
Controlling Access to XML Documents over

XML Native and Relational Databases

Lazaros Koromilas, George Chinis,
Irini Fundulaki, and Sotiris Ioannidis

FORTH-ICS, Greece
{koromil,gchinis,fundul,sotiris}@ics.forth.gr

Abstract. In this paper we investigate the feasibility and efficiency of
mapping XML data and access control policies onto relational and native
XML databases for storage and querying. We developed a re-annotation
algorithm that computes the XPath query which designates the XML
nodes to be re-annotated when an update operation occurs. The algo-
rithm uses XPath static analysis and our experimental results show that
our re-annotation solution is on the average 7 times faster than annotat-
ing the entire document.

Keywords: XML, access control, XML to relational mapping.

1 Introduction

XML has become an extremely popular format for publishing, exchanging and
sharing data by users on the Web. Often this data is sensitive in nature and there-
fore it is necessary to ensure selective access, based on access control policies.
For this purpose flexible access control frameworks must be built that permit
secure XML querying while at the same time respecting the access control poli-
cies. Furthermore such a framework must be efficient enough to scale with the
number of documents, users, and queries.

In this paper we study how to control access to XML documents stored in a
relational database and in a native XML store. Prior work proposed the use of
RDBMS for storing and querying XML documents [1], to combine the flexibility
and the usability of XML with the efficiency and the robustness of a relational
schema. In this paper we examine the feasibility and efficiency of using the
above approach to enforce access control policies. In particular, we study how to
control access on XML documents following the materialized approach, in which
the XML document is stored in a database along with annotations attached to
the nodes; these specify whether a node is accessible or not. We evaluate our
approach using (i) a native XML storage system and (ii) a relational database
where the XML documents are shredded à la ShreX [8]. Specifically we:

– propose a method to annotate XML documents stored in a relational database
and in an XML database;

W. Jonker and M. Petković (Eds.): SDM 2009, LNCS 5776, pp. 122–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Controlling Access to XML Documents 123

– discuss an optimization procedure based on XPath containment that removes
redundant access control rules from a policy;

– develop a re-annotation technique that allows us to re-compute the annota-
tions of a portion of the nodes in an XML document if a document update
occurs; and finally

– we discuss results of extensive experiments that compare annotation and
re-annotation techniques for the relational and the XML cases.

This is the first attempt to compare the use of relational and XML databases to
store annotated (with accessibility information) XML documents. Annotation-
based enforcement techniques have been considered in [3, 7] for rule-based poli-
cies. More sophisticated techniques for storing and querying annotations have
been investigated [26, 27]. The related problem of optimizing security checks
during query evaluation with respect to an annotated document was investi-
gated in [5]. XML access control over relational databases has been also studied
in [23]. Our work is different in that we use annotations (materialized approach),
whereas Lee et al. check the accessibility of the document on-the-fly. [20] dis-
cusses a “function-based” model that translates policy rules to functions (e.g.
Java methods) which are subsequently called to check the policy whenever a
part of the document is accessed. Security views [10, 16] address the problem
of information leaks in the presence of read-only security policies and queries.
Security views contain just the information a user is allowed to read; queries to
the view can be translated efficiently to queries on the underlying data, forego-
ing expensive view materialization and maintenance. However, previous work on
annotation-based security policies, such as compressed accessibility maps, does
not address the problem of keeping the annotations consistent with the policy
when the document or policy changes. These techniques have not yet been used
directly to provide access control in an XML database system; it appears that
doing so would require modifying the database system internals.

1.1 Motivating Example

Before we formally discuss our approach, we present an example from the medical
domain. Consider the XML DTD of Figure 1 that is used to represent information
for hospitals, their departments, staff and patients.

We choose a node and edge labeled graph representation for the XML DTD
where nodes in the graph are the element types of the XML DTD, and edges
represent the content models of an element type (sequence, choice). Dashed
arrows connecting a node with its children nodes capture the choice, whereas
straight lines capture the sequence content model. Edges are labeled with *, +
and ? to denote the occurrence indicators in the XML DTD (“zero or more”,
“one or more” and “optional” respectively).

