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Abstract. Recently, the W3C Linking Open Data effort has boosted the pub-
lication and inter-linkage of large amounts of RDF datasets on the Semantic
Web. Various ontologies and knowledge bases with millions of RDF triples from
Wikipedia and other sources, mostly in e-science, have been created and are
publicly available. Recording provenance information of RDF triples aggregated
from different heterogeneous sources is crucial in order to effectively support
trust mechanisms, digital rights and privacy policies. Managing provenance be-
comes even more important when we consider not only explicitly stated but also
implicit triples (through RDFS inference rules) in conjunction with declarative
languages for querying and updating RDF graphs. In this paper we rely on col-
ored RDF triples represented as quadruples to capture and manipulate explicit
provenance information.

1 Introduction

Recently, the W3C Linking Open Data [29] effort has boosted the publication and in-
terlinkage of large amounts of RDF datasets on the Semantic Web [1]. Various ontolo-
gies and knowledge bases with millions of RDF triples from Wikipedia [26] and other
sources have been created and are available online [25]. In addition, numerous data
sources in e-science are published nowadays as RDF graphs, most notably in the area
of life sciences [27], to facilitate community annotation and interlinkage of both sci-
entific and scholarly data of interest. Finally, Web 2.0 platforms are considering RDF
and RDFS as non-proprietary exchange formats for the construction of information
mashups [16,28].

In this context, it is of paramount importance to be able to store the provenance of a
piece of data in order to effectively support trust mechanisms, digital rights and privacy
policies. Provenance means origin or source and refers to from where and how the piece
of data was obtained [33]. In the context of scientific communities, provenance infor-
mation can be used in the proof of the correctness of results and in general determines
their quality. In some cases, provenance of data is considered more important than the
result itself.

The popularity of the RDF data model [8] and RDF Schema language (RDFS) [2]
is due to the flexible and extensible representation of information, independently of the
existence or absence of a schema, under the form of triples. An RDF triple, (subject,-
property,object), asserts the fact that subject is associated with object through prop-
erty. RDFS is used to add semantics to RDF triples, by imposing inference rules [15]
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(mainly related to the transitivity of subsumption relationships) which can be used to
entail new implicit triples (i.e., facts) that are not explicitly asserted.

Currently, there is no adequate support for managing (i.e., querying and updating)
provenance information of implicit RDF triples. There are two different ways in which
such implicit knowledge can be viewed and this affects the semantics of update opera-
tions only. Under the coherence semantics [10], implicit knowledge does not depend on
the explicit one but has a value on its own; therefore, there is no need for explicit “sup-
port” of some triple. Under this viewpoint, implicit triples are “first-class citizens”, i.e.,
considered of equal value as explicit ones. On the other hand, under the foundational
semantics [10] each implicit triple depends on the existence of the explicit triple(s) that
imply it: implicit knowledge is only valid as long as the supporting explicit knowledge
exists. It should be emphasized that the selected viewpoint is irrelevant as far as stan-
dard implication and querying is considered, but it affects the way updates should be
performed; in particular, the coherence semantics corresponds to “belief set changes”,
whereas foundational semantics corresponds to “belief base changes”, in the belief re-
vision terminology [10].
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Fig. 1. Granularity Levels of Provenance

In this paper we propose the use of
colors (as in [4]) in order to capture
the provenance of RDF data and schema
triples. Intuitively, the color of an im-
plicit and explicit triple represents the
source from which the triple was ob-
tained. We record the color of an RDF
triple as a fourth column, hence obtain-
ing an RDF quadruple as in [7,17].

To provide the intuition of the gran-
ularity levels of provenance for RDF
datasets that we capture with this work,
we compare it with the representation of provenance information in the relational con-
text. For instance, authors in [4] use colors to capture the provenance of relational tables,
tuples and attributes. If we consider that a relational tuple of the form [a1:v1, . . . , ak:vk]
with tuple identifier tid corresponds to a set of triples (tid, aj , vj), j = 1, . . . k, then
(see Fig. 1): a color assigned to (a) a single triple captures provenance at the level of
an attribute of the relational tuple; (b) a collection of triples sharing the same subject
captures provenance at the level of the relational tuple and finally (c) a set of triples
whose subjects are instances of the same schema class, captures provenance of the rela-
tional table. The quadruples used to represent colored RDF/S triples leverage the syntax
of RDF Named Graphs [5]: an RDF named graph can be modeled by arbitrary sets of
triples sharing the same color.

The main contributions of this work are:

– We rely on the notion of colors to capture provenance information of explicit and
implicit RDF triples. In particular, we employ a semigroup structure, defined by a
set of colors to record and a binary operation “+” to reason over the provenance of
RDF triples.
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– We extend the RDFS inference rules [15] for computing the composite provenance
of implicit RDF triples. In this respect, we devise an algorithm for determining on
the fly the provenance of non-materialized implicit RDF triples.

