat-
egories "Inclusion" and "Exclusion". For example the link ' ' + b i b l i o g r ' ' from

'Museumobj ' r u l e ' ' to Bib l iogr is an instance of the former while the link
' '-bibliogr' ' from ' 'Bibliogr'rule' ' to Bibliogr is an instance of the
latter. Such links are created during the analysis and the loading of the DTD.

We have seen that the effect of SGML exclusions in element structure is prop-
agated from the elements where they are defined to their subelements. We must

316

note that different exceptions may be propagated to the same subelements, with
possibly conflicting results, depending wherever they are involved (direct or in-
direct) in many element models. Capturing the propagation of SGML exclusions
requires the introduction of a context notion in which the excepted elements
are allowed or disallowed for a given subelement 3. In our example, bibliographic
references can appear in the instances of A r t i f a c t since they are defined in
the context of its ancestor container class Nuseumobj but cannot appear in the
instances themselves of B i b l i o g r which is also a descendant of Museumobj. For
this reason we define in the container model the at tr ibute metacategory "excep-
tiouContext" from %uleException" to "elmContent', in this case an at tr ibute
from an link to a link. Instances of "exccptionContext" and ~'elmContent" are
created on demand whenever a legal exception is encountered for an element
during parsing of document instances i.e. we generate a schema entry together
with the data item to be stored in.

For example, when parsing a valid instance of the Musemcol DTD, we en-
counter in the content of Artifact an element BibIiogr we first instantiate the
metacategory "elmContent" by the link ' ~ b i b l i o g r ' ' from the class element
A r t i f a c t to B i b l i o g r , and then create the instance of class A r t i f a c t . Since
the SGML parser can also identify the element (i.e. Musemobj) from which the
exception is propagated we can instantiate the metacategory "exceptionContext"
by the at tr ibute associating the links c C + b i b l i o g r ' ' and ' ' b i b l i o g r ' '

This model allows to control the actual use of exceptions, e.g., if the com-
patibility of a large document with another DTD variant has to be determined
(see section 6). Even though a processing tool will not always find the applicable
exception locally, as above for normal content models, it has only to follow the
document tree from the element with the exception up to the root, to find out
all applicable inclusions/exclusions. This is still very efficient, as SIS provides a
fast link traversal.

5.2 S G M L A t t r i b u t e s

SGML attr ibute declarations are by far less complex, and our mapping follows
the same principles as for elements, so we restrict ourselves here to the basic idea.
SGML attributes relate an SGML element to an SGML attr ibute value under a
specific name (see at tr ibute material of element Artifact, line 4 of figure 1). We
separate again the container model (see upper part of figure 4), which is further
instantiated, and the processing model (see lower part of figure 4). The container
aspect of this SGML construct is directly equivalent to the SIS-Telos attributes
with the same name, represented by the metacategory "etmAttribute". The pro-
cessing aspect is captured by the metaelass A t t r i b u t e M o d e l . The at tr ibute
metacategory "attI~ule" establishes the association between both, in this case an
at tr ibute from an link to a node. Again the rule is expanded in its constituents
(i.e. at t r ibute value type, specifications and default value). As above, classes

3 A similar mechanism is used by existing SGML parsers [39] to interpret exceptions
during the syntactic analysis of documents.

317

(9

v ~ l l ~ r a l z ~ u u ~ spcvla~z~uOn

Fig. 4. The container and processing model for SGML attributes

are shared notions between the container and the processing model. The static
mapping of the SGML element textual types to classes of the container model
is extended here for the various SGML attribute value types.

