Formalizing XML Access Control for Update Operations

Irini Fundulaki
University of Edinburgh

UK
Irini.Fundulaki@ed.ac.uk

ABSTRACT

Several languages have been proposed over the past years
which support the specification of access control on XML
data. Most of these languages consider read-access restric-
tions only and do not deal with access rights for updates
(such as add, delete, or modify operations). Fine-grain XML
update operations are subject to current research. This pa-
per proposes XACU, a language for specifying access control
on XML data in the presence of update operations. The
update operations used in XACU are based on the W3C
XQuery Update Facility working draft. A formal access
control model is defined which allows to study properties of
XACU access policies. One essential property is consistency:
the policy should not allow the execution of a sequence of
updates which has the same total effect as an update for-
bidden by the policy. Since XACU is a rich language with
inherent ambiguities, checking consistency of a set of XACU
rules is difficult, and undecidable in general.

Categories and Subject Descriptors: H.2.3: 1.7.2
General Terms: Security
Keywords: XML Access Control, XML Updates

1. INTRODUCTION

XML is the standard for data representation and exchange
on the Internet. An important issue is to secure XML con-
tent and to ensure the selective exposure of data to different
classes of users. There has been a substantial amount of
work on enforcing access control policies to user queries,
known as secure XML querying. There are various aspects
to this problem: languages that allow one to specify access
policies [11, 20, 17, 12, 7], algorithms for enforcing policies
at query time [6, 1, 16, 9, 10, 5, 14, 2], and special data
structures to optimize query processing [4, 22]. Most of
these proposals focus on secure XML querying for read-only
queries. New challenges emerge when access control rules
are used to specify update rights. One immediate problem
is in the choice of update language used to specify XML up-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SACMAT 07, June 20-22, 2007, Sophia Antipolis, France.

Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

169

Sebastian Maneth

NICTA Ltd. and UNSW

] Australia
Sebastian.Maneth@nicta.com.au

date operations: no agreed upon standard language exists
today, and many proposed languages lack a formal seman-
tics. In this paper we use the operations introduced in the
XQuery Update Facility Working Draft [3]. After review-
ing the relevant update operations, our contributions are:
(1) the access control specification language XACU, (2) a
formal model that determines update rights for a given doc-
ument and XACU specification, (3) the alternative language
XACU*™°*" that supports access control annotations at the
level of the XML DTD (similar to [6]), and (4) the formaliza-
tion of the notion of inconsistency in XACU specifications
and the proof of its undecidability.

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
. <!ELEMENT
. <!ELEMENT

conference (track+)>

track (papers,reviewers)>

papers (paper+) >

reviewers (reviewer+)>

paper (title,abstract,type,authors,reviews?)>
authors (author+)>

reviews (review+)>

review (public?,private?,disc?,reviewer+)>
author (name,school?,email?)>

reviewer (name,school?,email?,conflictInfo)>
conflictInfo (authorx)>

type (short|long)>

W ~NO U WN -

=0
N = O -

Figure 1: Conference DTD

We now discuss a motivating example for access control
with updates. Consider the DTD in Fig. 1 which describes
information related to a conference. For instance, line 1
says that a conference has one or more tracks, line 8 says
that a review is associated with optional public, private,
and disc (discussion) elements and one or more reviewers.
Line 11 says that conflictInfo contains zero or more au-
thors. Each of long and short elements has an empty con-
tent. The remaining elements (such as title, abstract,
etc.) are text elements. The XML document shown in Fig. 2
conforms to the DTD of Fig. 1.

<conference>
<track><papers><paper>
<title>The Essence of XML</title>
<abstract/>
<type><short/></type>
<authors><author>Phil Wadler</author></authors>
<reviews/>
</paper></papers></track>
</conference>

Figure 2: XML document

Table 1 shows examples of access control rules for update
operations. These rules are written in natural language and

are concerned with XML documents conforming to the con-
ference DTD of Fig. 1. They are defined for two different
user groups: authors and reviewers.

Consider that an author wishes to change the title of a pa-
per which she co-authored. According to the rules, such
a request is denied because only the rule in line 7 applies
and forbids the modification of a title. It remains to be de-
termined how to deal with (1) a request to which no rule
applies, such as a reviewer wanting to modify her email ad-
dress, or, (2) a request to which two conflicting rules apply.
As common, we address these issues by fixing (1) a default
semantics and (2) an override policy. The first one says that
everything not explicitly mentioned by a rule is either by
default allowed, or by default forbidden. The second says
that either a positive rule overrides a conflicting negative
one, or the other way around.