– We study the semantics of provenance propagation and querying for the subclass,
subproperty and type RDF hierarchies when colored RDF triples are represented
as quadruples. In addition, we discuss atomic update operations (i.e., inserts and
deletes) of RDF quadruples; updates are considered under the coherence semantics
which allow us to preserve more knowledge during update operations [10].

The paper is structured as follows: in Section 2 we present the motivating example that
we will use throughout this paper. Section 3 presents the basic RDF and RDFS notions.
In Section 4 we introduce the notions of color and quadruple and discuss inference rules
for sets of RDF quadruples. Section 5 discusses simple queries and atomic updates. We
present related work in Section 6 and conclude in Section 7.

2 Motivating Example

We will use, for illustration purposes, an example taken from the News application
domain. The RDFS schema of our News example captures information related to news-
papers and politicians as well as the relationships between them and is contributed by
different information sources.

s p o c

q1 &NYT endorses &B . Obama c2
q2 &NYT rdf:type Newspaper c4
q3 Newspaper rdf:type rdfs:Class c3
q4 Newspaper rdfs:subClassOf Mass Media c3
q5 Mass Media rdfs:subClassOf Media c5
q6 Candidate rdf:type rdfs:Class c5
q7 &B . Obama rdf:type Candidate c5
q8 endorses rdf:type rdf:Property c1
q9 endorses rdfs:domain Newspaper c1
q10 endorses rdfs:range Candidate c1
q11 Candidate rdfs:subClassOf Person c1
q12 supports rdf:type rdf:Property c1
q13 supports rdfs:domain MassMedia c1
q14 supports rdfs:range Person c1
q15 endorses rdfs:subPropertyOf supports c2
q16 &NYT endorses &B . Obama c1
q17 Media rdf:type rdfs:Class c5

Fig. 2. Relation Q(s, p, o, c)

Relation Q(s,p,o,c) that
stores both schema and data
triples is shown in Fig. 2.
For Q(s, p, o, c), the s , p
and o columns stand for the
subject, predicate and object
of an RDF triple. Column c
is used to store the prove-
nance (color) of a triple (s , p,
o), which corresponds to the
source from which this triple
originates from and is rep-
resented by a URI (the URI
of the source). We say that a
triple (s, p, o) is colored c iff
(s, p, o, c) is in Q(s, p, o, c).
The set of triples (s , p, o) can

be obtained by projecting on columns s , p and o of Q(s, p, o, c). In Q(s, p, o, c), a triple
(s , p, o) can be assigned different colors (e.g., quadruples q1 and q16); this way, we can
capture data integration scenarios in which the same piece of information originates
from different sources.

Since RDF/S graphs can be seen as a kind of node and edge labeled directed graphs,
we use the following graphical notation: classes and properties (binary relations
between classes) of an RDFS vocabulary, are represented with boxes, and ovals re-
spectively. Instances of classes contain their URI reference and to distinguish between
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individual resources and classes, we prefix the URI of the former with the “&” symbol.
RDFS built-in properties rdfs:subClassOf, rdf:type and rdfs:subPropertyOf are repre-
sented by dashed, dotted and dotted-dashed arrows respectively. Fig. 3 shows the graph
obtained from the quadruples in Q(s, p, o, c) of Fig. 2. For (s, p, o, c), we color the edge
with c and we draw s p c !!o (except if p is one of the built-in RDF/S properties where
we draw s c !!o ).
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Fig. 3. Graph representation of Q(s, p, o, c)

A great part of the information captured by a set of RDF triples can be inferred [15]
by the transitivity of class and property subsumption relationships (rdfs:subClassOf
and rdfs:subPropertyOf respectively) stated in the associated schemas. For instance,
although not explicitly asserted in Q(s, p, o, c), we can infer that Newspaper is a sub-
class of Media because (i) Newspaper is a subclass of Mass Media (quadruple q4) and
(ii) Mass Media is a subclass of Media (quadruple q5).

The question raised here is the following: “what is the color of the implicit RDF
triple?”: the triple cannot be colored either c3 or c5 (colors of quadruples q4 and q5 re-
spectively). In terms of provenance, we view the origin of this triple as composite: this
triple should be colored c3 and c5. A possible way to represent this fact is to add quadru-
ples (Newspaper , rdfs:subClassOf, Media , c3) and (Newspaper , rdfs:subClassOf, -
Media , c5) in Q(s, p, o, c). But, in this case, the query “return the triples colored c3”
would falsely return (Newspaper , rdfs:subClassOf, Media). Hence, composite origin
cannot be captured by associating with the implicit triple separately the colors of its
implying triples.

