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Abstract. This paper describes an approach for the querying of het-
erogeneous XML resources using an ontology-based mediator. Here an
ontology is an Entity-Relationship schema defined independently of the
schemas of the data sources. The sources are described to the mediator
by means of mapping rules as in the Local-As-View approach to data in-
tegration. User queries are conjunctive queries formulated in terms of the
ontology, and answers to these queries are obtained by rewriting them to
XQuery expressions and evaluating these on the data sources. A formal
semantics for queries is defined by interpreting XML sources into ER
models. As there can be many such interpretations, a certain answer to
a query is one which is true in all of them. We describe the rewriting
algorithm and we show its completeness and correctness with respect to
the given semantics. We also give an algorithm for producing a canonical
model of the ontology and the interpreted data sources. It is shown that
the certain answers can also be obtained by evaluating the query to just
this one model.

1 Introduction

XML [1] is becoming the de-facto standard for data representation and exchange
of Web data and plays an essential role in the deployment of the Semantic
Web whose goal is “to develop enabling technologies and standards to support
richer discovery, data integration, navigation and automation of tasks” [31]. In
such an environment where the sources are autonomous and heterogeneous, data
integration is a critical issue. The goal there is to enable users to query the data
of heterogeneous sources as if it resides in a single source, which is exactly what
a data integration system does. The fact that the sources concern a restricted
domain of interest is crucial for the successful deployment of data integration
systems. Their backbone is a global schema which describes the basic notions in
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the domain. Appropriate mappings between the global schema and the schemas
of the sources are defined to describe the latter to the former. User queries
are formulated in terms of the global schema and the answers are obtained by
accessing the source data.

There are several questions that need to be considered when one is con-
structing a data integration system: (i) is the global schema defined out of the
sources schemas (e.g. federated architecture [22]), or is independent thereof (e.g.
defined by an authority in the domain); (ii) is query answering done on the fly by
translating the user query into queries expressed in the sources’ schemas (query
mediation paradigm [34, 26]), or by evaluating it against the database which has
been constructed out of the source data (e.g. data warehouse paradigm [33]).
In an evolving environment like the Web, defining the global schema out of the
sources schemas may lead to significant overload of schema maintenance: ev-
ery insertion/deletion of a new source or modification of an already integrated
source’s schema, leads to modification(s) of the global schema. Besides that, the
global schema can become quite unintelligible, due to the idiosyncrasies present
in the different local schemas. An independently defined global schema (an on-
tology) seems most appropriate for the integration of web data, and this line is
followed in the paper. In an environment where data is changing rapidly, keep-
ing the data warehouse “up-to-date” is not the easiest of tasks, so we choose to
study mediation.

Another dimension of a data integration system is the approach used to define
the mappings between the global schema and the sources schemas. There are two
prevailing approaches: Global-As-View (GAV) and Local-As-View (LAV) [23].
In the former, the global schema relations are defined as views of the sources
relations. The mappings are conjunctive queries3 which specify how to obtain the
tuples for the former: their head involves one global schema relation, and their
body involves a conjunction of source relations. Queries are formulated in terms
of the global schema relations and their translation is done by substituting the
global schema relations by their definitions4. In the latter, a source is described
as a (materialized) view of the global schema relations [24]. The mappings (also
conjunctive queries) have the inverse direction of those in the GAV approach.
Query translation in this context is known as querying rewriting using views [24].
The drawback of the first approach is that the global schema depends on the
sources schemas, while in the second, it is defined independently of them. But,
query translation in LAV is more complicated than in GAV. In the simple case
of conjunctive queries, it has been proved NP-hard [24].

A number of algorithms have been proposed in the literature for the latter ap-
proach. Authors in [25, 29, 28, 15, 17, 21] consider query rewriting for conjunctive
queries and relational views. Algorithms in [25, 29] are characterized as bucket-
based where the idea is to match each query subgoal with the body of the view
definitions. Authors in [15, 17] follow a different approach where they produce

3 We use the term conjunctive query to refer to rule-based conjunctive query as defined
in [2].

4 This substitution is called query unfolding.
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a set of rewriting rules out of the view definitions. Query rewriting is done by
matching the body of the rules with the body of the query. Rewriting in a dif-
ferent framework is done in [8, 20, 7] where regular path queries and views are
considered.

In this paper we consider query rewriting in the framework proposed in [4, 18].
A mediator-based architecture for the integration of XML resources is proposed
where the LAV approach is used to describe the sources to the global schema,
the latter defined independently of the schemas of the former. The global schema
is an ontology which incorporates the basic features of the Entity Relationship
(ER) model [9] (which can be easily represented as an object-oriented or as an
RDF schema [30]). The principal contributions of this work in the domain of
XML data integration are:

– the identification of a reasonable subset of the web data integration problem
in which mediation is a feasible alternative to data warehousing;

– the use of a rich conceptual schema which considers inverse roles and global
keys, instead of a relational one as the global schema of the mediator;

– an expressive mapping language to describe a source’s schema to the global
schema. All previous approaches consider that a source is described as a
conjunctive query over the global schema relations. In [4] mapping rules
which associate XML fragments (expressed by XPath [10] expressions) to
ontology paths are used.

This approach has several advantages. First ontologies are more expressive
than XML DTDs or Schemas due to the presence of (i) subsumption relations
and (ii) typed binary relationships between entities. In XML neither of them
exist, and the only type of relationships between nodes is the parent/child and
attribute relationships. The ID/IDREF attribute mechanism can be used to relate
two nodes but these relationships are untyped. Second, the use of XPath in
the mapping language allows one to describe arbitrary XML structures, and
in addition to associate specific semantics (expressed in the ontology) to the
relationships between XML nodes. We will not discuss here the benefits of using
an ER schema as the global schema. Detailed discussion on this issue can be
found in [3].
In this context, the result of the rewriting for a query q and for a set of sources S
is the union of all the rewritings of q for each source s. The idea behind rewriting
q for s is simply to match the query variable binding paths to the ontology paths
of the rules. The proposed framework along with the query rewriting algorithms
has been implemented in the STYX prototype [19].

A similar but simpler approach has been undertaken in [13]. The global
schema is a node-labeled tree (called abstract DTD) hence there is no notion
of subsumption relationship and parent/child is the only relationship between
nodes. XML sources are described by concrete DTDs (also node-labeled trees).
The mapping language is much simpler than in [4]: only the child axis of XPath
is used where absolute abstract paths are mapped to absolute concrete paths5.
5 Paths are called absolute since they are specified only from the root node of the

abstract/concrete DTDs.
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Given a user query expressed in terms of the abstract DTD, their query rewriting
algorithm tries to find the concrete paths that match the abstract paths.

