
Specifying Access Control Policies for XML Documents
with XPath

Irini Fundulaki
Network Data and Services Department

Bell Labs Research
USA

fundulaki@research.bell-labs.com

Maarten Marx∗

Language and Inference Technology Group
University of Amsterdam

The Netherlands

marx@science.uva.nl

ABSTRACT
Access control for XML documents is a non-trivial topic, as
can be witnessed from the number of approaches presented
in the literature. Trying to compare these, we discovered the
need for a simple, clear and unambiguous language to state
the declarative semantics of an access control policy. All
current approaches state the semantics in natural language,
which has none of the above properties. This makes it hard
to assess whether the proposed algorithms are correct (i.e.,
really implement the described semantics). It is also hard
to assess the proposed policy on its merits, and to compare
it to others (for file systems for instance).

This paper shows how XPath can be used to specify the
semantics of an access control policy for XML documents.
Using XPath has great advantages: it is standard technol-
ogy, widely used and it has clear and easy syntax and se-
mantics. We use the developed framework to give a formal
specification of the five most prominent approaches of access
control for XML documents from the literature.

Categories and Subject Descriptors
H.1 [Information Systems Models and Principles]:
Miscalleneous

General Terms
Languages, Security

Keywords
XML, XML access control, XPath

1. INTRODUCTION
Security has always been a key issue for information sys-

tems in general. The UNIX file system [24] has a built-in

∗Research supported by NWO grant 612.000.106.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’04, June 2–4, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

access control mechanism with users and groups, and more
recent file systems (AFS [3]) are using similar techniques.
Relational database systems also have built-in security in
the form of views or table privileges granted to users. Ditto
for directory servers [25].

With the increasing number of applications that either use
XML as their data model, or export relational data as XML
data, it becomes critical to investigate the problem of access
control for XML (either physical/native XML or views).

A number of standards such as XACML [18] (OASIS stan-
dard) and XACL [27] have already emerged to address the
problem of access control for XML documents.

That XML access control is not a trivial subject is clear
from the large number of different approaches suggested in
the literature [9, 14, 17, 23] and recently [16].

Access control for XML is different from already exist-
ing approaches in relational databases, or file systems for a
number of reasons:

• the semi-structured nature of XML documents [2]: un-
like file hierarchies or relational tables where the struc-
ture is known ahead of time, XML documents do not
necessarily have a schema1;

• the dependence of a node to its ancestors: unlike rela-
tional tables that usually exist as stand-alone entities,
an XML node lives with respect to its ancestors, and
its children are dependent on the node itself. For in-
stance, a meaningful scenario in the XML but not in
the relational context, is the requirement that when a
node is granted access, then access is also granted to
its descendants;

• the hierarchical nature of XML (also shared by file sys-
tems): XML access control policies all have the UNIX
policy as a special case, but they go much further. For
one thing, in the XML context it is useful to spec-
ify access control rules that apply to a node if some
condition is true (e.g. an attribute of the node has a
specific value). As mentioned previously, the big dif-
ference with file systems is the absence of a schema in
XML. In the UNIX policy the exact hierarchy is known
and the policy is described for every node. With XML
documents one might only have a vague idea of how
they look. Still it can be meaningful to grant or deny
access to certain parts of the document.

1By schema we mean here an XML Schema [26] or an XML
DTD that specify the structure of the XML document.

61

Our Contribution

The existing approaches deal with a number of different
dimensions of the problem and offer different solutions.

Our aim was to compare these different approaches among
each other and to the existing technologies for file systems.
This turned out virtually impossible because none of the
state of the art approaches gives a clear formal semantics of
their access control policy.

Indeed, the intended semantics is given in natural lan-
guage which is then implemented by a given algorithm. Of-
ten the natural language description was ambiguous or not
precise enough for a comparison, so we had to study the
given algorithms in order to understand what was meant.

We discovered that often the algorithms did something
different than promised in the natural language description.
Our original research goal seemed hopeless. From our com-
parison attempts it became clear that the topic is just too
difficult to be done in natural language. So we discovered
the need for a way of formally specifying the semantics of
access control policies for XML documents.

Having a formal specification language for XML access
control can serve a number of important goals. Then differ-
ent approaches become comparable and the most prominent
one could evolve as a standard. Then the community can
work on implementing the standard and the implementa-
tions can be checked on their correctness and the different
algorithms can be compared. So at this stage of the devel-
opment of XML access control it seems absolutely vital to
have such a formal specification language.

The main contributions of this paper are the following:

1. we describe how XPath 1.0 [12] can be used as a formal
specification language for XML access control policies
and

2. we survey and formalize the existing approaches in the
literature using XPath.

Motivating Example

We end this introduction with a small example drawn
from the domain of telecommunications where more and
more applications require secure access to user profile in-
formation.