Instead, we capture the provenance of implicit triples using colors defined by ap-
plying the special operation “+” on the colors of its implying triples. For instance,
we color triple (Newspaper , rdfs:subClassOf, Media) with the color c(3,5) = c3 + c5.
Color c(3,5) can be seen as a new, composite source of information: it is a new URI
and is assigned to the triples which are implied by triples colored c3 and c5 (as in the
above example). Note that in this paper, we only consider where provenance [33], i.e.,
we record the sources that contributed in generating a particular triple, not the processes
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(e.g., the particular inference rules) that led to its generation (how provenance) [33]. In
Section 4 we discuss the properties of operation “+” in more detail.

As with annotated databases [11,12], we aim at supporting both provenance propa-
gation and provenance querying over the subclass, subproperty and type RDF hierar-
chies. In the case of provenance propagation, queries are targeted to the original data
and provenance is propagated to the query results. The result of these queries are ex-
plicit and implicit colored RDF triples. For instance, one can ask the query “return all
instances of class Newspaper”. The result of the query will be (&NYT , rdf:type, -
Newspaper , c4). Query “return all subclasses of Media” will return (Newspaper ,
rdfs:subClassOf, Media , c(3,5)) and (Mass Media , rdfs:subClassOf, Media , c5). Note
that (Newspaper , rdfs:subClassOf, Media , c(3,5)) is an implicit quadruple obtained by
applying the transitive rdfs:subClassOf subsumption relationship on quadruples (Mass
Media , rdfs:subClassOf, Media , c5) and (Newspaper , rdfs:subClassOf, Mass Media ,
c3) as previously discussed. On the other hand, in the case of provenance querying,
queries are explicitly targeted at provenance information. Examples falling in this cat-
egory are queries asking for the color of a given triple, or queries that filter triples
given a color. For instance, the query “return the color of (Newspaper , rdfs:subClassOf,
Media)”, will return c(3,5).

In this work, we support atomic updates; more specifically, one can either (a) in-
sert a quadruple, or (b) delete an explicit or implicit quadruple. As previously stated,
for our update operations we adhere to the coherence semantics [10], according to
which we must explicitly retain all the implicit triples that will no longer be implied
after the deletion of an explicit triple; we must also ensure that the resulting set of
quadruples is redundant-free. As an example, consider the deletion of (&B . Obama ,
rdf:type, Candidate , c5). According to the coherence semantics we must retain the
implicit information (&B . Obama , rdf:type, Person , c(1,5)) implied by quadruples
(&B . Obama , rdf:type, Candidate , c5) and (Candidate , rdf:subClassOf, Person , c1).
Had we followed the foundational semantics, the implicit triple (and all the information
it carries) would be lost, which would correspond to an unnecessary loss of information.

3 Preliminaries

In this work, we ignore non-universally identified resources, called unnamed or blank
nodes [14]. In this respect, we consider two disjoint and infinite sets U, L, denoting the
URIs and literals respectively.

Definition 1. An RDF triple (subject, predicate, object) is any element of the set
T = U × U × (U ∪ L).

The RDF Schema (RDFS) language [2] provides a built-in vocabulary for asserting
user-defined schemas in the RDF data model. For instance, RDFS names rdfs:Resource
(res), rdfs:Class (class) and rdf:Property (prop)1 could be used as objects of triples de-
scribing class and property types. Furthermore, one can assert instance of relationships
of resources with the RDF predicate rdf:type (type), whereas subsumption relation-
ships among classes and properties are expressed with the RDFS rdfs:subClassOf (sc)

1 In parenthesis are the terms we use to refer to the RDFS built-in classes and properties.



Coloring RDF Triples to Capture Provenance 201

and rdfs:subPropertyOf (sp) predicates respectively. In addition, RDFS rdfs:domain
(domain) and rdfs:range (range) predicates allow one to specify the domain and range
of the properties in an RDFS vocabulary. In the rest of this paper, we consider two
disjoint and infinite sets of URIs of classes (C ⊂ U) and property types (P ⊂ U).

4 Provenance for RDF/S Data

In the same spirit as in [4] for relational databases, we assign a color to an RDF triple
in order to capture its provenance.

Definition 2. Structure (I, “+”) is a commutative semigroup where:

– I ⊂ U is the set of colors, disjoint from the sets of class C and property types P.
– “+” is a binary operation with the following properties: ∀c1, c2, c3 ∈ I

c1 + c1 = c1 (Idempotence)
c1 + c2 = c2 + c1 (Commutativity)
c1 + (c2 + c3) = (c1 + c2) + c3 (Associativity)

Binary operation “+” is defined to capture the provenance of implicit RDF triples (see
Table 1) and returns a composite color which is also in I, i.e., if a triple t is implied
by triple t1 (whose color is c1) and t2 (whose color is c2), then the color of t should
be c1 + c2 and is denoted by c(1,2). In fact, c(1,2) is a new URI in I whose exact
form is an implementation detail that we don’t address in this paper. Note that, for n
colors, there are O(2n) possible composite colors, so the storage of a composite color
would require O(n) bits in an efficient implementation. For an implicit RDF triple, its
implying triples are those used to obtain it through the application of the inference rules
that will be discussed in Section 4.1.