In this paper we examine the completeness and soundness of the rewriting
algorithm in [4] for a query q and a source s following a different approach
for the manipulation of ontology paths in the models of the ontology. In this
new setting we started by examining the proposed framework and in order to
achieve our goal we had to consider the following restrictions: (i) the ontology
contains no inverse roles, (ii) no global keys are considered and (iii) only the
child and attribute axis of XPath are used in the mapping rules. Hence, we
had to contemplate with a poorer mapping language than the original one to
prove completeness. The conclusion that we can draw is that if one wants to go
for expressive power, then one must pay the price of incompleteness.

The paper is organized as follows: in Section 2 we present the approach
followed in [4] using a cultural example. Section 3 gives the formal definitions
for the ontology, the mapping rules, queries and answers. In Section 4 we show
how a model for the ontology is built in which the XML sources are interpreted
using a Tableau System. We also show how this model can be used to yield
all certain answers to queries. Section 5 presents the query rewriting algorithm
and proves its completeness and correctness. Conclusions are given in Section 6.
Proofs of all statements are provided in the Appendix.

2 Overview of the approach through a cultural example

We give in this section an overview of the approach in [4] using an example
from the cultural domain. An XML resource is considered to contain a number
of XML documents which conform to a unique XML DTD6. The upper side of
Fig. 1 shows an XML DTD describing painters and their paintings for source
http://www.paintings.com. Each painter (element Painter, line 2) is associated
with one or more paintings (element Painting). A painter has a name (attribute
name, line 3). A painting has a title (attribute title, line 5). Fig. 1 presents an
XML document that conforms to the DTD.

The backbone of the mediator is an ontology which incorporates the basic
features of the Entity Relationship (ER) model [9]. The terms concept and role
are used to name entities and relationships respectively. Concepts are related to
each other with the isa subsumption relation. We use the same ontology as the
one used in [4] as a reference example, which is inspired from the ICOM/CIDOC
Reference Model [14]7.

The ontology is depicted in the graphical notation of ER schemas, with the
addition of isa arcs and is shown in Fig. 2. It describes concepts such as Actor,
6 Although this may look like a simplification from the setting with a number of

heterogeneous sources, on our level of description it is not: using appropriate re-
naming every subset of XML documents with their own DTD can be equivalently
transformed into one source with one DTD.

7 The ICOM/CIDOC model has been defined and used for the documentation of
cultural information. Several cultural authorities have participated in this effort
whose basic purpose was to provide a single schema to exchange their data.
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1. <!ELEMENT Collection (Painter+)>
2. <!ELEMENT Painter (Painting+)>
3. <!ATTLIST Painter name CDATA #REQUIRED>
4. <!ELEMENT Painting EMPTY>
5. <!ATTLIST Painting title CDATA #REQUIRED>

<Collection>
<Painter name=’’Rembrandt’’>
<Painting title=’’de Nachtwacht’’/>
<Painting title=’’de Staalmeesters’’/>

</Painter>
<Painter name=’’Vermeer’’>
<Painting title=’’de Brief’’/>
<Painting title=’’het Melkmeisje’’/>

</Painter>
</Collection>

Fig. 1. XML DTD and document for source http://www.paintings.com.
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Fig. 2. An Ontology for Cultural Artifacts.

R1: http : //www.paintings.com/Collection/Painter as u1 → Person
R2: u1/@name → has name
R3: u1/Painting as u3 → carried out/produced
R4: u3/@title → has title

Fig. 3. Set of Mapping Rules for source http://www.paintings.com.

its subconcept Person, Activity, Man Made Object, and Museum. The concepts
are connected using binary roles such as carried out, produced and located at.
The fact that an actor (instance of concept Actor) performs an activity (in-
stance of concept Activity) to produce a man made object (instance of concept
Man Made Object) is represented by roles carried out and produced. Concepts
may also have attributes: attribute has name is defined in concept Person and
takes its values in the atomic type String. In the ontology, each role has an inverse
depicted within parenthesis.

To describe an XML resource to the ontology a set of mapping rules is defined.
Each rule associates an XPath location path [10] to concepts, attributes and
(composite) roles in the ontology (we use ’/’ to denote the composition of two
roles).

The set of rules illustrated in Fig. 3 map fragments of XML documents which
conform to the DTD of Fig. 1 into the ontology of Fig. 2. Each rule has a left
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hand side and a right hand side. The right hand side is a concept, attribute or
(composite) ontology role (referred to as ontology paths in the sequel). The left
hand side is composed of (i) an XPath location path evaluated on some URL or
on some variable and (ii) an optional variable declaration.

The first rule states that all elements returned when evaluating the XPath
expression Collection/Painter on the root nodes of documents in URL http://-
www.paintings.com are instances of concept Person and this set of elements is
bound to variable u1. The statement ’as u1’ is a variable declaration. The second
rule states that values of the attribute has name of Person are obtained from
evaluating the XPath expression @name on instances of variable u1 (Painter
elements). The third rule states that x carried out/produced y holds whenever x
is a Painter element (element of the variable u1) and y is a Painting element,
child of x. The obtained Painting elements are bound to variable u3 which is
used in the last rule to obtain the values for attribute has title.

The mapping rules allow one to define the semantics of XML fragments
and their structural relationships in terms of the ontology. Thus, R1 defines a
subset of the extension of concept Person, while rule R3 relates elements in this
subset by the composite role carried out/produced to a subset of the extension of
Man Made Object.

Queries are conjunctive queries expressed in the vocabulary of the ontol-
ogy [2]. Such queries can be presented in several formats. In more theoretical
work, conjunctive queries are presented as Datalog rules. Commercial systems
often employ a select/from/where formulation (as in SQL).
The query “Which objects are created by Vermeer” is expressed in the OQL syn-
tax [11] and as a conjunctive query in Table 1. These two formulations differ only
with respect to their notion of an answer. An answer to the conjunctive query
is an instantiation of x3 which makes the body of the rule true. The answer to
the OQL query is the set of all these instantiations. In the sequel we use answer
in the former sense.
Each variable in the query is bound to some ontology path (called in the sequel
its binding path). For example, for the OQL query Q1, Person is the binding path
of x1, has name is the binding path of x2 and finally carried out/produced is x3’s
binding path.

Given a query, the rewriting algorithm proposed in [4] works as follows: given
that each variable in the query is bound to some ontology path, the algorithm
searches for mapping rules or concatenations thereof, that can be used to trans-
late these paths to XPath location paths. This is done by matching the binding
paths of the query variables against the ontology paths of the mapping rules.
For example for Q1 and for the set of mapping rules depicted in Fig. 3, we see
that instances for variable x1 are found by rule R1, for variable x2 by R2 and
for variable x3 by rule R3. By substituting the binding path of a query vari-
able with the location path of the corresponding rule, we obtain query Q1(a)
which can be easily translated into the XQuery [12] expression Q1(b) both shown
in Table 2. For the document of Fig. 1, there are two answers to this query:
<Painting title =′′ de Brief′′/> and <Painting title =′′ het Melkmeisje′′/>.
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Q1: select x3

from Person x1, x1.has name x2,
x1.carried out/produced x3

where x2 = “Vermeer”

Q1(x3) :– Person(x1), has name(x1) = x2, carried out/produced(x1, x3), x2 = “V ermeer′′.