Fig. 1 shows the XML DTD that describes user profile
information and Fig. 2 illustrates an XML document, a valid
instance of the DTD. It is inspired from efforts of standard
bodies in the telecommunications domain (3GPP GUP [1])
and Liberty Alliance [21]. A user’s profile (element Profile) is
associated with zero or one address book and calendar entry
(elements AddressBook, Calendar resp.). The user’s address
book contains zero or more contact entries (element Contact)
where each entry is associated with a type (e.g. attribute
type), with a first and last name (elements FN, LN resp.)
and a phone number (element Phone). Element Calendar is
associated with zero or more events (element Event) that has
a description, a time/date, and finally a location (elements
Desc, Time/Date and Location resp.).

The rest of this paper is organized as follows: In Section 2
we give our formal specification language for access control
for XML documents. In Section 3 we formalize the most im-
portant approaches in the literature using our specification
language. Finally we give our conclusions in Section 4.

<!ELEMENT Profile (AddressBook?, Calendar?)>

<!ELEMENT AddressBook (Contact*)>

<!ELEMENT Contact (FN, LN, Phone)>

<!ATTLIST Contact type #CDATA>

<!ELEMENT FN|LN|Phone #PCDATA>

<!ELEMENT Calendar (Event*)>

<!ELEMENT Event (Desc, Time/Date, Location)>

<!ELEMENT Desc|Time/Date|Location #PCDATA>

Figure 1: XML DTD for User Profile Information

Profile

AddressBook Calendar

Contact Event

@type FN LN Phone

public John Doe 2125678120

Desc Time/Date Location

Lunch 03/25/2004 Zabar’s

Figure 2: User Profile Document

2. SPECIFICATION LANGUAGE FOR XML
ACCESS CONTROL POLICIES

We first discuss the basic notions of access control pol-
icy and access control rule. A policy is a set of rules. We
undertake here the more-or-less agreed definition of an ac-
cess control rule which is a tuple (requester, resource, action,
effect, propagation) where:

• requester refers to the user or a set of users concerned
by the authorization;

• resource refers to the data that the requester is (or
not) authorized to access;

• action refers to the action (read, write, modify, delete
etc.) that the requestor is (or not) allowed to perform
on the resource;

• effect specifies whether the rule grants (’+’ sign) or
denies (’-’ sign) access to the resource and finally

• propagation defines the scope of the rule.

In this paper we assume that the requester and action pa-
rameters are fixed and concentrate on the resource, effect
and propagation components. We assume that an XML
document is represented by a node labeled tree, as in the
standard XPath Data Model [12]. We will refer to the ac-
cess control rules that grant access to a node as positive and
those that deny access as negative.

2.1 Granularity and Language for Access
Control

In most of the proposed approaches, the smallest unit of
protection is the XML node [9, 14, 17, 23, 18, 27] and the
XPath 1.0 [12] language is used to specify the XML nodes
concerned by an access control rule.

62

XPath 1.0 has been designed as a navigation language
that returns a subset of the nodes of a document and used by
a large number of XML-related technologies (XQuery [10],
XSLT [15] etc.).

The different approaches use restricted versions of the
XPath fragment whose syntax is given in Table 1. This
fragment is used in this paper to formalize the XML access
control problem.

locpath ::= axis ‘::’ ntst ‘[’expr‘]’ | ‘/’ locpath
| locpath ‘/’ locpath

expr ::= locpath | not expr | expr and expr
| expr or expr | locpath op v,

Table 1: XPath Fragment

In Table 1, locpath is the start production, axis denotes the
XPath axis relations2 and ntst is a node test that can be
a node label, � (that matches all labels), or function text()
that tests whether a node is a text node. op is one of the
XPath comparison operators (<, >, ≤, ≥, �=, =) and v is a
value. A formal definition of the XPath semantics is given
in [19, 4].

2.2 Semantics of Access Control
As mentioned earlier, we use the XPath [12] language to

specify formally the semantics of an access control policy
(acp for short).

Given an absolute XPath expression q and a document D,
[[q]]D denotes the set of nodes obtained by evaluating q at
the root node of D. We call this set of nodes the answer set
of q on D.

The semantics of an acp should describe what is [[q]]D

given the acp. We denote the latter by [[q]]
acp
D . An acp

restricts access to a document, so [[q]]
acp
D is always a subset

of [[q]]D .
XPath itself contains a handy mechanism to obtain sub-

sets of an answer set. This is done by filter expressions, the
XPath expressions specified between square brackets. This
works as follows: for n ∈ [[q]]D , n ∈ [[q[expr]]]D if and only if
expression expr evaluates to true when applied to n. In the
latter case, we say that node n is accessible.

Now we have a precise way of giving meaning to an access
control policy. Given such a policy P , we must describe
the XPath expression expr (obtained from P) by which the
answer set of a query q must be filtered to obtain only the
accessible nodes.

Before we can do that we need to have a closer look at the
access control policies themselves. Given an access control
policy, there are two questions that need to be answered:

• “when is an XML node accessible?” and

• “what happens to the node if there exists no access con-
trol rule that neither grants nor denies access to it?”.
In other words, what are the default semantics of the
access control policy;

2XPath has 13 axis relations: self, parent, child,
descendant, descendant -or -self, ancestor, ancestor -or -self ,
following -sibling, preceding -sibling, following, preceding,
attribute and namespace. The last one will not be used in
this paper.