We say that color ck is a defining color of c(1,2,...,n) and write ck ! c1,2,...,n iff k ∈
{1, 2, ..., n}, i.e., if c(1,2,...,n) can be obtained by an operation of the form c(1,2,...,n) =
ck + c for some color c. In other words, if a triple t is colored c(1,2,...,n) and ck is a
defining color of c(1,2,...,n), then t is an implicit triple which has been inferred using
some triple colored ck.

The intuition behind the properties of the “+” operation is the following: (a) an
implicit RDF triple obtained from triples of the same color inherits the color of its
implying triples (idempotence) (b) the color of an implicit triple is uniquely determined
by the colors of the triples that imply it and not by the order of application of the
inference rules (commutativity and associativity).

We should also note that c1 + c2 is a new color unless c1 = c2. In this manner, we
keep a clear separation of what is given (explicit) and what can be implied (implicit).
Moreover, the choice of idempotence is due to the semantics we give to colors as sources
of information and the type of provenance we support: we need to know which sources
participated in the creation of a new triple irrespective of which triples contributed to
its implication. On the other hand, commutativity and associativity stem from the fact
that the set of triples that are implied by a given triple set is the same irrespective of the
order in which the inference rules are applied.
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Definition 3. An RDF quadruple (subject, predicate, object, color) is any element
of the set D = U × U × (U ∪ L) × I.

Using this definition, we can define the notion of an RDF dataset featuring triples asso-
ciated with their provenance information as follows:

Definition 4. An RDF Dataset d is a finite set of quadruples in D (d ⊆ D).

Note that none of the existing approaches in the literature combine intentional and ex-
tensional assignment of triples to provenance information (colors). In [30] RDF Named
Graphs, capturing the provenance of RDF triples, are defined intentionally through
SPARQL [31] views and do not support the explicit assignment of triples to such graphs,
whereas in [5] a purely extensional definition is followed. The notion of colors as in-
troduced in this paper allows us to capture both the intentional and extensional aspects
of RDF graphs (i.e., sets of RDF triples) that are useful to record and reason about
provenance information in the presence of updates.

4.1 Inference

Similarly to RDF graphs (i.e., sets of triples) we define a consequence operator that
abstracts a set of inference rules. These rules compute the closure of an RDF dataset d,
denoted by Cn(d), which is obtained using the inference rules of Table 1. We say that
a dataset d entails a quadruple q, and write d ' q, iff q ∈ Cn(d). We say that a triple t
= (s, p, o) is colored c iff (s, p, o, c) ∈ Cn(d).

The inference rules shown in Table 1 extend those specified in [15] in a straight-
forward manner to take into account colors. They compute the color of an implicit
triple, using the colors of its implying triples. For instance, for our motivating example
of Section 2, quadruple (Newspaper , rdfs:subClassOf, Media , c(3,5)) is obtained by

applying the Transitivity of sc I(2)
d rule on quadruples (Newspaper , rdfs:subClassOf,

Mass Media , c3) and (Mass Media , rdfs:subClassOf, Media , c5).

4.2 Redundancy Elimination

In our work we consider that the RDF datasets are redundant free. An RDF dataset is
redundant free if there does not exist a quadruple that can be implied by others when ap-
plying inference rules I(1)

d – I(6)
d of Table 1. The detection and removal of redundancies

is straightforward using these rules.
In the sequel, we assume that queries and updates are performed upon redundant

free RDF datasets. In effect, this means that redundancies are detected (and removed)
at update time rather than at query time. This choice was made because we believe
that in real scale Semantic Web systems, query performance should prevail over update
performance. Redundant free RDF datasets were chosen because they offer a num-
ber of advantages in the case of transaction management for concurrent updates and
queries.
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Table 1. A subset of the RDFS Inference Rules for RDF Datasets

Reflexivity of sc Transitivity of sc

I(1)
d :

(C, type, class, c1)

(C, sc, C, c1) I(2)
d :

(C1, sc, C2, c1), (C2, sc, C3, c2)

(C1, sc, C3, c(1,2))

Reflexivity of sp Transitivity of sp

I(3)
d :

(P, type, prop, c1)

(P, sp, P, c1) I(4)
d :

(P1, sp, P2, c1), (P2, sp, P3, c2)

(P1, sp, P3, c(1,2))

Transitivity of class instantiation Transitivity of property instantiation

I(5)
d :

(x, type, C1, c1), (C1, sc, C2, c2)

(x, type, C2, c(1,2)) I(6)
d :

(P1, sp, P2, c1), (x1, P1, x2, c2)

(x1, P2, x2, c(1,2))