There are two cases of SGML attribute value types requiring a special treat-
ment. First the type #IDREF allows to refer to any element (see attributes
refac~or and refplace lines 8 and lS of figure 1) where an attribute of type ID
has been defined (see attributes id lines 12, 18 of figure 1). SGML parsers do
not interpret cross references and they usually consider them as strings. In our
context these references should be interpreted when possible. For that sake, we
foresee the class E lement and all container classes with an attribute of type
ID (instances of S G M L E l e m e n t) will be declared as subclasses of it. Second
the type ENTITY allows to refer to any entity defined in the context of the
document DTD (see attribute fig lines 8 and lS of figure 1). SGML entities es-
sentiatly define macros or constants to be used in the framework of a DTD or
its corresponding instances. We model them in the container model as one static
schema, represented by the class S G M L E n t i t y . When a DTD is parsed and
mapped to the SIS, its entities are loaded as a pre-population of the data-level.
These entities can be in the sequel used directly as to-values of the related at-
tributes. This is particular useful to capture links of SGML documents to their
subdocuments represented by SGML entities.

This kind of mapping for SGML attributes should be very advantageous for
applications requiring a richer semantics of attribute types (and in particular
of references) than currently provided by SGML, as discussed recently in the
context of HyTime [26] or XML [2] initiatives.

318

6 Merging Multiple SGML DTDs in SIS

In the previous section we have defined a conceptual model to store SGML docu-
ments in SIS as trees of nodes with attributes, annotated by their corresponding
grammatical rules in the DTD. In this section, we show how this approach can be
used for automatic and semi-automatic merging of multiple DTDs into one SIS
database. Thus the system can store in parallel document instances of arbitrary
DTDs, but it can also support advanced services for DTD comparison: detection
of structural discrepancies, common document, fragments, similar parts etc., and
exploit this information for the respective handling of document instances.

The wish to handle multiple DTDs in one database originates in several ap-
plication areas [7]. In the simplest case, the user just wants to maintain a digital
library of heterogeneous documents regardless of their structure and origin, but
nevertheless benefit from the advantages of an integration of the different DTDs
in one repository schema (analogous of those in the "generic" approach, see see-
tion 2). This kind of DTD merging can be achieved automatically by the system
based on a pure lexical and syntactical analysis of the different DTDs. As with
database schemata however, we are frequently confronted with the problem that
different DTDs share common semantics or describe the same "world" in differ-
ent terms. We may distinguish two situations: either independent teams develop
from scratch DTDs (or DTD parts) for a similar problem or application or a
team modifies an existing DTD in order to cope with additional or changing
requirements. The respective interpretation analysis and handling of different,
seemingly identical and similar constructs is quite different.

In the former case we are interested in a mechanism to view all document in-
stances under a kind of "global schema", analogous to heterogeneous databases
schema integration [33, 38, 11]. This approach allows access to heterogeneous
documents manipulated locally under their own DTD, eventually integration
of fragments coming from heterogeneous sources into a new document or even
documents transformation from one DTD to the other. In general, each DTD
has its own proper document instances. Between the DTDs, we do not expect
a priori any element or attribute to be the same. Besides occasional linguistic
similarities or structural eompatibilities between elements or attributes having
the same meaning, a stronger structural equivalence requires human assessment,
and automatic tools can only support such decisions. We claim here that respec-
tive applications can advantageously be built on top of our conceptual model,
as it provides the necessary analysis of the DTDs, and the access points and
"hooks" within an extensible framework.

The latter case can be split into the slightly different notions of DTD ver-
sions and variants (or configurations) similar to the issue of databases schemata
versioning and evolution [41, 36]. In the case of DTD versions we would like to
enable efficiently the access to obsolete forms of document instances until they
get out of use. In the case of variants, we would like to maintain simultane-
ously forms with shared and non-shared parts for specific target groups within
a text application. Note that variants may also have versions. 'The goal is to
optimise creation, access and maintenance of the shared parts. Typically, a sys-

319

tern can detect the shared parts of DTDs and related instances automatically,
given that naming and structure was changed under a certain discipline known
to the system. Tag names are typically thought to help the end-user by linguis-
tic associations. This creates the need to maintain pure renaming variants in
international applications as for instance in the AQUARELLE project 4.