In the graph, a valid hospital instance of this schema contains one or more de-
partments (dept+). Each department holds information about patients (patients)
and its staff (staffinfo). There may be zero or more patients (patient*) and zero
or more staff members (staff*). A patient has an identifier (psn), a registered

124 L. Koromilas et al.

hospital

dept

+

doctornurse

sid name phone

staffinfo

staff

*

regular

testbill

experimental
?

med

patients

patient

namepsn
treatment

*

?

Fig. 1. Hospital schema

Table 1. Hospital policy rules

Rule Resource Effect

R1 //patient +
R2 //patient/name +
R3 //patient[treatment] −
R4 //patient[treatment]/name +
R5 //patient[.//experimental] −
R6 //regular +
R7 //regular[med=“celecoxib”] +
R8 //regular[bill > 1000] +

name (name) and an optional treatment (treatment?). The treatment may be
either conventional (regular?) or experimental (experimental?); it can also be un-
specified (an empty element). Regular treatments have a medication (med) and
a bill (bill), whereas experimental treatments are associated with a medical exam
(test) and a bill (bill). Staff members are doctors (doctor) or nurses (nurse). In
either case they have an identifier, a name and a phone number (sid, name and
phone respectively).

A sample partial instance of the hospital schema is presented in Figure 2. For
the sake of simplicity we focus on the patients element of a department and show

(−)

experimental

billtest

"regression
 hypnosis"

treatment

patient

namepsn

"jane doe"042

1600

patients

...

treatment

033

patient

name

regular

bill

"john doe"

"enoxaparin" 700

med

psn name

"joy smith"

psn

099

patient(−)

...

(−)

(−)

(−)
(−)

(−)

(−)

(+)(−)
(−)

(+)

(−) (−)

(+)

(+)

(+)(−)

Fig. 2. Partial hospital document

Controlling Access to XML Documents 125

three different patients. We will be using this document together with the access
control rules of Table 1 in the examples in the remainder of this paper.

Table 1 shows the access control rules specified for the hospital XML DTD.
Each rule has the form (resource, effect) where resource is an XPath expression
that designates the nodes in the XML document concerned by the rule and
effect specifies whether the node is accessible (sign “+”) or inaccessible (sign
“−”). Rule R1 says that all patient nodes are accessible whereas rule R3 specifies
that patient nodes that have a treatment are not. Rules R4 and R2 specify
that the names of patients that have a treatment and patients in general are
accessible. Patients under experimental treatment are not accessible according
to rule R5. Rule R6 gives access to all regular treatment nodes; in addition
rules R7 and R8 are more specific and specify that regular treatment nodes that
have a medication (med) with value “celecoxib” or a bill (bill) with a value
greater than 1000 respectively are accessible. This set of rules is associated with
a conflict resolution policy and default semantics [15,17,14]. The former specify
the accessibility of a node in the case in which it is in the scope of access control
rules with opposite signs. The later determines the default accessibility of a node.
In our example we consider that the conflict resolution policy is deny overrides
(the rule that denies access to a node overrides the one that grants access to
it) and the default semantics is deny (nodes are inaccessible by default). We say
that an XML node is in the scope of an access control rule, if it is in the result
of the evaluation of the resource (i.e., XPath expression) part of the rule on the
XML document.

Figure 2 shows the annotated XML document where annotations designate
whether a node is accessible (label “+”) or not (label “−”). Note that the el-
ements for which no access control rule is specified are annotated with “−”
(denied access by default). The first and second patient elements are not acces-
sible: both elements have a treatment subelement and according to rule R3 are
not accessible (note that R3 overrides R1 due to the conflict resolution policy).
On the other hand, the third patient is accessible, since it is in the scope of rule
R1 and not in the scope of either R3 or R5.

2 Preliminaries

2.1 XML Trees

We model XML documents as rooted unordered trees with labels from the set
Σ ∪ D ∪ {∗}. Σ is a finite set of element names, D a data domain and ∗ is
the wildcard (matches any label). We represent an XML document as a tree
T = (VT , ET , RT , λT), where (i) VT is the set of nodes in T , (ii) ET ⊆ VT × VT

is the set of edges, (iii) λT : VT → Σ ∪D maps nodes to element names from Σ
and values in D and iv) RT is a distinguished node in VT , called the root node.