A third issue is the type of the data that is added or
modified through an update. More precisely, we would like
to specify additional constraints on the data, not covered by
the DTD. E.g., an author may only insert a paper if she is
one of the authors of that paper. This is done by annotating
our access rules with additional type constraints. As in [6],
the constraints may use constant parameters (such as, e.g.,
$my_name, which would hold the user’s name).

1. an author can insert, delete and modify her information

(school and email);

an author can add a paper;

author can delete a paper that she has co-authored;

author cannot delete a paper that she has not co-authored;

author can modify the abstract of a paper;

an author cannot modify the abstract of a paper that she has

not co-authored;

. an author cannot modify the title of a paper;

8. a reviewer can add, delete, modify private/public comments
to a paper that she has been assigned to;

9. a reviewer can add, delete, modify the disc comments to a
paper that she is not in conflict with;

an
an
an

DO WN

~

Table 1: Examples of access control rules

A fourth, more challenging issue not covered by the over-
ride policy, is an update that is explicitly forbidden by a
rule, but which can be achieved by an alternative sequence
of allowed updates. For instance, an author may not modify
the title of a paper (according to the rule in line 7). However,
the author may delete the paper altogether, and then insert
it again with a changed title. Should this update sequence
of delete and insert be allowed, in a policy where negative
rules override positive ones? — probably not. How should
the system determine which update is forbidden? Should
the delete already be forbidden? Or only the insert? Or,
only the insert of a paper which appeared before with a dif-
ferent title? From our point of view, such a conflict of a
positive sequence of updates with a negative rule is not a
matter of override policy; rather, it as an inconsistency of
the access rules. In other words, a set of rules is consistent,
if no update disallowed by a negative rule can be achieved
by a sequence of updates allowed by positive rules. Note
that these inconsistencies arise from the ambiguity inher-
ent in the update language used in the access control rules.
E.g., a replace update is semantically equivalent to a delete
followed by an insert.

Clearly, it is desirable to be able to automatically detect
inconsistencies. Unfortunately, checking rules for consis-
tency is very hard. In fact, even for a simple update lan-

170

guage, consistency checking already becomes undecidable.
We conjecture that consistency checking can be done au-
tomatically, if the nesting depth of the XML document is
bounded by a constant.

Related Work

The problem of access control for XML updates is relatively
new and has been studied by a small number of projects. As
in the case of access control for read operations, the small-
est unit of protection is the XML node. In general, access
control rules are of the form (subject, object, effect, action)
where subject is the user or role to whom access is granted
or denied, object is a path expression that denotes the set of
XML nodes concerned by the rule, effect specifies whether
the operation is allowed or denied, and action specifies the
update operation under concern. A policy is a set of access
control rules associated with a conflict resolution policy and
default semantics. These rules are specified for XML docu-
ments that are valid w.r.t. a given DTD. The authors of [1]
consider append, write and auth_all actions in their positive
access rules. The first allows one to modify the content of
an XML node. The second, supports the modification of the
content of a node by deleting the node. The last subsumes
the previous two. To specify the object of a rule they use a
language similar to XPath. They define formally the seman-
tics of a policy by means of the view of a document and show
how this is computed for the different flavors of their read
operation only. In addition, propagation options are speci-
fied which state whether a rule applies to a single node or
also to its descendants. In [5] the object component of a rule
is an absolute XPath expression. Access control rules are
defined at both the document and the DTD level and can
be recursive (their scope is the node and its descendants)
or local (their scope is just the node). The write actions
supported are: insert, update and delete. The semantics of
a policy is specified by means of a labelling algorithm, that
annotates the nodes of an XML document with accessibility
information for a given write action. Gabillon in [8] uses the
update operations of XUpdate [21]. The object concerned
by an authorization is explicitly specified by means of its
position and value in the XML tree. The authors of [13]
consider the update operations of [19] in their access con-
trol model (insert, insert before/after, delete, replace and
rename operations). They support update access rights not
only at the level of the XML document but also at the level
of the DTD. Both positive and negative access control rules
are supported and XPath 1.0 is used to specify the nodes
that are concerned by a rule. The semantics of policies are
specified by means of a two-step enforcement algorithm.
Rabitti et. al. [18] discuss consistency for access control
rules on object oriented databases. The use implications be-
tween the rules’ subjects, objects and actions. They define
consistency as follows: for any positive/negative authoriza-
tion A, if there exist some authorization A’ that implies A,
then there must not exist some other authorization A’ that
implies the negative/positive authorization A. The opera-
tions supported are: read (R), write (W), generate (G) and
read definition (RD). In their model, W implies R and G, G
implies RD, and R implies RD. Using such implication rules,
the set of all possible authorizations can be computed and
inconsistencies can be detected. Since object hierarchies are
trees of bounded depth, their consistency check is related to
the one in Section 5, for the case of non-recursive DTDs.