5 Querying and Updating RDF Datasets

5.1 Querying RDF Datasets

In this section we discuss a simple class of queries that allow one to express queries
on the subclass, subproperty and type hierarchies of an RDF dataset. We consider V , C
to be two sets of variables for resources and colors respectively; V , C, U (URIs) and
L (literals) are mutually disjoint sets. We define a simple form of a quadruple pattern,
called q-pattern which is an element from (U ∪ V) × {type ∪ sc ∪ sp} × (U ∪ V) ×
(I∪ C). In our context, a query is of the form (H, B, C) where H (head) is a q-pattern,
B (body) is an expression defined after the antecedent of the inference rules presented
in Section 4.1, and C (constraints) is a conjunction of atomic predicates. Each atomic
predicate has the form: (1) v = const for v ∈ V ; (2) v ! v′ for v, v′ ∈ C; (3)
c = c1 + c2 . . . + ck where c ∈ C and ci ∈ I.

According to the above definition, one can express constraints on resources (1), on
colors (2), as well as to specify that a color considered in the query is defined by a set
of other colors (3). In addition, we require that all variables that appear in the head of
the query (H) appear in the query’s body (B). This restriction is imposed in order to
have computationally desirable properties.

We denote variables with ?x, ?y, . . . for resources and ?c1, ?c2, . . . for colors. To
define the query semantics, we use the notion of mapping (as in [21]) as follows: a
mapping µ is a partial function µ : (V ∪ C) → U. The domain of µ (dom(µ)) is the
subset of V ∪ C where µ is defined. For a variable ?v, µ(?v) denotes the resource or
color to which ?v is mapped through µ.

To define the semantics of a q-pattern we must define first the semantics of a property
r over an RDF dataset d, denoted by [[r]]d. Given an RDF dataset d, [[r]]d for properties
type, sc, sp, domain, range and user defined property p is given in Table 2. We write
d 'S q to denote that dataset d entails quadruple q when the inference rules in S are
applied on d.
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Table 2. [[r]]d for type, sc, sp, domain, range and user defined property p

[[type]]d = {(x, y, c) | d !{I
(2)
d ,I

(5)
d } (x, type, y, c)}

[[sc]]d = {(x, y, c) | d !{I
(1)
d ,I

(2)
d } (x, sc, y, c)}

[[sp]]d = {(x, y, c) | d !{I
(3)
d ,I

(4)
d } (x, sp, y, c)}

[[domain]]d = {(x, y, c) | d ! (x,domain, y, c)}
[[range]]d = {(x, y, c) | d ! (x, range, y, c)}
[[p]]d = {(x, y, c) | d !{I

(4)
d ,I

(6)
d } (x, p, y, c)}

Table 3. Semantics of q-patterns

[[(a, exp, ?y, ?c)]]d = {µ | dom(µ) = {?y, ?c} and (a, µ(?y), µ(?c)) ∈ [[exp]]d}
[[(?x, exp, a, ?c)]]d = {µ | dom(µ) = {?x, ?c} and (µ(?x), a, µ(?c)) ∈ [[exp]]d}
[[(?x, exp, ?y, c)]]d = {µ | dom(µ) = {?x, ?y} and (µ(?x), µ(?y), c) ∈ [[exp]]d}
[[(a, exp, b, ?c)]]d = {µ | dom(µ) = {?c} and (a, b, µ(?c)) ∈ [[exp]]d}
[[(a, exp, b, c)]]d = {µ | dom(µ) = ∅ and (a, b, c) ∈ [[exp]]d}

We write 〈r〉d to denote the semantics of property r when no inference rule is used.
We can now define the semantics of a q-pattern. Consider an RDF dataset d and q =
(?X, exp, ?Y, ?c) a q-pattern, where exp is one of sc, sp, type, domain and range. Then
the evaluation of q over d is defined as follows:

[[q]]d = {µ | dom(µ) = {?X, ?Y, ?c} and (µ(?X), µ(?Y ), µ(?c)) ∈ [[exp]]d}

In Table 3 we give the semantics of some q-patterns when URIs and colors are consid-
ered (where a, b ∈ U and c ∈ I). Finally, given a mapping µ we say that µ satisfies an
atomic predicate C, denoted by µ ' C, per the following conditions:

µ ' (?x = const) iff µ(?x) = const, const ∈ U, ?x ∈ dom(µ)
µ ' (?x =?y) iff µ(?x) = µ(?y), ?x, ?y ∈ dom(µ)
µ ' (?c =?c′) iff µ(?c) = µ(?c′), ?c, ?c′ ∈ dom(µ)
µ ' (?c!?c′) iff µ(?c) ! µ(?c′) ?c, ?c′ ∈ dom(µ)
µ ' (?c = c1 + ... + ck) iff µ(?c) = c1 + . . . + ck, ?c ∈ dom(µ)

For a query Q = (H, B, C) an RDF dataset d and mapping µ, such that µ ∈ [[B]]d, and
µ ' C, µ(H) is the quadruple obtained by replacing every variable ?x in dom(µ) with
µ(?x). The color variable (if any) is replaced by the color obtained by applying the “+”
operator as specified by the inference rules I(1)

d to I(6)
d of Table 1. The answer to Q is

the union of the quadruples µ(H) for each such mapping µ.