Table 1. Query Q1.

Q1(a): select x3

from http : //www.paintings.com/Collection/Painter x1,
x1./@name x2, x1./Painting x3,

where x2 = “Vermeer”

Q1(b): FOR $x1 IN document(′http : //www.paintings.com′)/Collection/Painter,
$x2 IN $x1/@name,
$x3 IN $x1/Painting

WHERE $x2 = “Vermeer”
RETURN $x3

Table 2. Queries Q1(a) and Q1(b).

3 Mapping XML resources to Ontologies

In the setting proposed in [4] several XML sources are integrated into one ER
model. Whence, it is not evident what constitutes a correct answer to a query.
In this section we develop a theory for interpreting XML sources into ER models
and use that to define the notion of a certain answer. This notion originated in
the context of incomplete databases and has been used for query answering in
data integration [23].

Ontologies As aforementioned, ontologies incorporate the basic features of the
Entity Relationship (ER) model [9]. The model considered in [4] differs from
standard ER models in three respects: (i) only binary relationships (called roles)
between entities are allowed, (ii) only two roles (called source and target assign-
ing the domain and range to each relationship) are used, and (iii) attributes are
partial rather than total functions.

Formally, an ontology is an 8-tuple O = (C,R, S,A, source, target, isa, key),
where: (i) C is a set of concept symbols, (ii) R is a set of role symbols, (iii) S is
the set of atomic types defined in the XML Schema Datatypes document [5], (iv)
A is a set of attribute symbols, (v) source is a function that assigns to roles and
attributes their domain in C, (vi) target is a function that assigns to roles their
range in C and to attributes their range in S, (vii) isa is a subsumption relation
between concepts in C, (viii) key(·) is a function from C to P(A), assigning to
every concept a (possibly empty) set of its attributes. key(·) is such that for each
pair of concepts c1, c2 with c1 isa c2 it holds that key(c1) ⊆ key(c2)8. We use
isa∗ to denote the reflexive and transitive closure of the isa relation.
8 In contrast to [4] we only deal with single valued keys and with at most one key per

concept. In general, concepts may have several multivalued keys as in [6]. The general
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ActorB = {p1, p2} PersonB = {p1, p2}
ActivityB = {a1, a2, a3} Man Made ObjectB = {o1, o2, o3, o4} MuseumB = ∅
carried outB = {(p1, a1), (p1, a2), (p2, a3)}
producedB = {(a1, o1), (a2, o2), (a3, o3), (a3, o4)} located atB = ∅
has title(o1) = “de Nachtwacht” has name(p1) = “Rembrandt”
has title(o2) = “de Staalmeesters” has name(p2) = “Vermeer”
has title(o3) = “de Brief”
has title(o4) = “het Melkmeisje”

Table 3. A model B for the ontology O .

The semantics of an ontology can be given by specifying which database
states are consistent with the information structure represented by the ontology.
Formally, a database state B for an ontology O consists of a nonempty finite
set DB (which is disjoint from all basic domains) and a function (·)B which
interprets the symbols of the ontology: concepts c as subsets cB of DB; roles r
as subsets rB of DB ×DB; attributes a as partial functions aB from DB to the
union of the basic domains; atomic types S as the corresponding basic domains
SB.
A database state B is a model for the ontology O , if (i) B interprets the concept,
role, attribute and atomic type symbols of the ontology, (ii) for each pair of
concepts c1, c2 with c1 isa c2 it holds that c1

B ⊆ c2
B, (iii) for each role r, the

domain and range9 of r are subsets of source(r)B and target(r)B, respectively,
(iv) for each attribute a, for each e ∈ DB, if a(e) is defined then e ∈ source(a)B

and a(e) ∈ target(a)B and (v) for all x, y ∈ DB, whenever x, y ∈ cB, for some
concept c and {a1, . . . , an} is the key for c it holds that: x = y iff a1

B(x) =
a1

B(y) and . . . and an
B(x) = an

B(y) (i.e. B does not contain different objects
with the same value for a key).

A model B for the ICOM/CIDOC ontology is shown in Table 3. The domain
DB of B consists of the following set of elements: {p1, p2, a1, a2, a3, o1, o2, o3, o4}.
There is only one basic domain of type String.

Mapping rule R3 in Fig. 3 uses the composite role carried out/produced. Com-
posite roles have proven to be very useful for mapping XML elements into the
ontology [3] and can be seen as describing paths in the ontology. A role path
(rolepath) is a composition of roles, a concept path (conceptpath) is a composition
of a concept and a role path and finally an ontology path (ontologypath) is either
a concept path, a role path, an attribute or a composition of a conceptpath and
an attribute (the latter called attribute path).

rolepath ::= r | rolepath/r for r ∈ R
conceptpath ::= c | c/rolepath for c ∈ C
ontologypath ::= conceptpath | rolepath | a | conceptpath/a for a ∈ A

case leads to no new conceptual difficulties; the only difference is that determining
identity of objects is a longer process.

9 The domain of a role r is the set {x | ∃y.(x, y) ∈ rB}. Its range is the set {x |
∃y.(y, x) ∈ rB}.
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The source of a role path is the source of its first element; the target of a role
path is the target of its last element. A composition of two roles, or of a role and
an attribute r/s is safe if target(r) isa∗ source(s). The composition of a concept
and a role or attribute c/r is safe if c isa∗ source(r). An ontology path is safe if
all its compositions are safe.

Examples of (safe) role paths in the ICOM ontology are carried out and car-
ried out/produced. Person/carried out/produced is a safe concept path.

The interpretation of ontology paths in a model of an ontology is defined as
follows: For p = r1/ . . . /rn a role path, (r1/ . . . /rn)B = r1

B ◦ . . . ◦ rn
B.10 For

p = c/r a concept path, (c/r)B = {x | ∃y ∈ cB and (y, x) ∈ rB}. For p = c/a

with c a concept path and a an attribute, (c/a)B = {(x, v) | x ∈ cB and a(x) =
v}.

Mapping Rules As presented in Section 2, an XML resource is described to the
ontology by means of mapping rules which associate XPath location paths to
ontology paths. A mapping rule is an expression of the form R : u/q as v → p,
or R : u/q → p where: (i) R is the rule’s label, (ii) u is either a variable or
a URL, (iii) q is an XPath location path, (iv) p is an ontology path, restricted
as follows: p is an attribute only if q is of the form @q′ where q′ is an XML
attribute and u is a variable; p is a role path only if u is a variable, and a
concept path only if u is a url (iv) as v, is a variable declaration, present only if
p is a role path or a concept path. A set of mapping rules is called a mapping.
Rules are distinguished between relative and absolute: a rule R is called absolute
if it starts with a URL, relative otherwise. Concatenation of mapping rules is
defined as follows: for R1 : a/q1 as v1 → p1, R2 : v1/q2 as v2 → p2 two rules in a
mapping M , their concatenation is the new rule R1/R2 : a/q1/q2 as v2 → p1/p2.
Given a mapping M , its closure, denoted by M ∗, is the set of all rules that can
be obtained from M by repeated concatenation. Its expansion, denoted M̂ , is
the set of absolute rules in M∗.