2.2 XPath

The fragment of XPath that we will be using in queries and access control rules
is defined as follows:

126 L. Koromilas et al.

Paths p ::= axis :: ntst | p[q] | p/p
Qualifiers q ::= p | q and q | p = d
Axes axis ::= child | descendant
Node Test ntst ::= l | ∗

where l is an element label from Σ, and d a value in D.
The expressions are built using only the child and descendant axes of XPath

and conditions which test for the existence of sub-elements or constants in the
subtree of an element. We use the standard abbreviated form of XPath expres-
sions. For example, /a//b[∗] is an abbreviation of

/child::a/descendant-or-self::node()/child::b[child::∗] .

For p an absolute XPath expression (a path expression starting with “/”), and T
an XML tree, we write [[p]](T) to denote the set of nodes of T obtained from eval-
uating expression p on the root node of T . The semantics of XPath expressions
are defined in [2, 12, 25].

We say that an XPath expression p is contained in another expression q (de-
noted by p � q), if for every XML tree T , [[p]](T) ⊆ [[q]](T). We say that two
XPath expressions are disjoint (denoted by p �◦◦ q) if their intersection is empty.
That is, for every T , [[p]](T) ∩ [[q]](T) = ∅. Otherwise, we say p and q overlap
(denoted by p ◦◦ q).

3 Access Control Framework

An XML access control policy is defined by a set of rules that specify who has
access to which data. We undertake the more or less agreed definition of an
access control rule which is a tuple of the form (requester, resource, action,
effect, propagation) where:

– requester refers to the user or a set of users concerned by the authorization;
– resource refers to the data that the requester is (or not) authorized to access;
– action refers to the action (read, write, modify, delete etc.) that the requester

is (or not) allowed to perform on the resource;
– effect specifies whether the rule grants (“+” sign) or denies (“−” sign) access

to the resource and finally
– scope which defines whether the rule applies to the node only, or to its

subtree [11].

In this paper we assume that the requester and action parameters are fixed and
concentrate on the resource and effect components. We define the scope of a
rule to be the XML node itself (explicit rules). Implicit rules are not considered
here (no accessibility inheritance). We will refer to the access control rules that
grant access to a node (effect=‘+’) as positive and those that deny access to it
(effect=‘−’) as negative.

For simplicity we define an access control rule R to be a tuple of the form R
= (resource, effect) with resource an XPath expression in the fragment discussed

Controlling Access to XML Documents 127

in Section 2 and effect ∈ {+,−}. We say that a node n in the XML tree T is in
the scope of an access control rule r = (resource, effect) if n ∈ [[resource]](T).

We define an access control policy P to be a tuple of the form P = (ds, cr, A, D)
where:
– ds is the default semantics ds ∈ {+,−},
– cr the conflict resolution policy cr ∈ {+,−},
– A is the set of positive access control rules and
– D is the set negative rules.

As previously discussed, conflict resolution specifies the accessibility of a node
in the case in which it is in the scope of access control rules with opposite signs.
Default semantics indicate that a node in the XML tree is accessible/inaccessible
by default.

Intuitively, an access control policy P restricts the set of nodes of an XML tree
T returned as the answer to the user query. The semantics of an access control
policy P for an XML tree T are the set of accessible nodes of T . We denote
with [[P]](T) the semantics of a policy P for an XML tree T . Table 2 defines the
semantics of a policy P = (ds, cr, A, D) where U(T), [[D]](T) and [[A]](T) are the
nodes of tree T , the nodes that are in the scope of some negative, and the nodes
in the scope of some positive rule of policy P respectively.