5.2 Updating RDF Datasets

In this section we discuss atomic update operations (inserts and deletes). Recall that in
our work we follow the coherence semantics [10] according to which we need to retain
implicit information that would be lost during a triple deletion. Moreover, we enforce
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that the resulting RDF datasets will remain valid with respect to the employed RDFS
schema. The notion of validity has been described in various fragments of the RDFS
language ([18,32]), and is used to overrule certain triple combinations. In the context
of RDF datasets, the validity constraints are applied (and defined) at the level of the
dataset, but the color-related part of the quadruple is not considered. The validity con-
straints that we consider in this work concern the disjointness between class, property
and color names and the acyclicity of rdfs:subClassOf and rdfs:subPropertyOf sub-
sumption relationships. An additional validity constraint that we consider in our work
is that the subject and object of the instance of some property should be correctly classi-
fied under the domain and range of the property respectively. For a full list of the related
validity constraints, see [19].

The semantics of each atomic update is specified by its corresponding effects and
side-effects. The effect of an insert or delete operation consists of the straightforward
insertion/deletion of the requested quadruples. The side-effects ensure that the result-
ing RDF dataset continues to be valid and non-redundant as discussed in [35]. Update
semantics adhere to the principle of minimal change [9], per which a minimal number
of insertions and deletions should be performed in order to restore a valid and non-
redundant state of an RDF dataset. The effects and side-effects of insertions and dele-
tions are determined by the kind of triple involved, i.e., whether it is a class instance or
property instance insertion or deletion. Due to space restrictions we only describe class
instance insertions and deletions.

INSERT Operation. A primitive insert operation is of the form: insert(s, p, o, i) where
s, p ∈ U, o ∈ U ∪ L, i ∈ I.

Algorithm 1. Class Instance Insertion Algorithm
Data: insert(x, type, y, i), RDF dataset d
Result: Updated RDF dataset d
if (∃ (x, y, i) ∈ [[type]]d) then return d;1

if (y /∈ C) then2

return d;3

forall ((x, z, i′) ∈ 〈type〉d s.t. ∃(y, z, i′′) ∈ [[sc]]d and i′ = i + i′′) do4

d = d \ {(x, type, z, i′)};5

end6

d = d ∪ {(x, type, y, i)};7

return d8

A formal description of the insertion of a quadruple (x, type, y, i) in an RDF dataset
d along with its side-effects can be found in Algorithm 1. At line 1 we examine if the
quadruple already belongs to the semantics of property type. If not, then we ensure that
y is a class (lines 2–3). If it is, then we remove all class instantiation quadruples from
the RDF dataset which can be implied through the quadruple to be inserted and the
class subsumption relationships (lines 4–6), to guarantee that the result is redundant
free. Finally, the quadruple is inserted (line 7). An example of a class instance insertion
is shown in Figures 4(a) and 4(b).
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Algorithm 2. Class Instance Deletion Algorithm
Data: delete(x, type, y, i), RDF dataset d
Result: Updated RDF dataset d
if (" (x, y, i) ∈ [[type]]d) then return d;1

forall ((x, y′, i′) ∈ [[type]]d,(y′, y, i′′) ∈ [[sc]]d s.t. i = i′ + i′′) do2

forall (y′, z, k) ∈ 〈sc〉d s.t. y′! = z do3

if "(z, y, h) ∈ [[sc]]d then d = d ∪ {(x, type, z, i′ + k)}4

end5

d = d \ {(x, type, y′, i′)}6

end7

forall (x, o, h) ∈ 〈q〉d, s.t. (q, c, i) ∈ 〈domain〉d do8

if " (x, c, j) ∈ [[type]]d then9

d = d \ {(x, q, o, h)} ;10

forall q′ s.t. ∃ (q, q′, h′′) ∈ [[sp]]d do11

if ∃ (x, e, k) ∈ [[type]]d s.t. ∃ (q, e, k′) ∈ 〈domain〉d then12

d = d ∪ {(x, q′, o, h + h′′)}
end13

14

end15

forall (o, x, h) ∈ 〈q〉d, s.t. (q, c, i) ∈ 〈range〉d do16

if " (x, c, j) ∈ [[type]]d then17

d = d \ {(o, q, x, h)} ;18

forall q′ s.t. ∃ (q, q′, h′′) ∈ [[sp]]d do19

if ∃ (x, e, k) ∈ [[type]]d s.t. ∃ (q, e, k′) ∈ 〈range〉d then20

d = d ∪ {(o, q′, x, h + h′′)}
end21

22

end23

return d24

DELETE Operation. A primitive delete operation is of the form: delete(s, p, o, i)
where s, p ∈ U, o ∈ U ∪ L, i ∈ I.