Definition 1 (Well Presented Mapping). We call a mapping well presented
if it satisfies the following two conditions: (i) all ontology paths of rules in M̂
are safe, and (ii) if R1 : u/q as v1 → p1, R2 : u/q as v2 → p2 are both in M̂ ,
then v1 = v2.

It is straightforward to check that the mapping rules in Fig. 3 are well presented.
From this point on, and w.l.g. we assume that a source is an XML document

specified by a URL u and a mapping M in which u appears as the only URL.
As described in Section 2, a mapping M from an XML source s to an ontology

O populates the concepts, roles and attributes of O . This is done formally by an
interpretation function which maps the elements and values in an XML document
to a model B of the ontology.

Definition 2 (Interpretation Function). Let (u,M) be a source, d the XML
document specified by u and B a model for an ontology O. An interpretation of
10 r1

B ◦ r2
B is defined as follows: r1

B ◦ r2
B = {(x, y) | ∃ z.(x, z) ∈ r1

B and (z, y) ∈
r2

B}.
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(u,M) in B is a function f which: (i) sends elements of d to DB; (ii) sends
attribute values of d to the basic domains of B of the same type; and (iii) respects
all rules in the expansion of M in the following sense11: Let R1 : u/q as v → p
be an absolute and R2 : v/q′ as v′ → r a relative mapping rule. We say that f
respects R1 if {f(e) | e ∈ u/q} ⊆ pB. We say that f respects R1/R2 if f respects
R1 and for all e ∈ u/q, for all e′ ∈ e/q′, (f(e), f(e′)) ∈ rB.

In the sequel it will be convenient to assume that the database state in which a
source is interpreted has the set of elements of the XML document as constant
symbols. Then we can use the XML element e to refer to the database object
f(e). So given an interpretation f of a source (u,M) in a database state B, we
assume that B contains the set of elements of the XML document specified by
u as constant symbols and the interpretation is such that f(e) = eB. Often we
just equate e with eB.

Example 1. We will interpret the XML document of Fig. 1 into the model of the
ICOM ontology given in Table 3, in such a way that it respects the mapping
rules R1–R4. The function f is shown in Fig. 4. The XML document has two
painter elements, one for Rembrandt, and one for Vermeer. f maps the first to
p1, and the second to p2. The four painting elements are mapped to the four
objects o1–o4. The values of the XML attributes name and title are mapped to
the identical strings in the basic domain of String. It is not hard to check that f
is indeed an interpretation.

f(<Painter name=’’Rembrandt’’>
<Painting title=’’de Nachtwacht’’/>
<Painting title=’’de Staalmeesters’’/>

</Painter>)=p1
f(<Painter name=’’Vermeer’’>

<Painting title=’’de Brief’’/>
<Painting title=’’het Melkmeisje’’/>

</Painter>)=p2

f(<Painting title=’’de Nachtwacht’’/>)=o1
f(<Painting title=’’de Staalmeesters’’/>)=o2
f(<Painting title=’’de Brief’’/>)=o3
f(<Painting title=’’het Melkmeisje’’/>)=o4

Fig. 4. Interpreting the XML document of Fig. 1 into the ontology model of Table 3.

Queries and Answers Queries are conjunctive queries expressed in the vocab-
ulary of the ontology [2] extended with the ontology paths and some fixed set
11 In this paper we use the expression e′ ∈ e/q′ to denote that element e′ is obtained

when evaluating XPath location path q′ on element e. We use this expression instead
of e′ ∈ [[q′]](e) as defined in [32].
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of comparison predicates defined over the basic domains. Formally, given an
ontology O , a conjunctive query is an expression of the form:

q(x̄) : −
∧

c(x),
∧

r(x, x′),
∧

a(x) = x′,
∧

xθn.

where x̄ is a sequence of variables all occurring in the body of the query, every
c is a concept path, every r a role path, every a an attribute, and every xθn a
comparison predicate where x is a variable, n is a value and θ is one of {=, <,>
,≤,≥}.

Conjunctive queries in which no composite concepts or roles occur, are called
atomic. Conjunctive queries can be easily transformed into queries in an OQL-
like syntax 12. We recall here the definition of an answer to a conjunctive query
to a model DB [2]. Let q(x1, . . . , xn) be a conjunctive query with variables
x1, . . . , xn and y1, . . . , ym. Then a1, . . . , an is an answer to q(x1, . . . , xn) if DB |=
∃y1 . . . ∃ymq(a1, . . . , an), where |= is the standard first order satisfaction relation.

Finally we come to the central definition in this paper. Let O be an ontol-
ogy, (u,M) a source mapping elements of the documents in u into O , and q(x̄)
a conjunctive query expressed in the vocabulary of the ontology. We want to
define an intuitively reasonable notion of a correct answer to q(x̄) given O and
(u,M). This notion then will determine whether an algorithm which produces
the answers is both correct and complete. The definition below captures the
idea that something is an answer to a query if there is no countermodel. In the
literature on data integration, these are called the certain answers [23]. More
formally, a list of XML elements and attribute values ā of u is an answer to the
query q(x̄) if there is no model B for O in which the source is interpreted and
where B *|= q(ā). This is usually formulated positively as follows:

Definition 3 (Certain answer). Let (u,M) be a source, O an ontology and
q(x̄) a conjunctive query in the language of O. M maps the elements of u into O.
Let ā be a list of XML elements and attribute values coming from the source. We
say that ā is a certain answer to the query q(x̄) posed to (u,M), if for each model
B for O, for each interpretation f of (u,M) into B it holds that B |= q(f(ā)).

4 Data Warehousing

Given an ontology O and a source (u,M) which is mapped to O we can con-
struct a model of O using a tableau system. This model can be seen as a data
warehouse. In the previous section we have seen that there are many models of
O in which a source can be interpreted. A certain answer was an answer which is
true in all these interpretations. Rather surprisingly now, all certain answers to a
12 Let q(x̄) be a conjunctive query. Query q(x̄) can be transformed into query q′ in

an OQL-like syntax as follows: q′’s select clause contains the variables in x̄; q′’s
from clause contains

∧
c(x),

∧
r(x, y),

∧
a(x, y) (a(x, y) for the expression of the

form a(x) = y) and q′’s where clause contains the conjunction of the comparison
predicates.
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conjunctive query can be obtained by evaluating the query to just this one con-
structed model (Theorem 3). In the context of data exchange [16] such a model
has been called the universal canonical solution. We use the same terminology.
To have a constructive way of producing all certain answers turns out very useful
in the next section: it will be straightforward to establish completeness of the
rewriting algorithm on the basis of the tableau system.