2. XML UPDATE OPERATIONS

We review some update operations of the W3C XQuery

Update Facility working draft [3] which are used in XACU.
An update operation is applied to a set of nodes specified
by an XPath target expression. We assume the reader to
be familiar with the syntax and semantics of the XPath 1.0
language. In a delete operation, target specifies the XML
nodes to be deleted. For insert, replace, and rename, tar-
get must specify a single node; moreover, the latter opera-
tions take a second argument: an XML fragment, called the
source. Note that we always tacitly identify with an XML
document a parsed tree representation consisting of element
and text nodes. In the following, names in parentheses are
abbreviations which we will use later.
Insert For inserts, source must be a sequence of nodes and
target must evaluate to a single node; otherwise a dynamic
error is raised. Let target-node be the node returned by the
target.

e insert source as first/last into target (insertFirst/insertLast)
Inserts nodes in source as first/last children of target-node,
respectively. As an example, consider inserting a new paper
element under the papers element node (reachable by the
XPath expression //papers) using the insertFirst operation.
The result of this update is a document containing the new
paper followed by the one with author Phil Wadler.

e insert source before/after target (insertBefore/insertAfter)
Inserts source as preceding/following sibling nodes of
target-node respectively. Here, target-node must have a par-
ent node, otherwise a dynamic error is raised. As an ex-
ample, consider inserting a paper node using insertBefore
with target expression //papers/paper|title =” The Fssence
of XML”] to the document in Fig. 2. The result is the same
document as in the previous example.

e insert source into target (insertInto)

Inserts the nodes in source as children of target-node. Note
that the position within the children of target-node is unde-
termined (i.e., may be implementation dependent). Thus,
the effect of executing an insertInto command can be that of
insertLast, insertFirst, insertBefore, or insertAfter applied to
any child of target.

Delete For deletes, target may evaluate to an arbitrary
sequence of nodes, denoted target-nodes. The operation
delete target (delete) deletes the nodes in target-nodes along
with their descendant nodes. For instance, applying delete
with target expression //papers/paper(title =" The Essence
of XML”] to the XML document of Fig. 2 results in a doc-
ument with an empty papers node.

Replace and Rename For a replace operation, target
must evaluate to a single node; For a rename operation,
target must evaluate to a single element node. Otherwise,
a dynamic error is raised. Let target-node be the node re-
turned by target.

e replace target with source (replace)

Replaces target-node with source. If target-node is an ele-
ment or text node, then source must be a sequence of ele-
ment or text nodes, respectively. The target-node and its de-
scendants are deleted and replaced by source together with
its descendants. Applying the following update to the doc-
ument of Fig. 2 results in a document where the title of the
paper with author Phil Wadler has been changed to ”The
Essence of XACU”.

replace //papers/paper/title[. ="The Essence of XML"]

171

with <title>The Essence of XACU</title>

e rename target as source (rename)
Replaces the name of target-node with source. In this case,
source must be a string value (PCDATA).

rename //papers/paper/title[.="Note on XACU"]/type/short
as "long"

3. XML UPDATE ACCESS CONTROL

This section introduces the access control specification
language XACU and defines a formal model for giving se-
mantics to XACU specifications.

Syntax of XACU We support fine-grained access con-
trol, i.e., the smallest unit of protection is an XML node; this
is in accordance with the majority of existing approaches
for XML access control [1, 5, 9, 16, 11, 20]. While ear-
lier approaches merely consider read-only access privileges,
our concern is to propose a model that also includes up-
date access privileges. When formalizing update privileges
we follow the operations introduced in the previous section.
That is, we distinguish between the right to insert, delete,
replace, or rename an XML element or text node. We are
only concerned here with update rights and assume that all
nodes of the document are readable by everyone.