A formal description of the deletion of a quadruple (x, type, y, i) is given in Algo-
rithm 2. At line 1 we examine if (x, type, y, i) belongs to the semantics of property
type. If this is the case, then we must (1) insert all the quadruples that are implied by
the quadruple that we wish to delete (per the coherence semantics) and (2) delete the
quadruples that if retained would imply the quadruple we wish to delete (lines 2–7). To
ensure that the RDF dataset is still valid after the updates, we must remove all proper-
ties originating from (or reaching resp.) x whose domain (or range resp.) is a class that
x is no longer an instance of (lines 8–23). Examples of class instance deletions can be
found in Figures 4(c) and 4(d).

5.3 Complexity Analysis

When working with colored RDF triples, one of the basic kinds of queries that we need
to answer is “what is the color of a triple”. This is a provenance query and essentially
boils down to finding, for a given triple (s, p, o) and RDF dataset d, all quadruples of
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(a) Class Instance Insertion (1) (b) Class Instance Insertion (2)

(c) Class Instance Deletion (1) (d) Class Instance Deletion (2)

Fig. 4. Examples of Class Instance Insertions ((a)–(b)) and Deletions ((c)–(d))

the form (s, p, o, c) in Cn(d). Given that we work with redundant free RDF datasets
(so implicit triples are not materialized), we present here an algorithm that computes
the color of RDF triples without materializing Cn(d), and discuss its complexity.

Fig. 5. sc Hierarchy

Consider an RDF dataset d whose size is N . In
order to determine the color of (s, p, o), without
computing Cn(d), we need to find all the possible
ways in which a quadruple of the form (s, p, o, c)
(for any c) can be inferred using quadruples from
d. Using the algorithm below, this can be made in
O(N log(N)) time.

Certain quadruples are not involved in the infer-
ence rules in Table 1, so they cannot be implied by
others: these are all the quadruples that do not in-
volve the RDFS type, sc and sp relationships. De-
termining the color of such a quadruple is trivial, as
we only need to check d (rather than Cn(d)), so it
can be made in O(log(N)) time by a simple search
in d (using an appropriate index).
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To determine the color of quadruples that involve the aforementioned built-in RDFS
properties, we view the sc and sp hierarchies as directed acyclic graphs. Nodes in the
graph are classes (properties resp.), and there exists an edge between nodes x and y iff x
is a subclass (subproperty resp.) of y. The problem of obtaining the sequence of quadru-
ples from which e.g., quadruple (A, sc, B, c) (for any c), can be implied is equivalent
to discovering the path(s) (i.e., sequences of edges) in the DAG from node A to node
B. For each of these sequences of edges, we keep the color of each involved quadru-
ple. Recall that an edge may involve several quadruples (i.e., a triple can be colored
with different colors). The algorithm uses a depth-first search and terminates when B
is reached. At each step of the algorithm, we (i) find the superclasses of the context node
(i.e., the node that we are currently looking at) that are also subclasses of the target node
(e.g., B) and (ii) store the set of colors of the edges that we have already examined.

Algorithm 3. Traverse Subsumption Graph
Data: Classes source and target, RDF Dataset d, Set of colors S;
Result: Set of colors S;
if source=target then1

return S;2

res ← ∅ ;3

foreach class x, where x is a superclass of source and subclass of target do4

Let (source, sc, x, c) ∈ d;5

Let Sx ← ∅ ;6

forall colors ci in S do7

Sx ← Sx ∪ {ci + c};8

end9

res ← res ∪ Traverse Subsumption Graph(x,target,d,Sx);10

end11

return res12

In Algorithm 3 in order to obtain all the classes that are superclasses of source
and subclasses of target (line 4), we use the labeling scheme introduced in [6] that
captures the subsumption relationships between classes and properties and allows us
to determine whether a class (or property) is a subclass (or subproperty) of another in
constant time. This is achieved by simply comparing the labels of the classes/properties.
The labeling scheme is solely used to prune irrelevant subclass and subproperty paths,
thereby limiting our search space significantly, without taking into consideration colors
of triples.

As an example of application, consider the subclass hierarchy shown in Fig. 5. Sup-
pose that we need to discover the color of triple (A, sc, B). We start with class A and in
the first step we will keep classes A1,A2 and sets of colors SA1 = {c2}, SA2 = {c3, c9}
since the edges that determine that A is a subclass of A1, A2 are formed by triples col-
ored {c2}, {c3, c9} respectively. For each of the superclasses of A (i.e., A1, A2), we
perform exactly the same process and extend the sets of colors that we have obtained
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using operation “+”. Upon return of the recursion, these colors are placed into the
set res to be returned. The output of the algorithm are the colors: c(3,4), c(9,4), c(2,4),
c(2,9,3), where c(1,...,n) = c1 + . . . + cn.