The latter is easily answered: Most of the approaches [9,
17, 23, 27] consider that if there exists no access control
rule that neither grants nor denies access to a node, then
the node is considered as non-accessible. This seems most
reasonable and we also adopt it.

The first question is harder. Although it seems more or
less straightforward to determine whether a node is acces-
sible or not, this is not always the case. For example, a
node may be accessible if its parent is accessible (even if
there does not exist a rule which either directly or indirectly
grants or denies access to it).

Due to the hierarchical nature of XML, the notion of scope
of an access control rule is introduced in most of the current
approaches. The scope can be:

1. the node only [9];

2. the node and its attributes [14];

3. the node and its text node children [23] and

4. the node, its attributes, all its descendants and their
attributes [9, 14, 17, 23, 27]. In [9] the scope of a rule
can be restricted to the descendants of the node found
at a certain depth in the tree.

If the scope of a rule is (1), (2) or (3) then the rule is called
local [9, 14, 23]. If its scope is (4) it is called recursive [9,
14, 17, 23, 27].

All the above views are useful depending on the data. (4)
is the most natural, but there are examples for which (2) or
(3) might be better. Imagine an XML document in which all
data is stored using attributes or text nodes. Then to grant
permission to a node’s attribute or text sub-nodes would
just mean to grant access to the node.

Conflict Resolution: Recall that in an access control
policy we can have both negative and positive access control
rules. It might be the case that a node is granted access (by
a positive rule) and denied access (by a negative rule) at the
same time.

In this case, conflicts arise and there are different ap-
proaches to perform conflict resolution:

1. by using priorities: each access control rule is assigned
a priority and the rule with the highest priority is con-
sidered [14, 17];

2. deny overwrites (negative rule takes precedence over
positive rule) [14, 23, 27];

3. grant overwrites (positive rule takes precedence over
negative rule) [27];

Note that in the last case, negative rules become obsolete,
so it can be seen as a special case of the second where there
are no negative rules. The last two are special cases of the
first.

In the following we specify the semantics of an access con-
trol policy where deny overwrites is the strategy used. To-
gether with our chosen default semantics, deny overwrites
states that an XML node is accessible if there exist a posi-
tive rule that grants access to it, and no negative rule that
denies access to it.

An access control policy is defined by four sets of XPath
filter expressions Pl, Pr, Nl and Nr. A filter expression
is of the form ntst’[’fexpr’]’ where ntst is a node label, or �

63

that matches all labels and fexpr is a predicate as defined
in Section 2.1.

Expressions in Pl/Nl are the positive/negative local rules
(whose scope is the node and its text or attribute sub-nodes),
and Pr/Nr are the positive/negative recursive rules (whose
scope is the node and all its descendants and attributes).

[9, 14, 23] use absolute XPath expressions to express access
control policies. As demonstrated in [22], there is an effec-
tive transformation from absolute XPath expressions into
equivalent filter expressions. Thus our restriction to filter
expressions is no limitation (in fact, the rules often become
more natural after the transformation).

We list a few typical examples from our user profile sce-
nario, and their formulation in the above given format:

1. grant access to all nodes;

Pr = {∗}

2. only FN nodes are accessible;

Pl = {FN}

3. all nodes in the document are accessible except Calen-
dar nodes;

Pr = {∗} Nl = {Calendar}

4. grant access to all Calendar nodes and their descendant
nodes and deny access to all other nodes;

Pr = {Calendar}
Nr = {∗[not ancestor -or -self :: Calendar]}

5. grant access to Contact nodes (including their descen-
dant nodes) only if the value of their type attribute is
“public”;

Pr = {Contact[attribute :: type =′ public′]}

6. grant access to the AddressBook node, and all its de-
scendant nodes, except if they are below a Contact
node whose type attribute has the value “private”.

Pr = {AddressBook}
Nr = {Contact[attribute :: type =′ private′]}

We explain below the semantics of access control policies
which consider (i) local rules only, (ii) recursive rules only
and (iii) both local and recursive rules. As mentioned pre-
viously we consider here only the deny overwrites as the
conflict resolution policy.

2.2.1 Local Rules Only Policy

In this case, a node is accessible, if there exists at least one
positive rule that grants access to it, and no negative rule
that denies access to it. To write the XPath filter expression
which expresses exactly that, we have to distinguish between
(i) element, (ii) attribute and (iii) text nodes. In the case of
elements, the XPath filter expression is:

[
_

p∈Pl

self :: p
^

f∈Nl

not self :: f]

W
,
V

stand for disjunction and conjunction, respectively. As
far as attribute and element nodes are concerned, we have
to examine two cases:

1. the scope of a rule is only the node;

2. the scope of a rule is the node and also its attribute
(or text) sub-nodes.