An access control policy consists of a finite set of access
control rules. As common, an access control rule is of the
form: (subject, object, action, effect) where subject is the
user or role concerned by the rule. For this work, it is suf-
ficient to consider that the subject is fixed; hence we will
simply talk about rules of the form (object, action, effect).
object is an XPath 1.0 expression. Evaluating this expres-
sion on an XML document returns the nodes to which the
rule applies, i.e., the nodes to which the user may apply
action. effect specifies whether the rule grants ('+’ sign)
or denies ('—' sign) action access to object. We refer to
the access control rules that grant access to a node as pos-
itive and those that deny access as negative. Note that
here, independent of the action, the object component of
a rule is not required to return only a single node (as is
the case for most of the update operations); hence, any
rule may target a sequence of nodes returned by object. Fi-
nally, action is one of insertBefore[X], insertAfter[X], delete,
insertFirst[X], insertLast[X], insertInto[X], replace[X], and
rename[X]. In our update actions we optionally allow one
to specify a name X of an element type (denoted by “[X]”).
In this way it is possible to specify that a user may, for
instance, insert elements only of a certain element type X.

We explain here informally the semantics of an access con-
trol rule (object, action, effect) for each action that we sup-
port in our model. For simplification, we assume positive
rules. Let T' be the XML document of concern, and let V'
be the set of nodes obtained from evaluating object on T'.

e (object,delete, +): subject can delete the nodes in V;

o (object,insertinto[X],+) subject can insert nodes (of
type X), as children of the nodes in V;

o (object, insertFirst[X]/insertLast[X], +) subject can in-
sert nodes (of type X), as first/last resp. children
nodes of the nodes in V;

o (object, insertBefore[X|/insertAfter[X],+) subject can
insert nodes (of type X), as preceding/following resp.
sibling nodes of the XML nodes in V;

o (object, replace[X], +) subject can replace the nodes in
V' (with nodes of type X);

o (object,rename[X], +): subject can rename the XML
nodes in V' with name X.

Let us now take a look at some concrete examples. Con-
sider the rules in Table 1. Rule #1 states that an author
can insert, delete and replace her email information. This
rule can be written in XACU as follows:

(//author[name = $my_name], insertInto[email], +)
(//author[name = $my_name|/email, delete, +)
(//author[name = $my_name|/email, replace[email], +)

An author can insert a paper as stated by rule #2. This
can be written as: (//papers, insertlnto[paper], +)

Rule #9 states that a reviewer can delete the discussion
comments to a paper that she is not in conflict with. This
rule can be written in XACU as:

(//review[not(./../../authors/author /name

//reviewer[name = $my_name]/conflictInfo
/author /name)|/disc, delete, +)

Note that we do not need to distinguish between local and
recursive rules, as is done in many of the approaches [1, 5, 16,
6, 9, 10] because this distinction is already supported by our
use of XPath; if a node is specified by the XPath expression
p, then the sequence of all its descendants is specified by the
expression p/descendant -or -self::x.

Formal Semantics of XACU Given a XACU policy
P (i.e., of a set of XACU rules) and an XML document T,
the semantics of P determines the nodes of T' to which a
user may apply a certain update operation (or a read). We
assume the reader to be familiar with XML DTDs and make
the following assumptions: (1) there is a given fixed DTD
D, (2) T conforms to D (3) T after an update operation
conforms to D. If (3) is not satisfied, then the update op-
eration is rejected, independently of its accessibility to the
user. In fact, we assume that in any access control rule
(object, action, effect) in P, action (when applicable) ap-
pears with an optional type parameter X. Note that this is
not a restriction because we can easily fill in missing type pa-
rameters with the corresponding element type of the DTD.
By X we denote the set of all optional type parameters X
which appear in the rules of P.

We denote by Paction/Naction the set of the object com-
ponents of the positive/negative access control rules resp.
where action is one of insertInto[X], insertBefore[X], insert-
After [X], insertFirst[X], insertLast[X], delete, replace[X] and
rename[X].