The tableau rules are given in Table 413. They can be grouped according to
their function. The mapping rule rules implement the meaning of the mapping
rules. The domain, target, isa and global key rules derive facts from the structure
of the ontology. The composition, inverse and equality rules specify the logic
behind these operations. The comparison rule just lists facts true of the basic
domains. Given that a source is finite, the tableau construction reaches a fixed
point in which application of each rule only duplicates lines already on the
tableau14. Thus

Theorem 1. Constructing a tableau with the tableau rules in Table 4 termi-
nates.

If we apply the tableau rules until no rule yields new information, we end up
with a complete description of a model of the ontology in which the source
is interpreted (Theorem 2). In the description of the model we use the XML
elements of the source and parameters to denote elements of the domain of the
model.

Theorem 2. Let T be a complete tableau expansion for the ontology O and the
source (u,M) mapped to O. Then there exists a model BT such that: (i) BT is a
model for O, (ii) (u,M) is interpreted in BT , (iii) the domain of BT consists of
the set of parameters and XML elements occurring in T factored by the relation
{(x, y) | x = y occurs in T}, (iv) for all concepts C, relations R and attributes
a,

BT |= C(ē1) iff C(e1) on the tableau (1)
BT |= ē1Rē2 iff e1Re2 on the tableau (2)

BT |= a(ē1) = n iff a(e1) = n on the tableau, (3)

where ē denotes the equivalence class of e.

Proofs of all results are provided in the Appendix. The tableau rules not only
give us a model, we can also use them as an algorithm to yield answers to queries.
Here we present a primitive way of doing that. A more efficient calculus following
the GAV query unfolding approach is described in the full version of this paper
13 When constructing this model, the order of XML elements in the actual XML doc-

ument is lost.
14 One has to restrict the application of the concept path and composition rules to

exactly one time for each occurrence of the enumerator. Because the parameter is
new, applying these rules more often yields no extra information.
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Absolute Mapping rule rule
Ri : u/q as vi → C is an absolute rule in M̂

C(e) for all e ∈ u/q

Relative Mapping rule rule I Ri : u/q as vi → C is an absolute rule in M̂
Rj : vi/p as vj → R is a relative rule in M∗

eRe′ for all e ∈ u/q and e′ ∈ e/p

Relative Mapping rule rule II Ri : u/q as vi → C is an absolute rule in M̂
Rj : vi/@n → a ( for a an attribute) is a relative rule in M

a(e) = e/@n for all e ∈ u/q

Isa rule
C(e) C isa D

D(e)

Domain rules
eRe′ source(R) = C

C(e)
a(e) is defined source(a) = C

C(e)

Target rules
eRe′ target(R) = C

C(e′)
a(e) is defined a(e) *∈ target(a)
ABORT CONSTRUCTION

Concept path rule
C/R(e)
C(n)
nRe

n is a new parameter in the tableau expansion.

Composition rule

eR/Se′

eRn
nSe′

n is a new parameter in the tableau expansion.

Inverse rule
eR−1e′

e′Re

Global key rule key(C) = {a1, . . . , an}, C(e), C(e′),
a1(e) = a1(e′), . . . , an(e) = an(e′)

e = e′

Reflexivity rule
e = e

Replacement rule
φ(e) e = e′

φ(e′)

Comparison predicate rule
nθm

for every true statement nθm (n, m elements of some basic domain

occurring on the tableau.

Table 4. Tableau rules.
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[27]. The following completeness theorem however is very convenient for proving
completeness results later on.

Let φ(x̄) be an atomic query. We say that the tableau system gives ē1 as an
answer to φ(x̄) asked to ontology O and source (u,M) if there exists parameters
and XML elements ē2 such that every conjunct φi(x̄, ȳ) occurs in the tableau
with ē1 and ē2 substituted for x̄ and ȳ, respectively.

Theorem 3 (Soundness and completeness of the tableau system). Given
an ontology O, source (u,M) and an atomic conjunctive query φ(x̄), the tableau
system gives ē as an answer to φ(x̄) if and only if ē is a certain answer to φ(x̄).

We end with two technical lemmas which will be used in the next section. The
first lemma can be seen as a reason for asking that the paths in the mapping rules
are safe. In that case the domain rule of the tableau system becomes redundant.

Lemma 1. Let T be a tableau for the ontology O and the source (u,M) mapped
to O. Let the paths in the mapping rules of M̂ be safe. Then every occurrence
C(e) in T can be obtained without an application of the domain rule.

The next lemma specifies a situation in which tableau proofs are particularly
simple, and in which the universal canonical solution has the convenient property
of being a tree.

Lemma 2. Let O be an ontology without inverse roles and without global keys.
Let (u,M) be a source in which the paths in the mapping rules of M̂ are safe.
Then

(i) for each conjunctive query q(x̄), ē is a certain answer to q(x̄) if and only
if there is a tableau proof for q(ē) which only uses the mapping rule rules, isa,
target, concept path and composition rules;

(ii) the universal canonical solution is a tree.

5 Lav Approach : Query Rewriting

In this section we discuss the completeness of the rewriting algorithm in [4] in
our context. As in [4], we consider the rewriting of tree queries without joins
between variables and we use an OQL-like syntax to express them15.

The algorithm in [4] needs only rewrite the conjuncts in the from clause of
the query. We demonstrate the idea using query Q1 shown in Table 1 and the
mapping rules of Fig. 3.

In short, the algorithm examines the query variables and finds the mapping
rules which provide answers for them. Query variables are arranged in preorder,
and the algorithm considers a variable, after it has examined its parent. The root
variable x1 is examined first. The algorithm looks for absolute mapping rules
15 A tree query is a conjunctive query q(x̄) : −c(x0),

∧
r(x, y),

∧
a(x) = y,

∧
xθn satis-

fying the following restrictions: (i) x0 is the root variable of the query, (ii) if r(x, y)
or a(x) = y occurs in the query, x is called the parent of y and the variables with
the parenthood relation form a tree with x0 as the root.
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1. input: tree query
2. repeat until no further reduction is possible
3. do
4. for each x.R y with y a leaf and y not selected, replace x.R y by x.R/ ∗ y.
5. for each x.R y with x not selected and y the only child of x then
6. if x is the root variable of the query and C x appears in the query
7. replace C x, x.R y by C/R y (making y the new root).
8. else if z.S x is present in the query, then replace z.S x, x.R y by z.S/R y
9. od
10. output: tree query

Fig. 5. Query preprocessing algorithm

which return instances of concept Person. Such a rule is R1 which states that the
elements obtained by evaluating XPath expression Collection/Painter on the
documents in URL http://www.paintings.com are instances of concept Person.
These are bound in variable u1. We create the binding {(x1, u1)} which states
that instances of x1 are the instances of u1. In this case the expression Person x1

in Q1 is replaced by http : //www. paintings.com/ Collection/ Painter x1.
Then, variable x2 is examined. The algorithm looks for a rule which (i) can be
evaluated on instances of x1 (i.e. instances of u1) and (ii) whose ontology path
is has name (i.e. the binding path of x2). Such a rule is R2 since its root variable
is u1 and its ontology path is has name. The expression x1.has name x2 in Q1

is replaced by x1./@name x2. In a similar manner, expression x1.carried out/-
produced x3 is replaced by x1./Painting x3 using rule R3 and the binding is
extended to {(x1, u1), (x3, u3)}. When all the variables have been considered,
the obtained query is Q1(a) illustrated in Table 2. With a simple syntactical
transformation16, it is transformed into the XQuery expression Q1(b) shown in
Table 2.