Table 2. Semantics of an access control policy P = (ds, cr, A, D)

[[(+, +, A, D)]](T) = U(T)− ([[D]](T) − [[A]](T))
[[(−, +, A, D)]](T) = [[A]](T)
[[(+,−, A, D)]](T) = U(T)− [[D]](T)
[[(−,−, A, D)]](T) = [[A]](T) − [[D]](T)

In the case in which the default semantics is allow and the conflict resolution
is allow overrides, then the accessible nodes are all the nodes in T except those
that are in the scope of a negative rule and not those in the scope of a positive
rule (U(T) − ([[D]](T) − [[A]](T))). In the case in which the default semantics is
deny and the conflict resolution policy is allow, the accessible nodes are exactly
those that are in the scope of some positive access control rule ([[A]](T)). On the
other hand, if the default semantics is allow and the conflict resolution is deny,
the accessible nodes are all the XML nodes in T except those that are in the
scope of some negative rule (U(T) − [[D]](T)). Finally, in the case that occurs
most often in practice, if the conflict resolution policy is deny overrides and the
default semantics is deny, the accessible nodes are those that are in the scope
of some positive rule except those that are in the scope of some negative rule
([[A]](T) − [[D]](T)).

4 System Architecture

We will now present the architecture of the access control system and describe
the functionality of its key components. The core of the system is comprised of
the optimizer, annotator, reannotator and requester modules.

128 L. Koromilas et al.

xpath

annotator

optimizer

reannotator

policy update

reldbshredder translator

xmldb
query
annotate

simple
query

xmlac

xml

dtd

yes/no
userrequester

Fig. 3. System components

Module optimizer shown in Figure 3 is responsible for detecting and removing
the redundant access control rules from the access control policy. We discuss this
idea in detail in Section 5.1.

The annotator module is responsible for computing the queries used to annotate
the XML document with accessibility information. More specifically, it takes as
input an XML access control policy P and computes the SQL and the XQuery
queries that will be used to annotate with accessibility information the relational
representation of the XML document and the XML document stored in the native
XML store resp..These queries implement the semantics of an access control policy
as presented in Section 3 and will be discussed in detail in Section 5.2.

The reannotator module is responsible for computing the SQL and XQuery
queries to re-annotate the already annotated XML document when a document
update has occurred. The idea is that when an update occurs (i.e., a node is
deleted or inserted in the document), the accessibility of a node might change:
for instance, if the treatment element of a patient element is deleted, then the
latter becomes accessible (Table 1, rules R1 and R3). In this case, we need to
consider re-annotating only the patient elements in the XML document. The
re-annotation algorithm is discussed in detail in Section 5.3.

The requester module is the front-end of our system. A user request is sent
by the requester to the relational and native XML stores for evaluation and
depending on the result of the evaluation, it either returns the requested data
or denies access to the user request.

To store an XML document in a relational database, we first need to create
the relational tables used to store the XML document, and in a second phase,
produce a relational representation of the XML document using these tables. We
employ ShreX [8, 1] to obtain the relational representation of XML documents.
ShreX is a system that handles the translation of XML data into relational
tables. This includes relational schema creation, document loading and database
querying. It takes as input an XML Schema [9, 24, 4] and produces a mapping
to create relational tables so that XML documents which are valid instances of
the given XML Schema, can be stored. ShreX is also responsible for translating
XPath [6] queries to SQL queries which are then evaluated on the relational
representation of the XML document.

Controlling Access to XML Documents 129

In our system we control access to read-only queries expressed as XPath ex-
pressions. We follow an all-or-nothing semantics for query answering: if all the
nodes requested by the XPath expression are accessible (i.e., annotated with
“+” sign), then we return the requested nodes. Otherwise, we deny access to the
user request.

5 Controlling Access to XML Documents

In this section we discuss in detail our approach on controlling access to XML
documents stored in a relational and an XML store.

5.1 Access Control Policy Optimization

The first step is to remove redundant rules from the access control policy. This
redundancy elimination is performed by the optimizer module presented in Sec-
tion 4. Given a policy P , we say that an access control rule R is redundant, if
there exist some access control rule R′ such that

1. R, R′ are both either positive (in A) or negative (in D) and
2. R is contained in R′.

We say that an access control rule R=(effect, resource) is contained in a rule
R′=(effect, resource’) iff resource is contained in resource’. An XPath expression
p is contained in an XPath expression p′ (p � p′) iff the set of nodes obtained
by evaluating p on any XML tree T is a subset of the set of nodes obtained by
evaluating p′ on T [18, 22, 19].