Central to the automatic shared part handling are the notions of equivalence
of SGML element and at tr ibute declarations, and the degree and granularity to
which SGML constructs can be identified and maintained as shared or as spe-
cialisation or generalisation of each other. We consider equivalence of elements
and attributes at three levels: a) Their naming (i.e. possible alias) b) Their struc-
turing or value typing disregarding occurrence indicators or value specifications
(i.e. only the container model) c) Their full content model (i.e. the container and
the processing model). What remains, are non-equivalent SGML constructs we
can deal with as variants (i.e. distinct container and processing models).

At first we consider only the SGML elements or attributes defined in their
scope having the same name as potentially equivalent. If they share the full
content model, we regard them as identical; if they share the generated container
model, as compatible. Then, they are mapped to the same container classes or
class properties, while in the case of identity they also share the same annotations
for the associated grammatical rules.

In this kind of "trivial merge" fits also the case where two elements have
structurally equivalent grammatical forms, as for instance, the following redefi-
nition of the element Act ion: <!ELEMENT Act ion - 0 (Event ~ Actor+)> (see
line 6 in the DTD of figure 1). In order to decide if two SGML grammatical
forms are structurally equivalent we need a complete analysis and comparison of
both content models based on their connectors and occurrence indicators. Simi-
lar algorithms are used by commercial SGML parsers [19] or DTD builders [13]
to produce optimal internal representations of the DTDs.

In a more complex case, element structures can be recognised as pure exten-
sions of another one, i.e. as specialisation. Their representation of grammatical
rules are declared as subclasses of each other allowing again for transparent ac-
cess to the shared properties. Consider, for instance, a redefinition of the element
Institut as follows: <!ELEMENT Institut - 0 (Name, Address?, Director)>

(line 11 in the DTD of figure 1).
In order to merge the new declarations of the elements with the old ones

we faetorise the common subparts of grammatical rules as an inheritance case,
illustrated in figure 5. In the same spirit we can merge compatible declarations
of SGML attributes as for instance, the new declaration of the at tr ibute ma-
terial: <!ATTLIST A r t i f a c t m a t e r i a l NAME #IMPLIED> (line 4 in the DTD of
figure 1).

As we can see in figure 6 we consider the attr ibute model NAME (kind of
SGML string type) as a special case of the model CDATA. For such type of equiv-
alence preserving merge of DTDs we need to establish compatibility rules for
the different SGML (element or attribute) data. types (e.g., between CDATA

4 http.//aqua.inria.fr/

320

- - • (Name, Addre!

director

Fig. 5. An example of SGML element, s merging to SIS

and NAME) and to compare recursively complex content models based on their
connectors and occurrence indicators. A complete presentation of a merging al-
gorithm for compatible content models is beyond the scope of this paper. Note
that content models analysis can be naturally achieved within the framework of
our conceptual model.

If the full container models fit, but not the names, the constructs are re-
garded as isomorphic. In this case, the desired identity or compatibili ty can be
re-established by the use of alias names specific to the respective DTD. In gen-
eral, this needs human control, as many trivia/cases can be thought of, where
some structures accidentally fit. Only if the history of the difference is known, it
can be automated, as e.g. if someone generated a new version of a DTD by only
changing names. Afterwards, the above analysis of identity and compatibility is
reapplied.

Finally, if the names agree, but not the content models there is a conflict in
either of the above forms. In this case, the constructs are mapped to different
class elements or class element properties, and an alias is applied to restore the
appropriate distinct naming. In the same way, any accidental identities can be
resolved by user intervention.

Having done this analysis, we are confronted with the problem to create a
view of each specific DTD. SIS-Telos offers an elegant and efficient solution.
Any object, node or attribute, can be declared as instance of multiple classes.
We therefore declare per DTD a trivial metaschema, which classifies all other

I Artifact I
material

Fig. 6. Art example of SGML attribates merging into SIS

321

constructs generated for this DTD. Shared schema objects are classified under
all DTDs sharing it. These metaschemata can be used by any access procedure
to filter out the DTD specific or shared schema objects and specific or shared
elements of document instances.