P, N
NA[NA]

not P, not N
NA[A]

not P, N
NA[NA]

P, notN
AlA]

Table 2: deny [allow] as default semantics

We now want to specify when a node is accessible for a
specific action u. For this we need to answer the following
questions: (1) Default Semantics: what happens to a node
if it is not in the scope of some rule? Is it accessible or inac-
cessible? (2) Conflict Resolution Policy: what happens to
a node when it is in the scope of both a positive and a nega-
tive access control rule? Several ways have been proposed to
resolve conflicts, e.g., i) by using priorities: each access con-
trol rule is assigned a priority and the rule with the highest
priority is used [5, 9]; i) deny overrides (negative rule takes
precedence over positive rule) [5, 16, 20] and %) grant over-
rides (positive rule takes precedence over negative rule) [20].
We now discuss the semantics of an access control policy by
focusing on the deny overrides conflict resolution policy.

172

In general, independently of the operation of concern, the
truth table in Table 2 holds for the combination of default
semantics and deny overrides as the conflict resolution pol-
icy. Here P stands for the truth value of “has positive right
to carry out the operation”, N stands for “has negative right
to carry out the operation”, A stands for “accessible” and
NA for “inaccessible”. For instance, Table 2 says that for
deny as default semantics, a node is accessible if and only if
“P, not N”. Thus, an algorithm for determining accessibil-
ity must check that the concerned node is in the scope of a
positive rule, but not in the scope of a negative rule.

Next, we give absolute XPath filter expressions that deter-

mine when a node is accessible for a given operation. In [7]
filters are given to determine the semantics of the read op-
eration. Recall that here we are not concerned with read
access rights, and assume that every node is readable by all
users. We denote by [target]r the set of nodes returned by
evaluating target on the XML document T'.
Insert Into Intuitively, one may execute the update “insert
source into target” if one has the right to insert at any child
position of the node n, n € [target]r. For this, we check
that the insert operation is allowed and that no semanti-
cally equivalent update operation is forbidden. We formally
define the accessibility of a node for the different cases of
default semantics.

In the following, we assume that an insertlnto rule im-
plies insertFirst and insertLast rights for a node n (in other
words, if one can(not) insert children nodes of some node
n as specified by some insertinto rule, then one can(not)
insert first and last children of node n — unless of course
there exist an insertFirst, insertLast rule that explicitly spec-
ifies otherwise). This does not hold for insertFirst, insertLast
rules: an insertFirst/insertLast rule does not imply that one
can add children of some node at any position. Similar for
insertBefore, insertAfter rules and an insertlnto rule. In the
filter expressions below, A,\/ stand for and and or, respec-
tively. For X € X, let super(X) denote the set of all Y € X
such that X is a subtype of Y (determined by the DTD).

1. deny overrides as conflict resolution policy, deny as de-

fault semantics. The update “insert source into target”
is granted to node n if i) n € [target]r, and) source
conforms to X € X, and iiz) all of (a) — (f) are satisfied;
(a) n is in the scope of a positive insertinto[Y], Y €
super(X)
n is not in the scope of a negative insertinto[Y],
Y € super(X)
n is not in the scope of a negative insertFirst[Y],
Y € super(X)
n is not in the scope of a negative insertLast[Y],
Y € super(X)
(e) there is no child of n in the scope of a negative
insertBefore[Y], Y € super(X)
(f) there is no child of n in the scope of a negative
insertAfter[Y] rule, Y € super(X).
More formally, the above conditions can be expressed
by the following filter:
1):
2):
3):

[V pe Prserineol V1, ¥ €super(x) SeIfp
not self:: f

not self:: f

f € Ninsertinto[Y],Y Esuper(X)
f € Ninsertfirst[Y'], Y €super(X)
f € NinsertLast[Y],Y €super(X) not Self:::f

f € Ninsertafier[Y],Y €super(X) not child:: f

NN~ S S~
S
=D ==

=2

F€ Ninsorgetore Y], €super(x) N0t child::]

2. deny overrides as conflict resolution policy, allow as
default semantics. The update “insert source into target”
is granted if, i) n € [target]r, ii) source conforms to
X € X, and i) all of (a) — (e) are satisfied; again as
above, in each line Y is arbitrary in super(X).

(a) n is not in the scope of a negative insertinto[Y]
(b) n is not in the scope of a negative insertFirst[Y]
(¢) m is not in the scope of a negative insertLast[Y]
(d) there is no child of n in the scope of a negative
insertBefore[Y]
(e) there is no child of n in the scope of a negative
insertAfter[Y] rule.