Algorithm Redundancy-Elimination shown in Figure 4 takes as input a set
of access control rules S and returns a subset S′ of S which is free of redundant
rules. The idea is the following: redundancy elimination is performed for both
sets of positive and negative rules (A and D). The resulting redundancy-free
sets of rules are combined to obtain a revised policy. We employ the containment
algorithm of [18,13]. Containment for fragments of XPath such as XP(/, //, ∗, [])
has been studied in [18] and for larger fragments in [19] (see [22] for a survey).

Table 3. Redundancy-free policy

Rule Resource Effect
R1 //patient +
R2 //patient/name +
R3 //patient[treatment] −
R5 //patient[.//experimental] −
R6 //regular +

For our motivating example, the
redundancy-free access control policy
is shown in Table 3. Rule R4 is re-
moved because //patient[treatment]-
/name � //patient/name (it is con-
tained in R2). Similarly, rules R7, R8

are contained in R6. Rule R3 is con-
tained in R1, however it is not elimi-
nated because the two have different
effects.

130 L. Koromilas et al.

Redundancy-Elimination(rules)

Ensure: ∀r1∀r2 ∈ rules⇒ �r1 � r2

1: for all r ∈ rules do
2: for all r′ ∈ rules where r′ �= r

do
3: if r � r′ then
4: rules← rules− {r}
5: else if r � r′ then
6: rules← rules− {r′}
7: else
8: {neither disjoint nor over-

lap, do nothing}
9: end if

10: end for
11: end for
12: return rules

Fig. 4. Eliminating redundant access
control rules

Annotation-Queries

Require: Policy P = (A, D, ds, cr)
Ensure: Annotation Query
1: for all r ∈ A do
2: grants ← grants UNION r
3: end for
4: for all r ∈ D do
5: denys ← denys UNION r
6: end for
7: if ds = ‘−’ then
8: if cr = ‘−’ then
9: toupdate← query(grants EXCEPT

denys)
10: else {cr = ‘+’}
11: toupdate← query(grants)
12: end if
13: else {ds = ‘+’}
14: if cr = ‘−’ then
15: toupdate← query(denys)
16: else {cr = ‘+’}
17: toupdate ← query(denys EXCEPT

grants)
18: end if
19: end if
20: return toupdate

Fig. 5. Computing annotation queries

5.2 Annotating XML Documents with Accessibility Information

To annotate an XML document independently of where it is stored, we must
first compute the annotation queries that implement the semantics of the XML
access control policy P . Algorithm Annotation-Queries takes as input an
XML access control policy P and computes the SQL and the XQuery queries
that will be used to annotate the relational and XML databases with accessibility
information, implementing the policy semantics as described in Table 2. In the
relational case, the resource part of an access control rule (XPath expression) is
translated into an equivalent SQL query q using the ShreX [8, 1] translation.

The resource part of the rules that grant (resp. deny) access are unioned
using the relational UNION (XQuery union) operator. Depending on the default
semantics and conflict resolution policy the relational EXCEPT (XQuery except)
operator is used to express the annotation query that implements the semantics
of an access control policy.

In the relational case, the components in the UNION query, are the translated
SQL queries from the XPath expressions using the chosen XML-to-relational
mapping.

Controlling Access to XML Documents 131

Table 4. Relational representation of the XML document of Fig. 2

patients
id pid s

1 null −

patient
id pid s
2 1 −
9 1 −
16 1 +

psn
id pid val s
3 2 033 −
10 9 042 −
17 16 099 −

treatment
id pid s

4 2 −
11 9 −

name
id pid val s

8 2 john doe +

15 9 jane doe +

18 16 joy smith +

regular
id pid s
5 4 +

experimental
id pid s
12 11 −

med
id pid val s

6 5 enoxaparin −

bill
id pid val s

7 5 700 +

14 12 1600 +

test
id pid val s

13 12 regression
hypnosis +

Relational Approach. To store an XML document in a relational database,
the tree (specified in our case with an XML DTD), must first be mapped into an
equivalent, relational schema. Using this mapping the XML document is then
shredded and loaded into the relational tables.