In conclusion, we have sketched a conceptual framework to handle different
cases of SGML DTD equivalents for merging purposes based on our way of
mapping SGML constructs, and which can be elaborated in a cascaded manner
by certain interactive and/or automatic processes, depending on the complexity
of the case.

7 Implementat ion of the SGML to SIS Loader

We are currently implementing the necessary parsing and loading tools to handle
SGML documents in SIS as described in section 5. The architecture of the SGML
to SIS loader is illustrated in figure 7. The main components of the loader are the
SGML DTD Analyzer and the SGML Document Parser. Their implementation
is based on YACC and LEX. The loading of SGML DTDs and their document
instances is performed in two steps:

1. The DTD is analysed by the DTD Analyzer and if it is valid an SIS schenla is
produced according to the defined SIS metaschema (container and processing
part).

2. An SGML document instance of the given DTD is parsed using the Docu-
ment Parser. If the document is valid then it is loaded in an SIS database
according to the generated DTD-specific schema.

Errors are reported at each step of processing. In order to analyse a DTD, the
description of the SGML metagrammar in BNF form [22] is used along with the
semantic actions associated with the rules of this metagrammar. These actions
produce a representation of the DTD in BNF form to generate a DTD-specific
parser as well as the necessary semantic actions for the document loading.

8 Conclusions

We have designed a conceptual model to provide dynamic unconstrained schemata
for storing, accessing and processing of heterogeneous collections of SGML-
encoded documents using DBMS technology. We have shown, that semantic
object-oriented data models, such as the SIS data model, can provide more flex-
ible database services for SGML document management than traditional DBMS
without the disadvantages of the proposed schema-less approaches [4, 12]. Two
features deserve special attention in this context: a) The metamodeling capa-
bility of SIS allowing to generate dynamically DTD-specific schemata &s in-
stances of a generic metaschema as well as to define an equivalent of the SGML-
metagrammar instantiated for each DTD; b) The handling of SIS attributes as
objects in their own right allows to express by classification and further attribu-
tion complex context relations as in the case of SGML exceptions or DTD-specific
views for documents which may be instances of arbitrary DTDs.

322

I SGML Meta-Granunar ~ >
~ Loader SGML -> SIS

D T D Analyzer ,,~

, - t
r~ DTD in BNF form ,~__ ~ YACCfLEX L > emirs
, _+_semanticactions _ t

1 or eIT(rfs

Fig. 7. The architecture of the SGML to SIS Loader

Futhermore the separation of informative structures from control information
gives the system an interesting flexibility to provide services of different nature on
top of one database. We have then raised some preliminary solutions for the issue
of SGML DTD merging. We have shown that the prerequisite for such service
is a suitable definition of the information a toms of SGML constructs in a DTD,
which can be recognised as identical or distinct as a whole. The contribution of
this work is a conceptual framework which makes these constructs explicit and
formally accessible at a fine granularity level for opt imal processing and sharing
of common schema and instance da ta as expressed by a DTD.

A deeper analysis of the relations emerging from DTD evolution and of view-
ing mechanisms for heterogeneous documents is planed in the near future and
experiences found in distributed database li terature are extremely useful in this
context. Finally, we must note ongoing studies on the interoperabili ty issues re-
lated to the access and querying of heterogeneous SGML documents without a
complete knowledge of their structure.

References

1. Description de l'Architecture G6n4rale du Projet GEODOC. Technical report,
Grif S.A., ?8053 St Quentin en Yvelines Cedex, December 1993.