In the first case, the XPath filter expression that we must
write for an attribute (resp. text) node, is exactly the filter
given above. In the second case, we need to examine the
parent of the element. An attribute/text node is accessible if
there is a positive rule that grants access to and no negative
rule that denies access to its parent. In this case, the filter
expression for attributes (resp. text) nodes is:

[
_

p∈Pl

parent :: p
^

f∈Nl

not parent :: f]

2.2.2 Recursive Rules Only Policy

Recall that the scope of a recursive rule is the node itself
and all its descendants. In this context, a node is accessible
if:

1. there exists a positive rule that grants access to one of
its ancestors, or to the node itself and

2. there does not exist a negative rule that denies access
to one of its ancestors or to the node itself.

Based on the above observations, the XPath filter expression
with which we need to filter the answer set of a query q is:

(1) : [
W

p∈Pr
ancestor -or -self :: p

(2) :
V

f∈Nr
not ancestor -or -self :: f]

2.2.3 Local and Recursive Rules Policy

We have expressed for the different access control policies
the XPath filters that should be applied to the result of a
query to obtain only the accessible nodes. In this section we
demonstrate how we can use the previous filters in the case
where the policy contains both recursive and local rules.

Given an access control policy ACP = (Pl,Pr,Nl,Nr),
a node n is accessible if:

1. (there exists at least one positive recursive rule that
grants access to it or,

2. there exist at least one positive local rule that grants
access to it), and

3. (there does not exist a negative recursive rule , and

4. there does not exist a negative local rule that denies
access to it).

The XPath filter expression which expresses exactly this is:

(1) [(
W

p∈Pr
ancestor -or -self :: p or

(2)
W

p∈Pl
self :: p) and

(3)
V

f∈Nr
not ancestor -or -self :: f and

(4)
V

f∈Nl
not self :: f]

One can observe how naturally the semantics of an access
control policy which contains both recursive and local rules
can be expressed using XPath filters. (1) and (3) above are
the two expressions of the filter in Section 2.2.2 and (2) and
(4) are the two expressions of the filter in Section 2.2.1.

64

2.3 Correctness of query evaluation

We have shown how to use XPath filter expressions to

describe [[q]]
acp
D , the answer set of q, given access control

policy acp. This is an efficient and simple way for describing
the semantics. To implement an access control policy in this
way can be very inefficient, and none of the state of the art
approaches does it in this way.

Instead they construct the authorized document which
contains only the nodes which are deemed accessible by the
access control policy, and then evaluate the query against
this document. In the papers we examined, these algorithms
tend to be quite complex. In all of them the access control
policy itself is described in natural language which is not
always unambiguous. It is fair to say that it is not possible
to check whether the algorithm correctly implements the ac-
cess control policy, for the sole reason that the semantics of
the access control policy are not specified formally! Being
able to specify the semantics of an access control policy in a
simple formal language as we just did, makes it possible to
assess the correctness of the algorithm.

3. FORMALIZING CURRENT APPROACHES

In this section we examine the most important approaches
in the field of XML access control. As already mentioned,
in these approaches, the semantics of an access control pol-
icy is expressed in natural language. Our objective in this
section is to show how we can use the specification language
presented previously to express their semantics.
Added in proof: At the time of writing we did not have
access to the recent [16] so it is not included in our survey.

3.1 Static Analysis for XML Documents:
Murata et. al.

Authors in [23] consider access control rules for the read
action only. In their case, a rule is a tuple of the form: (re-
quester, resource, effect) where these fields are as described
in Section 2. Their policies contain only recursive positive
and negative rules.

Granularity and Language for Access Control: Au-
thors in [23] consider the XML node as the protection unit
for which authorizations are specified. They use only the
child, descendant and attribute axes of the XPath fragment
specified in Section 2.1. The XPath predicates are restricted
to testing value equality between constants and XML at-
tributes. The XPath expressions in the rules are absolute.

Conflict Resolution Policy is deny overwrites: if a node
is granted access by a positive rule and denied access by a
negative one, then the latter overwrites the former.

Default Semantics is deny: if the node is neither granted
nor denied access by a rule, then the node is not accessible.

Semantics: As mentioned above, their policies contain only
recursive access control rules. In Section 2.2.2 we gave the
XPath filter expression (in the case of a policy that contains
only recursive rules) that must be applied to the answer set
of a query so that only accessible nodes are obtained.

Moreover, in their policies they enforce the denial down-
wards consistency requirement according to which:

“whenever a policy denies access to an element
then it also denies access to its subordinates ele-

ments and attributes. In other words, an element
is accessible only if all its ancestors are accessi-
ble.”

The above statement is itself ambigious: Consider for ex-
ample the XML document

<A><C/><D/>

and the following policy: ACP = (Pl,Pr,Nl, Nr), where
Pr = {B} and all other sets are empty. There is no rule
which grants or denies access to node A. According to their
default semantics, A will be marked as not accessible (the
policy denies access to A). But it grants access to B and its
descendant nodes. Hence this policy does not enforce the
denial downwards consistency requirement.