More formally, the above conditions can be expressed

with the following filter:

(1) T fe Nmermol Y1, Y €super(x) NOE self:f
(2): AfeNypnrimly],Y csuper(x) MOt self::f
() Afe Nyl V],Y €super(x) NOt self:f
(1) AfeNypmaerl¥],Y €super(x) MOt child:: f

(5):
Insert First/Last The update “insert source as first/last
into target” is granted to node n if i) n € [target]r, and %)
source conforms to X € X, and in the case of

1. deny overrides as conflict resolution policy, deny as
default semantics: (a) and (b) are satisfied (and similar
for insertLast):

(@): [V e Ponpil¥). €super(x) SeIfsp
(0): AfeNpnml¥].y esuper(x) MOt self:: f]

2. deny owverrides as conflict resolution policy, allow as
default semantics: (a) is satisfied (and similar
for insertLast):

(@) [A\ e Npsenpial Y],V €super(x) MOt s€lf::]

The filters for the remaining update operations are defined

analogous to the ones for insertFirst.

I\ Nipsanpetone[Y], ¥ €super(x) MOt child:: f]

4. ANNOTATION- BASED MODEL

In this section we introduce the language XACU*"™°* for
the specification of access control rules. We follow the idea
of security annotations introduced in [6] to specify the ac-
cess authorizations for XML documents in the presence of a
DTD. Formally, an access specification S is a tuple (D, ann)
where D is a DTD and ann is a partial mapping (the annota-
tion) of the form: ann(gpath,op) ==Y | N | [¢] where op is
one of insertFirst[X], insertLast[X], insertInto[X], replace[X],
rename[X], insertBefore[X], insertAfter[X], or delete. Fur-
ther, gpath is a path in the DTD graph of the form B;.Bs.
.-+ By where the B; are element types of D, B;y1 appears
in the right hand side of the production rule for B; and B
is the root element type of D.

As for XACU we allow the operations to use the name
of an element type in the DTD to denote that one can, for
instance, insert only nodes of a given type as children of
some node. Notice that we use in our annotations a path
in the graph of the DTD instead of a pair of element types
as in [6]. The reason is that in the DTDs we consider, we
allow an element type to have more than one element types
as parents (i.e., element type author in the DTD of Fig. 1)
which was not the case in [6]. Hence, an element type can
be reached through different paths from the root element
type of the DTD.

As in [6], a value of Y, N and [g] denotes that in an
instantiation of D, the elements that are instances of the
element type designated by gpath, are accessible, inacces-

173

Annotation

ann(gpath, insertFirst[X]/insertLast[X] /insertinto[X]) = Y |N|[q]
Semantics

For node u, instance of the element type reachable by gpath,

one can (Y')/cannot (N)/can if [¢] is true at u,

insert nodes of type X as first/last/at any position children of u.

Annotation

ann(gpath, insertBefore[X | /insertAfter[X]) = Y|N|[q]
Semantics

For node u, instance of the element type reachable by gpath,
one can (Y')/cannot (N)/can if [¢] is true at u,

insert nodes of type X as preceding/following siblings of u.

Annotation

ann(gpath, delete) = Y|N|[q]

Semantics

For node u, instance of the element type reachable by gpath,
one can (Y')/cannot (N)/can if [¢] is true at u,

delete u and its descendant nodes.

Table 3: Semantics of security annotations

sible, or conditionally accessible, respectively, for operation
op. If ann() is not explicitly defined, then the accessibility of
the node is determined using the default semantics. Table 3
presents the semantics of the security annotations supported
in XACU®*"°* for the insert and delete operations. The se-
mantics for the replace and rename operations are defined
in a similar way.

We now show how to translate access control annotations
in XACU®"™" into XACU rules and vice versa. As dis-
cussed in Section 3, an access control rule is of the form
(object, action, effect). Since XACU uses XPath expressions
to denote the nodes that are concerned by a rule, the task
here is to find the XPath expression p for a given gpath
and qualifier [g] that when evaluated on some XML doc-
ument 7" returns exactly the same set of nodes designated
by gpath and [q]. This XPath expression will be the object
component of the access control rule. For an annotation
ann(gpath,op) = Y|N|[q], we create an access control rule
(object, action, effect) where: i) action = op ii) effect is
'+’ if ann() = Y | [g] otherwise effect is '—’ and finally ob-
ject is defined as follows: if ann(gpath,op) = Y | N and
gpath = B1.Bs ... By, then object = /B;/Bz/ ... /By, oth-
erwise if ann(gpath,op) = [q] and gpath = B1.Bs... By,
then object = /B;/B2/ ... /Bilq].