2. The Extensible Markup Language. Internet Draft, 1997. Availiable at
http://www.jtauber.com/xml/.

3. S. Abiteboul. Querying Semi-Structured Data. In Foto Afrati and Pholdon Ko-
laitis, editors, Database Theory - ICDT'97, volume LNCS 1186 of Lecture Notes in
Computer Science, pages 1-18, Delphes, Greece, January 1997. Springer Verlag.

4. S. Abiteboul, D. Quass, J. McHugh, 3. ~Vidom, and J. Wiener. The Lord Query
Language for Semi-Structured Data. Journal of Digital Libraries, 1(1):68-88,
November 1997.

323

5. A. Analyti, P. Constantopoulos, and N. Spyratos. On the Definition of Seman-
tic Networks Semantics. Technical Report ICS/TR-187, Institute Of Computer
Science - FORTH, February 1997. Available at http://www.ics.forth.gr/proj/isst-
/Publications/ TechnicalReports.html.

6. T. Arnold-Moore, M. Fuller, B. Lowe, J. Thorn, and R. Wilkinson. The ELF Data
Model and SGQL Query Language for Structured Documents. In Proc. of the
Australian Database Conference, pages 17-26, Adelaid, Australia, January 1995.

7. D. Barnard, L. Burnard, and C. M. Sperberg-McQueen. Lessons Learned From
Using sgml in the Text Encoding Initiative. Computer ~ Interface, 18:3-10, 1996.

8. L. Bietawski and J. Boyle. Electronic Document Management Systems: A User
Centered Approach for Creating, Distributing and Managing Online Publications.
Prentice Hall, 1997.

9. G. Blake, M. Consens, P. Kilpelainen, and P. Larson. Text/Relational Database
Management Systems: Harmonizing SQL and SGML. In ADBA '9~, pages 267-280,
1994.

10. K. BShm, K. Aberer, and E. Neuhold. Administering Structured Documents in
Digital Libraries. In Digital Libraries - Current Issues, DL'94, Newark, N J, USA,
1995. LNCS 916, Springer Verlang.

11. M. W. Bright~ A. R. Hurson, and S. H. Pakzad. A Taxonomy and Current Issues
in Multidatabase Systems. tEEE Computer, 25(3):50-59, March 1992.

12. P. Buneman, S. Davidson, G. Hillebrand, and D. Sucie. A Query Language and
Optimization Techniques for Unstructured Data. In SIGMOD'96, pages 505-516,
Montreal, Quebec, Canada, June 1996.

13. OCLC Online Computer Library Center. Fred: The SGML Grammar Builder.
Available at "http://www.oclc.org:80/fred/', 1995.

14. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Doc-
uments to Novel Query Facilities. In SICMOD'94, pages 313-324, Minneapolis,
Minnesota, USA, May 1994.

15. V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with General-
ized Path Expressions. In SIGMOD'96, pages 413-422, Montreal, Quebec, Canada,
June 1996.

16. V. Christophides and A. Rizk. Querying Structured Documents with Hypertext
Links ushlg OODBMS. In ECHT'94, pages 186-197, Edinburgh, United Kingdom,
September 1994. ACM.

17. P. Constantopoulos. Cultural Documentation: The CLIO System. Technical Re-
port 115, Institute of Computer Science, FORTH, January 1994.

18. L. Elasry. SGML-DBOO Stockage et Manipulation de Documents Structures.
Master's thesis, Universit~ SORBONE, September 1992.

19. Euroclid. Le Parseur SGML d'Euroclid. Internal document, Euroclid, 12, Avenue
des Pr6s 78180 Montigny le Bretonneux, 1991.

20. P. Francois. Generalized SGML Repositories: Requirements and Modelling. Com-
puter Standards ~J Interfaces, 18:11-24, 1996.

21. P. Futtersack and Q.N. Vuong. Mod61isation et Stockage de Documents SGML.
Collection de notes internes de la Direction des t~tudes et Recherches 95NO00039,
EDF-DER, Service IPN. Ddpartement SID. 1 Av. du GdnSral-de-Gaulle, 92141
Clamart Cedex, 1995.