In order to enforce this requirement, there must always
exist a rule that grants or denies access to a node. This re-
striction can be formulated using the following XPath filter
expression:

[
_

p∈Pr

ancestor -or -self :: p
_

f∈Nr

ancestor -or -self :: f]

If there exist a node for which the application of the above
filter expression returns the empty set and not the node it-
self, then the policy does not satisfy the downwards consis-
tency requirement and can be then discarded.
We can see here that in this case we can specify constraints
that the policy requires using XPath filters. Hence, not only
can we express the semantics of the policy in XPath but also
constraints such as the above. As a consequence, we can ver-
ify at compile time whether the access control policy satisfies
or not these constraints.

Query Evaluation: The authors in [23] are concerned with
checking whether a given query requests only accessible nodes
(in other words whether the query is safe). To do that, they
translate queries and access control rules into automata and
then perform their intersection. In the cases where the safety
of a query cannot be statically decided, they actually eval-
uate the query at run-time.

3.2 Regulating Access for XML Documents:
Gabillon et. al.

Authors in [17] consider access control rules for the read
action only. A rule is a tuple of the form: (requester, re-
source, effect, priority) where the first three fields are as
described in Section 2. Priority defines the importance of
the rule. They use in their model both positive and negative
recursive access control rules.

Granularity and Language for Access Control: As in
most approaches, the XML node is the smallest protection
unit for which rules are specified. A restricted fragment of
XPath is used which considers only the child, descendant and
attribute axis to specify the nodes concerned by an access
control rule. The XPath predicates consider all the com-
parison operators between XML attribute values (or results
of function calls) and constants. In addition, parameterized
XPath expressions are allowed. For instance, in our user
profile management example, an access control rule might
state that a requestor has access to his contact entry in the
address book. This condition is formulated as follows:

Contact[child :: FN = $requestor]

65

This can be very naturally represented in our model if we
consider variables (e.g., $requestor) as symbols of the lan-
guage.

Conflict Resolution Policy is based on the use of prior-
ities: each rule is assigned a priority (integer). Given two
conflicting rules (i.e. one granting access to a node, and an-
other denying access to it), the rule with the highest priority
is selected. If there exist still conflicting rules, then the last
one (in order of declaration in the access control policy) is
chosen. The assignment of priorities to rules is random.

Default Semantics: To specify the default semantics of an
access control policy, they use the notions of closed and open
policy [20]. If the node is neither granted nor denied access
by some rule, then it is considered accessible in the case of
an open policy and inaccessible in the case of a closed policy.

Semantics: Their access control policy considers only re-
cursive rules. Due to the use of priorities in their model
we cannot represent the semantics of their access control
using our specification language. If no numerical priorities
are considered, then the semantics of their access control
policy can be specified by the XPath filter expression given
in Section 2.2.3.

Query Evaluation: To perform query evaluation they
compute the authorized view for the document and then
queries are evaluated against it. Their algorithm traverses
the document in pre-order and for each visited node it (a)
finds the access control rules which apply to it and (b) per-
forms conflict resolution. A node is kept (along with its
children) if it is accessible. Non accessible nodes are re-
jected (and hence their children).
It is evident from the above that the semantics of access
control and conflict resolution policy are enforced by the
algorithm for computing the authorized document.

3.3 Securing XML Documents: Damiani et.
al.

In [13, 14] a rule is a tuple of the form: (requester, re-
source, effect, type) where the first three fields are as de-
scribed in Section 2, and type can be the combination of any
of the following:

1. local or recursive;

2. DTD-level defined for a DTD or document-level defined
for a specific XML document. A rule in the former case
grants or denies access to the nodes in all the docu-
ments, valid instances of the DTD and in the latter
case to the nodes of the specific document.

DTD-level rules allow one to define organization level au-
thorizations (e.g. employees of a company can access the
profile document of their co-workers). Document-level rules
allow one to define more specific authorizations (e.g. high
level management cannot access the public entries of my
profile document).

In general, a document-level rule takes precedence over a
DTD-level one. But there are cases where we do not want
that. To be able to represent such cases, they introduce the
notion of weak document-level rules (which can be overwrit-
ten by DTD-level ones), and hard DTD-level rules (which
cannot be overwritten by document-level ones). By combin-
ing these two types with the previous four ones, the total

number of rule types is raised to eight.
Similar to the above approaches rules can be positive or
negative.

In this paper we consider the access control model pre-
sented in [14] which subsumes the one presented in [13].

Granularity and Language for Access Control: As
above, authors here consider the XML node as the unit of
protection for which rules are defined. The language used to
express the XML nodes concerned by a rule, is the XPath
fragment given in Section 2.1. In addition they support
XPath 1.0 [12] functions such as last() and position().
The XPath expressions used in their rules are absolute.

Conflict Resolution: Their conflict resolution policy is
rather complex. It is a combination of the deny overwrites
policy with a precedence policy defined for the eight different
rule types:

1. local rules take precedence over recursive ones;

2. document-level rules take precedence over DTD-level
ones, and finally

3. hard DTD-level rules take precedence over all rules.

Default Semantics: In contrast to the other approaches
where the default semantics is deny, here a node for which
there does not exist a rule that grants or denies access to it,
is considered indeterminate.