There are cases where the algorithm briefly described above, does not return
a rewriting even if one exists. The reason is the presence of composite concepts
and roles in the query and the mapping rules.

To overcome this problem, we need to do a preprocessing of the query. This
step is necessary since the algorithm tries to match all the query variables with
some mapping rule. Here we distinguish between necessary and unnecessary vari-
ables. The latter appear neither in the select, nor in the where clause of the
query. The former must be always instantiated by instances from the sources,
the latter can be bound to objects in the model of the ontology which do not
exist in the sources. Such objects appear in models of the ontology because of
16 The transformation of query Q1(a) to the XQuery expression Q1(b) is done as fol-

lows: Q1(b)’s FOR clause is obtained by replacing each expression of the form
xi./q xj in the from clause of Q1(a) by (i) xj IN xi/q if xi is a variable and
(ii) xj IN document(“u”)/q if xi is of the form u/q where u is a URL. Q1(b)’s
WHERE clause contains all conditions in the where clause of Q1(a). Finally, the
RETURN clause of Q1(b) contains all variables in the select clause of Q1(a).
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role paths and concept paths in the ontology paths of the mapping rules (this
is clearly visible from the tableau composition rules). The function of the query
preprocessing algorithm is to remove all unnecessary variables by rewriting the
initial query into an equivalent one. The query preprocessing algorithm is given
in Fig. 5. The special predicate x.R/ ∗ y is an abbreviation of the disjunction
x.R′ y for which there is a mapping rule vi/q as vj → R′ and R is a prefix of R′.

Lemma 3. (i) The algorithm in Fig. 5 yields an equivalent query.
(ii) Let O be an ontology without inverse roles. Let ∃ȳQ(x̄, ȳ) be the output

from the algorithm in Fig. 5. Then the following are equivalent:
• ā is a certain answer to ∃ȳQ(x̄, ȳ).
• āb̄ is a certain answer to Q(x̄, ȳ), for some b̄.

5.1 Query Rewriting Algorithm

Our aim is to create a simple, efficient and complete rewriting algorithm. For this,
we restrict the queries to tree queries and we do not allow inverse roles, attribute
paths in the mapping rules and the queries and global keys in the ontology. The
mapping rules must be well presented and obey that all XPath expressions A,B
in the mapping rules have the property that if there is a document on which A
and B have a non empty intersection, then A and B are syntactically the same.
This can be implemented by allowing only the child and attribute axes in the
XPath expressions of the mapping rules. An elaborate motivation (apart from
their use in the completeness proof) of these restrictions is provided in the full
version of the paper [27].

In this section we present the query rewriting algorithm oquery2xquery il-
lustrated in Fig. 6 which is a variation of the query rewriting algorithm in [4].
It accepts as input an OQL tree query (preprocessed by the algorithm shown in
Fig. 5) and a mapping M . As output it gives an OQL like “XQuery” expression
which has the same select and where clause as the tree query but whose from
part consists of the set XPool in the algorithm.

The algorithm uses the following three sets: OntPool which contains the
expressions in the query from clause, XPool which contains expressions of the
form xi./XExp xj and XExp x0 where XExp is an XPath expression, and the xi’s
are query variables and finally Bindings that contains pairs of the form (xi, Var)
where xi is a query variable and Var is a mapping rule variable. It makes use
of the (non-deterministic) DATALOG procedure concept2x shown in Fig. 7.
Given a concept c from the ontology and a mapping M , concept2x returns (i)
the XPath location path and (ii) the bound variable of an absolute mapping rule
R in M̂ which returns elements that are (according to the ontology path of R)
instances of c.

The algorithm examines first the query root variable x0. Let C0 x0 be the
expression in OntPool for x0, where C0 is the binding path of x0. Procedure
concept2x() is called with C0 and returns the location path XExp and the bound
variable Var of an absolute mapping rule which returns instances of C0 or of
subconcepts thereof. {XExp x0} is then added in XPool and (x0, Var) in the set
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begin
OntPool := the from part of the ontology query;
let C0 x0 ∈ OntPool

if concept2x(C0, XExp, Var)
then XPool := {XExp x0}; Bindings := {(x0, Var)};
OntPool := OntPool \ {C0 x0};

else fail;
do OntPool (= ∅ −→

let xi.Exp xj ∈ OntPool
if (xi, vi) ∈ Bindings and vi/XExp as Var → Exp ∈ M∗;
then XPool := XPool ∪ {xi./XExp xj}; OntPool := OntPool \ {xi.Exp xj};

Bindings := Bindings ∪ {(xj, Var)};
else fail;

let xi.Exp/ ∗ xj ∈ OntPool
if (xi, vi) ∈ Bindings and vi/XExp as Var → Exp′ ∈ M∗;

where Exp is a prefix of Exp′

then XPool := XPool ∪{xi./XExp xj}; OntPool := OntPool \ {xi.Exp/ ∗ xj};
Bindings := Bindings ∪ {(xj, Var)};

else fail;
let a(xi, xj) ∈ OntPool

if (xi, vi) ∈ Bindings and vi/@XExp → a ∈ M∗;
then XPool := XPool ∪{xi./@XExp xj}; OntPool := OntPool \ {a(xi, xj)};
else fail

od
end

Fig. 6. Query rewriting algorithm oquery2xquery.

/* for concepts C and C/Rolepath */
/* if Rolepath is the empty string, “/Rolepath” stands for the empty string */

concept2x(C/Rolepath, U/X, Var):-
P isa∗ C,
U/X as Var → P/Rolepath ∈ M̂.

concept2x(C/Rolepath, U/X, Var):-
target(Path) isa∗ C,
U/X as Var → Path/Rolepath ∈ M̂.