In the context of XML, we need to capture access control information at the
XML node level. To satisfy this requirement, we map each element type in the
XML DTD to a relational table. More specifically, each element type E with
attributes A1, A2, . . . An in the XML DTD, is mapped to a table ET (id, pid, A1,
A2, . . . An, s) where id is the primary key for ET , pid is a foreign key that refers
to a relational table E′

T to which the parent element type E′ of E is mapped to.
Finally s is an additional column that stores the access permission for the tuple
(i.e., node in the XML document).

The value of an Ai column is the value of the Ai attribute of the XML node.
For nodes whose type is a base type such as string, integer we define tables of
the form ET (id, pid, A1, . . . , An, v, s) where v is the value of the XML node. The
id key is unique not only through the table but throughout the entire database;
we will call this key ‘universal identifier’.

For our motivating example we will define one table of the form ET (id, pid, s)
per element type in the XML DTD shown in Figure 1. Table 4 shows the output
of the XML to relational mapping for the XML document shown in Figure 2
where for each node in the XML document whose element type is E we create
one tuple in table ET . The accessibility of each tuple (i.e., corresponding XML
node) is initialized to the default semantics of the policy.

To annotate the tuples in the relational store given a policy P , we must first
find the tuples that are in the semantics of P (i.e., are accessible according
to policy P) and then perform the necessary update operation. To obtain the
tuples to be annotated, we run the SQL query obtained by executing algorithm
Annotation-Queries. Our annotation algorithm is a two phase algorithm: in
the first phase we find the id’s of all the tuples that need to be annotated, and
in the second phase, for each such tuple we run the update query that changes
the value of the s column.

For example, consider the policy shown in Table 1. The translated SQL
queries for the rules of the policy are given below: For rule R1 the produced
query Q1 is:

132 L. Koromilas et al.

SELECT pat1.id

FROM patients pats1, patient pat1

WHERE pats1.id = pat1.pid;

For rule R3 the corresponding query Q3 is

SELECT pat1.id

FROM patients pats1, patient pat1, treatment treat1,

WHERE pats1.id = pat1.pid AND pat1.id = treat1.pid

For rule R7 the corresponding query Q7 is

SELECT med1.id

FROM patients pats1, patient pat1, treatment treat1,

regular regular1, med med1

WHERE pats1.id = pat1.pid AND pat1.id = treat1.pid

AND treat1.id = regular1.pid AND regular1.id = med1.pid

AND med1.v = ‘celecoxib’

Finally, given that default semantics is deny and conflict resolution is deny over-
rides, the SQL query that implements the semantics of the redundancy-free
policy in Table 3 is:

(Q1 UNION Q2 UNION Q6 EXCEPT (Q3 UNION Q5)) where a query Qi is
defined for access control rule Ri.

Note that the result of the SQL query is a set of tuple identifiers that are in
the semantics of the access control policy, i.e., are accessible. In the relational
context, to update a relational tuple, we need to know the name of the table
that the tuple belongs to. The universal identifier does not provide us with
that kind of information. Consequently, to identify the table that a tuple (i.e.,
the identifier of a tuple belongs to), we iterate over all tables of the database.
For each table the algorithm computes the intersection between the universal
identifiers of the tuples included in the table and those computed by applying
the SQL query that implements the semantics of policy P . The tuples with
primary key in the computed intersection are updated to reflect the accessibility
of a node. The annotation process from the creation of the annotation queries
to the addition of accessibility information to the relational tuples is shown in
Algorithm Annotate.

Native XML. In the case of a native XML store, the annotation process is
straightforward. We choose to store accessibility annotations for XML elements
in the form of the XML attribute sign that takes value “+” (if the node is
accessible) or “−” otherwise. The idea is the following: we employ algorithm
Annotation-Queries to obtain the XQuery expression that implements the
semantics of the access control policy (i.e., determines the accessible nodes). To
minimize the amount of information stored, we choose to annotate the accessible
(inaccessible) nodes for policies with deny (grant) default semantics respectively.