Semantics: In our formal model we have studied the cases
where the conflict resolution policy is deny overwrites. To
capture the semantics of Damiani et. al, we will introduce
here the “local takes precedence over recursive/deny over-
writes” conflict resolution policy in which:

• a local rule takes precedence over a recursive one;

• a negative rule takes precedence over a positive rule of
the same type;

Given an access control policy ACP = (Pl,Pr,Nl,Nr),
a node n is accessible if:

1. (there exists at least one positive local rule that grant
access and

2. there does not exist a negative local rule that denies
access to the node);

or

3. (there does not exist a positive local rule that grants
access and

4. there does not exist a negative local rule that denies
access and

5. there exists a positive recursive rule that grants access
and

6. there does not exist a negative recursive rule that de-
nies access to the node).

If there exist a negative local rule, because of the deny
overwrites principle, the node is not accessible.
In (1)-(2) we do not need to examine recursive rules. If
there exist a positive local rule that grants access and no
negative local rule that denies access to the node, then it is

66

accessible (local takes precedence over recursive principle).
(3)-(6) state that in the case where the node is not acces-
sible by local rules (3 and 4), then there must exist a positive
and no negative recursive rule for it (5 and 6).

According to these observations, the XPath filter expres-
sion that we must apply to the result of the evaluation of a
query is defined by the disjunction of C1 and C2 below:

C1 : (1) [
W

p∈Pl
self :: p

(2)
V

f∈Nl
not self :: f]

C2 : (3) [
W

p∈Pl
not self :: p

(4)
V

f∈Nl
not self :: f

(5)
W

p∈Pr
ancestor -or -self :: p

(6)
V

f∈Nr
not ancestor -or -self :: f]

Given the above two XPath filter expressions, we can de-
cide when a node is accessible or not. Recall that in their
semantics a node is indeterminate if there exist no rule which
grants or denies access to it. The above two equations do
not capture this case. To capture that, we must check if
there does not exist a positive and a negative access control
rule for the node.
This can be again expressed by the following XPath filter
expression:

C3 : [
V

p∈Pr∪Pl
not ancestor -or -self :: pV

f∈Nr∪Nl
not ancestor -or -self :: f]

If C3 holds for a node n, then n is indeterminate.
Table 2 shows a summary for the semantics in Damiani et.
al.

Decision Semantics
Accessible if not C3 and (C1 or C2)
Not Accessible if not C3 and (not C1 and not C2)
Indeterminate if C3

Table 2: Summary of the semantics in Damiani et.
al.

We have discussed the semantics of their approach only
in the case of the local takes precedence over recursive/-
deny overwrites conflict resolution policy. If the DTD and
document-level dimension is introduced, then we define the
semantics in exactly the same way as previously by combin-
ing the two policies.

Query Evaluation: Similar to [17] in order to perform
query evaluation, the authors construct the authorized doc-
ument. They use a two-phase algorithm where in the first
phase they label each node in the XML tree with a tuple
indicating whether a specific type of authorization holds or
not for the node.

In the second phase, the conflict resolution policy is ap-
plied to decide whether the node is accessible or not, and
based on this decision the XML document is pruned to pro-
duce the authorized document.

3.4 Secure and Selective Dissemination of XML
Documents: Bertino et. al.

Bertino et. al. have published a considerable number of
papers in the field of XML access control [5, 6, 7, 8, 9]. In
this paper we discuss the model presented in [9].

In [9] a rule is a tuple of the form: (requester, resource,
privilege, propagation) where the first two and the last field
are as described in Section 2 and privilege defines the type
of access the requester has on the resource. In their policies
they consider only positive rules.

Granularity and Language: Similar to the above ap-
proaches, authors in [9] consider the XML node as the small-
est unit of protection for which authorizations are defined.

The language used to specify the XML nodes concerned
by an authorization is a variant of XPath and is based on the
composition of element names and attribute names. Their
expressions can be translated into XPath expressions in the
XPath fragment given in Section 2.1 using the attribute and
child XPath axes. Their name tests are restricted to node la-
bels or � that matches all labels. Predicates consider equal-
ities of path expressions with constants. Finally, they con-
sider only absolute expressions in their rules.

In addition, the use of element identifiers is supported
that allow one to specify access control rules for a specific
XML node. In XML we can model that by associating each
element in the document with the XML attribute identifier
whose value is the element identifier. To refer to a node n
whose value of the identifier attribute is m, we can simply
write:

n[attribute :: identifier = m]

Default Semantics: The default semantics is deny.

Semantics: In their model, they use both local and recur-
sive rules. The scope of a local rule is the node only and not
its attributes (as in [14]) or text sub-nodes (as in [23]). The
scope of a recursive rule can be either all the sub-elements of
an element or those that are found at a certain depth of the
XML tree. Recursive rules cannot be specified for attribute
nodes.