Fig. 7. Procedure concept2x.
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Bindings. Expression C0 x0 is removed from OntPool. The algorithm then exam-
ines the query variables in preorder by considering a variable after its parent. Let
xj be the variable considered and let xi.Exp xj be an expression in OntPool. Let
xi be bound to variable vi (i.e. (xi, vi) ∈ Bindings). The algorithm will then
look for a relative mapping rule R starting with vi. As far as Exp is concerned,
we distinguish between two cases:

– If Exp is of the form S, R is selected if its ontology path is equal to S;
– if Exp is of the form S/∗ where S is a role path, then R is selected if S is a

prefix of R’s ontology path;

Let the relative rule R be of the form R : vi/XExp as Var → Exp. Then ex-
pression xi./XExp xj is added to XPool, xi.Exp xj is removed from OntPool
and (xj, Var) is added to Bindings. If the algorithm examines an expression
of the form a(xi, xj) where a is an attribute in the ontology, and xi is bound
to variable vi, then the algorithm looks for a relative mapping rule of the form
vi/@XExp → a. As previously, xi./@Xexp xj is added in XPool and a(xi, xj) is
removed from OntPool.

We arrived at the central result of the paper:

Theorem 4. The query rewriting algorithm presented in Fig. 6 is correct and
complete. That is, ā is a certain answer to the query q(x̄) posed to the source
(u,M) published in O if and only if there exists an “Xquery” p(x̄) such that
oquery2xquery(q(x̄), p(x̄)) is true and ā is an element of the answer set of p(x̄)
evaluated on source u.

6 Conclusions

In this paper we have shown completeness and correctness of the query rewrit-
ing algorithm proposed in [4] in a restricted setting. That work proposed a novel
framework for query mediation over a set of XML resources using an ontology-
based mediator. The ontology is an ER schema with subsumption relations be-
tween concepts. The sources are mapped to this ontology by means of mapping
rules which associate XPath location paths to ontology paths. The main problem
for a query rewriting algorithm in this setting is to map node labeled trees (XML
documents) to edge labeled graphs with inverse roles and global keys. Leaving
out these last two features from the ontology makes that the universal canonical
solution has the shape of a tree, a much simpler structure to work with. The
mapping language proposed in [4] is very rich: all XPath 1.0 location paths are
allowed. This introduces problems for the proposed algorithm which binds query
variables to mapping rule variables representing sets of XML elements. Such an
algorithm can only be complete if for each XML element there is a unique lo-
cation path leading to it in the mapping rules. This explains our restriction to
location paths using only the child and attribute XPath axes in the mapping
rules. The restrictions we had to pose seem huge but are still reasonable for
practical applications (cf [13] for an argument). Our main contribution thus is
that mediation in a setting with two very different data formats is feasible in
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a simplified but non-trivial case. The main challenge for future work is to cope
with inverse roles and global keys in a computationally attractive way as well
as to raise the limitations of using only the previously mentioned XPath axes in
the mapping rules. Especially efficient algorithms which reason about equalities
between data from different XML documents will be needed. Moreover, another
axis of research is to introduce XML Schemas in the place of XML DTDs. The
other contributions of the paper are a side effect of our effort to prove complete-
ness of the algorithm. They are: (i) the definition of an interpretation function
which maps fragments of XML sources into models of the ontology (ii) the notion
of certain answer in this context, (iii) a tableau calculus for creating a canonical
model (a data warehouse) for the source data and (iv) using this tableau calculus
to design other algorithms for query answering.
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A Proofs

Proof (Theorem 2). Construct BT as specified in the theorem. By replacement, = is a
congruence, whence the valuation of the concepts, roles and attributes is well defined.
BT is a model for O by the isa, source, target and global key rules.

Now let f be the mapping from u to the domains of BT defined by f(e) = ē for
elements and f(n) = n for attribute values.

We now show that f respects the rules of M∗. This is immediate for atomic con-
cepts, roles and attributes by the tableau rules. For the paths, we need the following
result for all concept paths C and role paths R: (i) if C(e1) on the tableau, then
BT |= C(ē1); (ii) if e1Re2 on the tableau, then BT |= ē1Rē2, which is proved by a
simple induction, using the concept path and composition rules.
We note that the other direction only holds in the following sense: BT |= ē1R1 . . . Rnē2

only if there exists a1, . . . , an−1 such that all of e1R1a1, . . . ai−1Riai, an−1Rne2 are on
the tableau, and similarly for the concept paths.

Proof (Theorem 3). Suppose ē1 is a certain answer to φ(x̄). Then in any model B,
B |= φ(ē1). In particular, BT |= φ(ē1). By assumption, all conjuncts of φ are atomic.
But then by Theorem 2, all these conjuncts appear on the tableau. But then the tableau
procedure yields ē1 as an answer.

For the other direction, we need some more work. It is easy to see that all tableau
rules are sound: that is, if the condition of the rule is true for a model of O in which
(u, M) is interpreted, then the conclusion as well. To continue, we say that the tableau
system gives ē1 as an answer to φ(x̄) asked to ontology O and source (u, M) if the
tableau system with the additional following query rule closes: (here φ1 . . . φn are all
atomic conjuncts of φ)

φ(x̄) query rule
ē2 is any sequence of parameters and XML elements

¬φ1(ē1, ē2) | . . . | ¬φn(ē1, ē2)
,

The vertical bars in the tableau rule indicate a branching of the tableau. A branch
of a tableau closes if it contains a formula and its negation. A tableau closes if all its
branches are closed.

Clearly if the tableau yields ē1 as an answer without the new rule, ē1 is also an
answer with the added rule. Now suppose that ē1 is not a certain answer to φ(x̄, ȳ).
Then for any choice ē2 for ȳ, there is a model in which one of the conjuncts φi(ē1, ē2)
is false. So, applying the query rule yields a satisfiable situation. But since all rules,
preserve satisfiability, there must be an open branch, whence the tableau system does
not yield ē1 as an answer.

Proof (Lemma 1). Suppose T contains an application of the domain rule

eRe′ source(R) = C

C(e)
.

Then eRe′ must have come from an application of (a) the concept path rule, (b) the

relative mapping rule rule or (c) the composition rule. In case (a) we had
D/R(e′)

D(e), eRe′

for some concept D. But by assumption, the path D/R is safe, whence D isa source(R)
holds. But then an application of the isa rule yields the desired conclusion C(e).
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In case (b) there are two rules Ri : u/q as vi → D and Rj : vi/q′ as vj → R. As
the paths in M̂ are safe, it must be that D isa source(R). So to derive source(R)(e)
apply the absolute mapping rule with rule Ri to derive D(e) and then the isa rule to
derive source(R)(e).

In case (c) eRe′ came from an application of the composition rule. If the relation
R is always the first on a path eR/Pn then this path must have originated from the
concept path rule or the relative mapping rule rule, and we can reason as before.
Otherwise, we had the following application of the composition rule to get eRe′:

nP/Re′

nPe, eRe′

It is easy to show that all paths occurring in the tableau must be a subpath of a
path which occurs in the conclusion of some rule in M̂ . Whence by assumption then
target(P ) isa source(R). But now we derive target(P )(e) from nPe by the target rule,
and from that the desired source(R)(e) with the isa rule.