22. C. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.
23. R. Goldman and J. Widom. DataGnides: Enabling Query Formulation and Opti-

mization in Semi-Structured databases. Stanford Technical Report, 1997.

324

24. Institute Of Computer Science (FORTH) - Hellas. SIS - Semantic Index System,
version 2.1 edition, May 1997.

25. ISO. Information Processing-Text and Office Systems- Standard Generalized
t~arkup Language (SGML). ISO 8879, 1986.

26. ISO/IEC. Information Technology-Hypermedia/Time-based Structuring Lan-
guage (HyTime). ISO/IEC 10744, 1992.

27. P. Kilpel£inen a~td D. Wood. Exceptions in SGML Document Grammars. Sub-
mitted for publication, 1995.

28. R. Light. Getting a handle on Exhibition Catalogues: the Project CHIO DTD.
Available at "http://www.cimi.org/cimi", Consortium for Interchange of Museum
Information, 1995.

29. J. Le Maitre, E. Murisasco, and M. Rolbert. SmlgQL un Langage d'Interrogation
de Documents SGML. In BDA '95, pages 431-446, Nancy, France, August 1995.

30. J. Mylopoulos, A. Borgida, M° Jarke, and M. Koubarakis. Telos: Representing
knowledge about Information Systems. ACM Transactions on Information Sys-
tems, 8(4), October 1990.

31. A. Nica and E. A. Rundensteiner. Uniform Structured Document Handing using a
Constraint-besed Object Approach. In Digital Libraries: Research and Technology
Advances, ADL'95 Forum, pages 83-101, McLean, Virginia, USA, May 1996. LNCS
1082, Springer-Verlag.

32. D. Raggett. HyperText Markup Language Specification Version 3.0. Inter-
net Draft, March 1995. AvaJliable at http:/ /www.wJ.org/hypertext/WWW/-
MarkUp/ht nflJ/CoverPage .html.

33. A. Ramfos, N.J. Fiddian~ and W.A. Gray. Object-oriented to relational inter-
schema meta-translation. In Workshop on heterogeneous databases, December
1989.

34. D. R~rmond, F. Tompa, and D. Wood. From Data Representation to Data Model:
Meta-semantics Issues in the Evolution of SGML. Computer 8J Interface, 18:25-36,
1996.

35. A. Rizk, F. Mal~zieux, and M. Scholt. Analyse des 61~ments du Syst~me
d'Information: D6finition SGML de la Struture des Dossiers de l'Inventaire. Con-
vention de recherche n 295b212 0016008011, Euroclid, 1996.

36. J. F. Roddick. A Survey of Schema Versioning Issues for Database Systems. In-
formation and Software Technology, 37(7):383-393, 1995.

37. R. Sacks-Davis, W. Wen, A. Kent, and K. Ramamohanarao. Complex Object Sup-
port for a Document Database System. In Thirteenth Australian Computer Science
Conference, pages 322-333, Victoria, Australia, t990. Monash University.

38. A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Dis-
tributed Heterogeneous, and Autonomous Databases. ACM Computing Surveys,
22(3):183-236, September 1990.

39. J. Warmer and S. Egmond. The Implementation of the Amsterdam SGML Parser.
Electronic Publishing, 2(2):65-90, July 1989.

40. D. Wood. Standard Generalized Markup Language: Mathematical and Philosoph-
ical Issues. In Computer' Science Today: Recent Trends and Developments. LNCS
1000, 1995.

41. R. Zicari. A Framework for Schema Updates in an Object-Oriented Database
system. In IEEE Data Engineering Conference, Kobe, Japan, 1991.

42. J. Zobel, J. A. Thom, and R. Sacks-Davis. Efficiency of Nesting Relational Docu-
ment Database Systems. In VLDB'91, pages 91-102, Barcelona, Catalonia, Spain,
September 1991.