Another important issue in their model is that they treat
differently the XML attributes of type IDREF. To do that,
they define two privileges (or actions in our terminology): the
view privilege which allows one to read the attributes (and
their values) (except the IDREF attributes) of an element.
The navigate privilege allows one to read the IDREF at-
tributes (and hence be aware of the horizontal relationships
between elements in an XML document). They also define
the privilege browse all which is the combination of the view
and navigate privileges.

These privileges can be defined on both elements and at-
tributes. The restriction that they impose is that a navigate
privilege can be defined only on attributes of type IDREF,
whereas the view privilege can be defined on non-IDREF at-
tributes.

We represent here formally the semantics of their model
using our specification language. An access control policy
is defined as ACP = (Rv, Rn, Lv, Ln), where Rv (resp. Lv)
is the set of recursive (resp. local) rules with view privilege
and Rn (resp. Ln) is the set of recursive (resp. local) rules
with navigate privilege3. One can observe that instead of
defining different privileges as in their model for the XML
attributes, we define for each privilege a set of rules.

An element node is accessible, if there is some recursive
rule or a local rule that applies to it. This condition is

3The browse all privilege on an element node can be encoded
by assigning to it a rule from Rv/Lv and a rule from Rn/Ln.

67

formulated as the following XPath filter C1:

C1 : [
_

p∈Lv∪Ln

self :: p
_

p∈Rv∪Rn

ancestor -or -self :: p]

The XPath filter that we must apply to the result set of
a query is straightforward from the filters in Section 2.2.1
and Section 2.2.2 when no negative rules are considered.

In the case of attributes: a non-IDREF attribute is accessi-
ble if there exist a local rule with view privilege that grants
access to it. Similarly, an IDREF attribute is accessible if
there exists a local rule with a navigate privilege that grants
access to it. Recall that recursive rules cannot be defined
on attributes, and also recursive rules defined on elements
do not have impact on their attribute nodes. Conditions C2
and C3 express when a non-IDREF and IDREF attribute is
accessible:

C2 : [
_

p∈Lv

self :: p] C3 : [
_

p∈Ln

self :: p]

3.5 XML Access Control Language
Authors in [27] propose the XACL (XML Access Control

Language) which allows one to express in an XML syntax
authorizations for XML documents.

A policy may contain only local or recursive rules but
never both. Another type of recursive rules is introduced
where the scope of a rule, defined for a node n, are the
ancestors of n: if there is a rule which grants or denies
access to a node then it grants or denies respectively access
to the node’s ancestors.

A rule is a tuple of the form (requester, resource, ac-
tion, effect, condition) where the last specifies additional
constraints that must hold for a rule to be used to decide
whether a node is accessible or not. In the following we con-
sider that condition is fixed and again we concentrate on the
resource part of the rule.

Granularity and Language: Similar to most of the above
approaches, the smallest unit of protection for which an au-
thorization is defined is the XML node. XPath is used to
define the XML nodes concerned by a policy and since they
do not explicitly describe the fragment that is used, we con-
sider that it is all of XPath 1.0 [12].

Default Semantics: If there is no rule which neither denies
nor grants access to a node then the node can be either
accessible or inaccessible (grant or deny as default semantics
resp.).

Conflict Resolution: A policy can have one of the fol-
lowing conflict resolution policies: deny, grant overwrites or
default. In the last case, the default semantics of the policy
is considered as the conflict resolution policy.

Semantics: Based on the above observations, a policy
can be associated with one of the combinations of conflict
resolution policy and default semantics:

Conflict Resolution Default Semantics

Case 1 deny overwrites deny
Case 2 deny overwrites grant
Case 3 grant overwrites deny
Case 4 grant overwrites grant

We have mentioned earlier that XACL supports another
type of rules whose scope are the ancestors of a node: if a

rule grants (denies) access to a node, then it grants (denies)
access respectively to its ancestors. In other words, a node
n is accessible if:

1. there exist a rule which grants access to one of the
descendants of n or to itself and

2. there does not exist a rule which denies access to one
of the descendants of n or to itself.

In the case of deny overwrites as conflict resolution policy
and deny as the default semantics, the XPath filter expres-
sion that we must write is:

[
_

p∈Pr

descendant -or -self :: p
^

f∈Nr

not descendant -or -self :: f]

If the conflict resolution policy is grant, then we just re-
move from the previous filter the test on the negative rules.

To conclude, up until this point we have shown how we
can express the semantics of XACL policies (i) in the case
of local or recursive rules (with scope the descendants or
ancestors of a node) (ii) deny or grant as conflict resolution
policy and (iii) deny as default semantics. We have thus
covered cases 1 and 3 above for all types of rules.

Let us see now how we express the semantics of access con-
trol policies in the case where the default semantics is grant.
We will give the filter expressions only for local rules (for re-
cursive rules we just need to replace appropriately the XPath
self axis with the ancestor -or -self and descendant -or -self
axes).

In the case where the conflict resolution policy is deny
overwrites (Case 2) then a node is accessible only if there
are no negative rules that deny access to it.