Proof (Lemma 2). For (i), assume the hypothesis of the lemma. By the completeness
theorem q(ā) is an answer iff there exists a tableau proof for q(ā). By Lemma 1, the
domain rule is not needed in this proof. Obviously the inverse and the global key rules
are not needed in a tableau proof as their antecedent is never true. The two rules for
reasoning about equality are not needed because 1) in queries = cannot be used to
relate domain elements, and 2) without global keys no statement of the form e = e′ is
produced in a tableau.

(ii) is immediate by (i), the fact that the composition and concept path rules use
new parameters and Theorem 2.

Proof (Lemma 3). (i) Immediate by the meaning definition. (ii) By an inspection of
the tableau rules yielding the universal canonical solution and Lemma 1.

Proof (Theorem 4). For ease of reference we list once more the restrictions imposed:

– C1: Ontologies contain neither inverse roles nor global keys;
– C2: All mapping rules are well presented;
– C3: The location paths of the mapping rules use only the child and attribute

XPath axes.

Assume a source (u, M) and an ontology O are fixed. Throughout we assume that
(u, M) is published in O and that it satisfies conditions C1–C3.

First define a partial function b from the elements of u to the set of variables
occurring in M as follows:

b(e) = v iff there exists a X and C such that u/X as v → C ∈ M̂ and e ∈ X.

To see that b is a function assume that there are X, X ′, C, C′ such that u/X as v →
C, u/X ′ as v′ → C′ ∈ M̂ and e ∈ X ∩ X ′. Then by the constraints mentioned above
X = X ′, whence by C2 v = v′. In the sequel, as usual, if b(e) occurs in a statement it
is assumed that b is defined on e.

The next lemma proves the theorem for the four different kinds of conjuncts oc-
curring in queries.

Lemma 4. 1. For any role path P , the following are equivalent
(i) ei, ej is a certain answer to xi.P xj;
(ii) for some X, there is a rule b(ei)/X as b(ej) → P and ej ∈ ei/X.
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2. For any role path P/∗, the following are equivalent
(i) ei, ej is a certain answer to xi.P/ ∗ xj;
(ii) for some X and role path R′, there is a rule b(ei)/X as b(ej) → R′ and
ej ∈ ei/X and P is a prefix of R′.

3. For any concept path C/R (where R can be the empty path), the following are
equivalent
(i) e is a certain answer to C/R(x);
(ii) for some XPath expression u/X the procedure concept2x(C/R, u/X, b(e)) suc-
ceeds and e ∈ u/X.

4. For any attribute a, the following are equivalent:
(i) e is a certain answer to a(x) = n;
(ii) for some XML attribute X there exists a rule b(e)/@X → a ∈ M ∗ and
n ∈ e/@X.

Proof (Lemma 4). In all proofs we use the fact that the certain answers can be com-
puted by the tableau algorithm using only the mapping rule rules, isa, target, compo-
sition and concept path rules (Theorem 3 and Lemma 2).

1. The direction from (ii) to (i) is straightforward: since b(ei) is defined there exists an
absolute rule u/q as b(ei) → C. This together with the rule b(ei)/X as b(ej) → P
and the fact that ej ∈ ei/X yields eiPej by the relative mapping rule rule.
For the other direction we proceed by induction on the length of P . Let |P | = 1.
The relative mapping rule rule is the only rule which produces statements of the
form aRb for a, b elements in the source. Whence eiPej must have been produced
by an application of this rule. Then there are rules u/Y as v → C and ei ∈ u/Y
and v/X as w → P and ej ∈ ei/X. But then v = b(ei) and w = b(ej), by
definition of b.
For the induction step, let |P | = n + 1. If the tableau proves eiPej then it is
obtained by a direct application of the relative mapping rule. In this case we have
the desired result, as before. Otherwise the tableau proves eiP1n and nP2ej for n
an element and P1/P2 = P . By inductive hypothesis then the following two rules
are in M∗:

b(ei)/X1 as b(n) → P1

b(n)/X2 as b(ej) → P2,

and n ∈ ei/X1 and ej ∈ n/X2. But then also b(ei)/X1/X2 as b(ej) → P1/P2 ∈
M∗, and ej ∈ ei/X1/X2 as desired.

2. By the previous item and the fact that x.R/∗ y is an abbreviation of the disjunction
x.R′ y for which there is a mapping rule vi/q as vj → R′ and R is a prefix of R′.

3. It is easy to see that (ii) is equivalent to
(iii) for some XPath expression u/X, there exists an absolute rule u/X as b(e) →
C′/R in M̂ and C′ isa∗C and e ∈ u/X, or there exists a concept path C ′ and an
absolute rule u/X as b(e) → /R in M̂ and target(C ′) isa∗C and e ∈ u/X.
We now prove that (iii) is equivalent to (i). The direction from (iii) to (i) is im-
mediate by an inspection of the tableau rules. The other direction is again by an
induction on the length of the role path R. For |R| = 0, the statement follows
directly from an inspection of the tableau rules and Lemma 2. The inductive case
is proved using the first item of this lemma by a similar argument as used in the
proof of that item.

4. The statement for attributes is immediate from the tableau rules.
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Now we are ready to prove the theorem. By Lemma 3 we may assume without loss of
generality that there are no quantified variables in the query. First we prove correctness.
Let p(x̄) be the “XQuery” and s(x̄) the answer. We show that s(x̄) is an answer to
q(x̄) as well. Let B be the set of bindings produced by the algorithm. By construction
of the algorithm, for all (xi, vi) ∈ B, b ◦ s(xi) = vi. The query consists of four kinds of
conjuncts. Here we show for the relational expressions that s(x̄) is an answer to those.
The other expressions have a similar proof. Let xi./Xexp xj be a conjunct in p(x̄). Thus
s(xj) ∈ s(xi)/Xexp. This holds if xi.Exp xj in the ontology query q(x̄) and there is a
mapping rule vi/Xexp as vj → Exp in M∗. Whence b◦s(xi)/Xexp as b◦s(xj) → Exp
in M∗. Moreover s(xj) ∈ s(xi)/Xexp by assumption. Whence by the previous Lemma,
s(xi)Exps(xj) holds in the universal canonical solution.

Conversely, let s(x̄) be a certain answer to the ontology query q(x̄). We show that
the algorithm produces a rewriting which has s(x̄) in its answer set. Let the set of
bindings B be {(xi, vi) | b ◦ s(xi) = vi}. By Lemma 4, for every conjunct of q(x̄), there
exists a corresponding mapping rule. For instance, if xi.Exp xj is a conjunct, then there
is a mapping rule b ◦ s(xi)/Xexp as b ◦ s(xj) → Exp in M∗ and s(xj) ∈ s(xi)/Xexp.
Choose for each conjunct a mapping rule. With this choice the algorithm succeeds with
the defined bindings and produces an “XQuery” p(x̄) with s(x̄) in its answer set.
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