When going from XACU to XACU*™™°* we need to con-
struct the gpath expression from the object component of a
XACU rule. For this we assume that the DTD D is non-
recursive, i.e., that the graph of D is non-circular. This im-
plies that we can translate any XPath expression containing
descendant/ancestor axes into a union of expressions that
only use the child/parent axes. Then, for a XACU rule
(object, action, effect), we create an annotation ann(gpath,
op) = Y|N]|[q] as follows: %) op = action ii) gpath is the path
obtained from object from which the filters are removed and
” /7 is substituted with ”.” and 4ii) ann() is defined as follows:
if object contains no filter expressions (i.e., is of the form
/Bi/Bz/ ...DBt), then ann(gpath,op) =Y if effect is '+’ and
ann(gpath,op) = N if effect is ’—’. Otherwise if object con-
tains filter expressions (i.e., is of the form /B;[F;]/Bz[F2]/
... Bg[F]), then ann(gpath,op) = [q] where ¢ is the filter
expression obtained by transforming object to a filter ex-
pression as suggested in [15].

Proposition. Every XACU policy specified in terms of a
non-recursive DTD D can be translated into an equivalent
XACU?™°* policy and, vice versa.

5. CONSISTENCY OF XACU RULES

A set of XACU rules is consistent if there is no forbidden
operation and sequence of allowed operations, so that both
have the same effect on any input document. By “same ef-
fect” we mean that the corresponding XML documents after
the updates are identical. Recall from the Introduction the
example in the discussion on consistency: an author may not
modify the title of a paper, but, the author may delete the
paper and then insert it again with a changed title. Clearly,
under “document equivalence” this modify operation has
the same effect as the delete followed by the insert. Hence,
a XACU policy containing corresponding rules is inconsis-
tent. Note that updates are often considered in a storage
model, not on a document; this typically implies that each
node of the document has its own unique identifier. In such
a setting of nodes with identity, the modification of a title is
not equivalent to deleting and reinserting the paper, because
the latter changes node identities of the paper node and all
its descendants, while the former does not. As another ex-
ample, consider that a user X is forbidden to delete a node
u, but is allowed to replace u by the empty list. Clearly,
these rules are inconsistent.

Inconsistencies are unwanted because they allow a user to
achieve a forbidden operation. Unfortunately, inconsisten-
cies can be much more complicated; imagine in the previous
example that the replace rule was only applicable in the
presence of some special data item. If the user X can in-
sert the special item, then do the replace operation, and
afterwards delete the data item again, then X has achieved
the forbidden delete. There can be much longer chains of
inserts and deletes. For instance, consider that the special
item mentioned before may only be inserted if another, more
special item was present, etc.

This raises the question whether it is possible to construct
an algorithm which automatically tests whether or not a
given set of XACU rules is consistent. In the most general
case, this question has a negative answer: there is no such
algorithm. The reason for this is that on the path of an
XML document, it is possible to simulate the computation
of a Turing machine by means of update operations. Finding
a simulation sequence of update operations is reduced to the
halting problem.

Theorem. It is undecidable whether or not a set of XACU
rules is consistent.

Proof. Let M be a Turing machine with tape alphabet
{0,1}. Our XML documents will be binary trees, the leaves
of which are labeled by 0 or 1 or symbols of the form (i, ¢) or
(4,9, m) where ¢ is a state of M and m € {Up, Stay, Down}.
All internal binary nodes are labeled by the symbol c¢. We
define a DTD in such a way that at most one leaf is of the
form (i,q) and at most one leaf is of the form (i,q,m). A
rule of the Turing machine that says, in state ¢ with reading
head on a symbol i, replace i by i’, move into state ¢’, and
move the reading head m € {L,S,R} (denoting left, stay,
and right, respectively) is simulated by XACU rules as fol-
lows: we have a right to replace (i,q) by (i',¢’,m’) where
m’ is Up, Stay, and Down for m = L, S, and R, respec-
tively. Moreover, there is a right to replace the next symbol
j € {0,1} below or above (i,q’,m') by (4,¢'), or to replace
(i,q',m’) itself by (i’,q’). For instance, if T'(0,q") denotes
the element type of a single node labeled (0, ¢’), then for a