Given the fact that we prune subsumption paths that are not relevant in line 4 (using
the labeling scheme), and that no cycles are allowed, the described process will, in the
worst case, consider each quadruple in the RDF dataset d once. Given that each access
requires a search in d, the cost of each access is O(log(N)) (using an adequate indexing
system). Therefore, the total complexity is O(N log(N)).

For the other triples that may appear as implicit ones, the algorithm is similar. In par-
ticular, if t is of the form (P, sp, Q), then the process is identical to the above, except
that properties and subproperty relationships are considered instead of class and sub-
class relationships. If t is of the form (A, type, B) then the process is almost identical,
except that, in the first step of the recursion, we search for all classes whose explicit
instance is A and are also (implicit or explicit) subclasses of B; the rest is the same. Fi-
nally, if t is of the form (x, P, y), then, again, the process is identical, except that, in the
first step of the recursion, we search for all explicit quadruples of the form (x, Q, y, c)
such that Q is an explicit or implicit subproperty of P . The rest of the recursion steps
are as in the above cases.

6 Related Work

So far, research on recording provenance for RDF data has focused on either associating
triples with an RDF named graph [5,34] or by extending an RDF triple to a quadruple
where the fourth element is a URI, a blank node or an identifier [7,17]. These works
vary in the semantics of the fourth element which is used to represent provenance, con-
text and access control information. RDF Named graphs have been proposed in [5,34]
to capture explicit provenance information by allowing users to refer to specific parts
of RDF/S graphs in order to decide “how credible is”, or “how evolves” a piece of
information. An RDF named graph is a set of triples to which a URI has been assigned
and can be referenced by other graphs as a normal resource; in this manner, one can
assign explicit provenance information to this collection of triples.

Currently, there is no adequate support on how to manage provenance of implicit
and explicit triples in the presence of queries and updates. Authors in [5] do not discuss
RDFS inference, queries and updates in the presence of RDF named graphs. Unfortu-
nately, existing declarative languages for querying and updating RDF triples have been
extended either with RDF named graphs (such as SPARQL [23] and SPARQL Up-
date [31]) or with RDFS inference support [22,24], but not with both. In this paper, we
attempt to fill this gap by proposing a framework based on the use of colors to cap-
ture provenance of RDF triples and reason about the provenance of implicit triples for
simple queries and atomic updates. In a previous work [20], we have introduced the
notion of RDF/S graphsets which builds upon and extends the notion of RDF named
graphs. In that paper we showed that the mechanism of RDF named graphs cannot cap-
ture the provenance of implicit RDF triples, and proposed RDF graphsets as a solution
to this problem. In this paper, we use colors as an elegant and uniform way to capture
the provenance of both explicit and implicit RDF triples. Colors are a generalization of



210 G. Flouris et al.

RDF named graphs [5]: a set of triples colored with a single color can be considered
as belonging to the RDF named graph whose URI is the color (recall that colors are
URIs). Colors obtained by applying the “+” operation on other colors simulate graph-
sets [20]. The notion of colors as introduced in this paper allows us to capture both the
intentional and extensional aspects of RDF graphs that are useful to record and reason
about provenance information in the presence of updates whereas none of the existing
approaches [5,30] combine intentional and extensional assignment of triples to prove-
nance information.

On the other side of the spectrum, a significant amount of work on the issue has
been done for relational and tree-structured databases [3,4,13,12]. Unlike these works,
we consider both recursion and updates, whereas [13] does not consider updates, [3,4]
supports updates but not recursion and [12] considers neither recursion or updates.
Moreover, we do not focus on provenance propagation through relational operators
but through inference rules that can be translated to relational unions and joins with
bounded recursion. However, inference rules compute on the fly implicit triples without
the need to materialize the provenance of intermediate results (per recursion step).

7 Conclusion

In this paper we proposed the use of colors to capture the provenance of RDF data and
schema triples. We used the logical representation of quadruples to store the color of an
RDF triple. The use of colors allows us to capture provenance at several granularity lev-
els and can be considered as a generalization of RDF Named Graphs. One of the main
contributions of the paper is the extension of RDFS inference rules to determine the
provenance of implicit RDF triples, an extension which is not possible under the RDF
named graphs approach and has been overlooked in the majority of approaches that
deal with managing provenance information for RDF graphs. Note that the extended
inference rules do not entail any additional complexity or scalability concerns to those
already involving RDFS reasoning (see complexity analysis). As a future work we will
study a more general algebraic structure (as in [13]) to capture the provenance of triples
and mappings obtained by the SPARQL operators [23]. In addition, we plan to study
the insertion and deletion of colors where the latter can be expressed as a batch deletion
of quadruples sharing the same color.
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