In this case, the filter expression that we must write is:

[
^

f∈Nl

not self :: f]

In the case where the conflict resolution policy is grant
overwrites (Case 4) above, then the only case a node is not
accessible is when:

1. there exist a negative rule that denies access to it, and

2. there does not exist a positive rule that grants access
to it;

If a positive rule exists for the node, because of the grant
overwrites policy the node is accessible. If no rule exists for
the node, then again it is accessible because of the grant as
default semantics.

If we formulate that positively, a node is accessible if either
there exist a positive rule for it, or does not exist a negative
rule for it. Formally:

[
_

p∈Pl

self :: p
_

f∈Nl

not self :: f]

4. CONCLUSIONS
In this paper we proposed a formal way to represent the

semantics of XML access control policies using XPath.
We have demonstrated how naturally we can express the

different conflict resolution policies in the XPath dialect.
The only policies that we cannot express are those that

68

consider the assignment of “numeric” priorities to rules as
in [17].

We defined the semantics of an access control policy by
applying to the result of a query against a document, an
XPath filter expression which finally will keep the accessible
nodes. As reported in [11] this approach leads to the non-
secure evaluation of queries, since the user may deduce that
she is not allowed to see certain information. In this paper
we were not concerned with this issue, but it seems possible
to extend our approach to handle it.

We are currently examining how to use our approach for
access control policies where action other than read is con-
sidered. Another interesting research direction is to examine
the interaction between the semantics of access control poli-
cies for resources and for requestors for which a hierarchy
exists.

Acknowledgments: We would like to thank Arnaud Sahuguet
for discussions and comments on this work.

5. REFERENCES
[1] Third Generation Partnership Project.

http://3gpp.org.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data On the
Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers, October 1999.

[3] The Andrew File System (AFS).
http://www.psc.edu/general/filesys/afs/afs.html.

[4] M. Benedikt, W. Fan, and G. Kuper. Structural
Properties of XPath Fragments. In ICDT, Siena, Italy,
January 2003.

[5] E. Bertino, S. Castano, and E. Ferrari. On Specifying
Security Policies for Web Documents with an
XML-based language. In SACMAT, Chantilly,
Virginia, USA, May 2001.

[6] E. Bertino, S. Castano, and E. Ferrari. Securing XML
Documents: The Author-X Project Demonstration. In
SIGMOD, Santa Barbara, California, USA, May 2001.

[7] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Specifying and Enforcing Access Control Policies for
XML Document Sources. WWW, 3(3), 2000.

[8] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Protection and administration of XML data sources.
DKE, 43(3):237–260, 2002.

[9] E. Bertino and E. Ferrari. Secure and Selective
Dissemination of XML Documents. TISSEC,
5(3):290–331, 2002.

[10] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu,
J. Robie, and J. Simeon. XQuery: A Query Language
for XML. http://www.w3.org/TR/xquery, November
2003.

[11] S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and
D. Srivastava. Optimizing the Secure Evaluation of
Twig Queries. In VLDB, Hong Kong, China,
September 2002.

[12] J. Clark and S. DeRose (eds.). XML Path Language
(XPath) Version 1.0. W3C Recommendation,
November 1999. http://www.w3c.org/TR/xpath.

[13] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. Securing XML
Documents. In EDBT, Kostanz, Germany, March
2000.

[14] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. A Fine-Grained
Access Control System for XML Documents. TISSEC,
5(2):169–202, May 2002.

[15] J. Clark (ed.). XSL Transformation (XSLT) Version
1.0. W3C Recommendation, November 1999.
http://www.w3c.org/TR/xslt.

[16] W. Fan, C-Y. Chan, and M. Garofalakis. Secure XML
Querying with Security Views. In SIGMOD, 2004. To
appear.

[17] A. Gabillon and E. Bruno. Regulating Access to XML
Documents. In Working Conference on Database and
Application Security, July 2001.

[18] S. Godik and T. Moses (eds). eXtensible Access
Control Markup Language (XACML) Version 1.0.
OASIS Standard, 2003 February.

[19] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In PODS, pages 179–190,
San Diego, California, USA, June 2003.

[20] S. Jajodia, P. Samarati, V. Subrahmanian, and
E. Bertino. A Unified Framework for Enforcing
Multiple Access Control Policies. In SIGMOD,
Tuscon, Arizona, USA, May 1997.

[21] Liberty Alliance Project.
http://www.projectliberty.org.

[22] M. Marx. XPath with conditional axis relations. In
EDBT, pages 477–494, Crete, Greece, March 2004.

[23] M. Murata, A. Tozawa, and M. Kudo. XML Access
Control using Static Analysis. In CCS, Washington,
DC, USA, October 2003.

[24] A. Silberschatz, G. Gaqne, and P. Galvin. Operating
System Concepts. John Wiley and Sons, 2002.

[25] D. Srivastava. Directories: Managing Data for
Networked Applications. In ICDE, Los Alamos,
California, USA, March 2000. Tutorial.

[26] H. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn (eds.). XML Schema Part 1 Structures.
http://www.w3.org/TR/xmlschema-1, May 2001.

[27] XML Access Control.
http://www.trl.ibm.com/projects/xml/xacl/.

69