174

right-move of M to a symbol labeled 0 we have

(//0[parent: :c[parent::c[./(i’,q’ ,Down)]1]1],
replace[T(0,q')], +)

Finally, there is a right to remove (i,¢’,m’). This concludes
the simulation of a rule of M. In order to reduce consistency
checking to the halting problem, we have a rule that allows
to replace the empty document by any document containing
one occurrence of (i, f), where ¢ € {0,1} and f is the unique
final state of M. In this way, the rules are consistent if
and only if M has a computation that ends with state f.
Since the latter is undecidable, the statement of the theorem
follows. [

Note that it is essential that we simulate the Turing ma-
chine on the paths of an XML document. Using XACU rules
it is not possible to simulate a Turing machine on the chil-
dren sequence of a node. In fact, it can be shown, using XML
type inference rules, that for XML documents of bounded
depth (which are guaranteed by a non-recursive DTD), and
for XPath expressions that may only check equality of a data
value with a constant, we can indeed decide consistency.

6. REFERENCES
(1
(2]
(3]
(4]
5]

E. Bertino and E. Ferrari. Secure and Selective Dissemination
of XML Documents. TISSEC, 5(3):290-331, 2002.

L. Bouganim, F.-D. Ngoc, et al. Client-Based Access Control
Management for XML documents. In VLDB. 2004.

D. Chamberlin, D. Florescu, et al. XQuery Update Facility.
http://www.w3.org/TR/xqupdate/, July 2006.

S. Cho, S. Amer-Yahia, et al. Optimizing the Secure Evaluation
of Twig Queries. In VLDB. 2002.

E. Damiani, S. D. C. di Vimercati, et al. A Fine-Grained
Access Control System for XML Documents. TISSEC,
5(2):169-202, May 2002.

W. Fan, C.-Y. Chan, et al. Secure XML Querying with Security
Views. In SIGMOD. 2004.

I. Fundulaki and M. Marx. Specifying Access Control Policies
for XML documents with XPath. In SACMAT. 2004.

A. Gabillon. An authorization Model for XML Databases. In
ACM Workshop on Secure Web Services. 2004.

A. Gabillon and E. Bruno. Regulating Access to XML
Documents. In Working Conference on Database and
Application Security. 2001.

A. Gabillon, M. Munier, et al. An Access Control Model for
Tree Data Structures. In ISC. 2002.

S. Godik and T. M. (eds). eXtensible Access Control Markup
Language (XACML) Version 1.0. OASIS Standard, 2003
February.

V. Gowadia and C. Farkas. RDF Metadata for XML access
control. In ACM Workshop on XML Security. 2003.

C.-H. Lim, S. Park, et al. Access control of XML documents
considering update operations. In ACM Workshop on XML
Security. 2003.

B. Luo, D. Lee, et al. QFilter:Fine-Grained Run-Time XML
Access Control via NFA-based Query Rewriting. In CIKM.
2004.

M. Marx. XPath with conditional axis relations. In EDBT.
2004.

M. Murata, A. Tozawa, et al. XML Access Control using Static
Analysis. In CCS. 2003.

M. Oshry, B. Porter, et al. Authorizing Read Access to XML
Content Using the access-control Processing Instruction 1.0.
http://www.w3.org/TR/access-control, 2006 May. gobble.

F. Rabitti, E. Bertino, et al. A Model of Authorization for
Next-Generation Database Systems. TODS, 16(1), 1991.

I. Tatarinov, Z. Ives, et al. Updating XML. In SIGMOD. 2001.
XML Access Control.
http://www.trl.ibm.com/projects/xml/xacl/.

XUpdate: XML Update Language.
http://www.xmldb.org/xupdate, 2000.

T. Yu, D. Srivastava, et al. Compressed Accessibility Map :
Efficient Access Control for XML Documents. In VLDB. 2002.

(6]
(7]
8]
19l

(10]

(11]

(12]

(13]

(14]

(18]

(19]
[20]

(21]

(22]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