The modification of the sign attribute of the nodes is performed with function
xmlac:annotate() shown below. The function takes as input the XML node to

Controlling Access to XML Documents 133

Annotate(policy)

Require: Policy P , Relational DB D
Ensure: Annotated D according to P
{first, produce the SQL query}

1: sqlquery ← Annotation-Queries(P)
{execute the SQL query to compute set S of tuple ids}

2: S ← query(sqlquery,D)
3: for all table ∈ schema do
4: ids← query(SELECT id FROM table)
5: upids← ids ∩ S

{produce the SQL update queries to update the permissions}
6: for all upid ∈ upids do
7: query(UPDATE table SET s = ‘+’ WHERE id = upid)
8: end for
9: end for

Fig. 6. Annotation Algorithm for Relational DB

be annotated (n), and the annotation label (val). If the node does not have a
sign attribute, then the attribute is inserted along with its value, otherwise, the
current value is updated.

function xmlac:annotate($n as element(), $val as xs:string)

{

if (count($n/@sign) = 0)

then do insert attribute sign { $val } into $n

else do replace value of $n/@sign with $val

};

For instance, for the motivative example (policy of Table 3) we run the following
query to annotate the XML nodes.

for $n := doc("xmlgen")((R1 union R2 union R6) except (R3 union R5))

return xmlac:annotate($n, "+")

5.3 Re-annotation

When a database is frequently updated, the cost of keeping the annotations
consistent with the access control policy becomes considerably large. The simple
approach to tackle this problem is to delete all annotations and annotate from
scratch, a process that induces large processing cost. In this section we discuss
how we can identify the access control rules that should be triggered to re-
annotate the nodes whose access permission changed due to the update.

Intuitively, the nodes that must be re-annotated are all the nodes that are in
the scope of an access control rule that specifies a condition (filter) on a node
that is modified (inserted or deleted) by the update operation. For instance, con-
sider the following example: suppose that the treatment subelement of a patient

134 L. Koromilas et al.

Depend(P)

1: for all r ∈ P do
2: r.visited← false
3: end for
4: for all r ∈ P do
5: Depend-Resolve(r, dlist)
6: r.depends← dlist
7: end for

Depend-Resolve(r, dlist)

1: r.visited← true
2: for all n ∈ r.neighbours do {explore (r, n)}
3: if n.visited = false then
4: dlist← dlist

⋃{n}
5: Depend-Resolve(n, dlist)
6: end if
7: end for

Fig. 7. Dependency resolution algorithm

element is deleted. Recall that access control rule R3 of our motivating exam-
ple states that patients with treatment are inaccessible. In this case, we should
consider for re-annotation all patient elements, since rule R3 that was used in
their annotation is no longer applicable. To determine this set of rules we employ
XPath containment tests between the rules and the update query. We discuss
this in more detail in the following.

As a tool to discover the access control rules that must be considered for
re-annotating the access permissions of a node, we compute their dependency
graph. The graph captures interdependencies between the access control rules:
for every rule R in a policy P that has in its scope a node n, the dependency
graph stores all the rules R′ of opposite sign that also have in their scope node
n. The graph allows us to get in constant time all the rules that should be
considered for re-annotating an XML node.

The dependency graph is represented as a list of adjacency lists, where each
member of the list corresponds to an access control rule in a policy P . We as-
sociate with each rule r, attributes neighbours that stores the adjacency list
(i.e., dependency graph) for r and visited to note that the rule has been vis-
ited during the execution of the algorithm. Algorithm Depend computes the
dependency graph as follows: we iterate over all rules in a policy P to discover
the dependencies that arise. Each call to Depend-Resolve for rule r initiates
a DFS-like recursive traversal that finds all dependent rules for r. In line 2 of
algorithm Depend-Resolve the r.neighbours variable denotes the adjacency
list for r. In these adjacency lists, each entry n is neighbor of another entry r iff
r has a containment relation with n: r � n ∨ n � r ∨ r = n.

For instance, consider the rules R1 and R3 of the motivative example (Table 3).
We can see that R3 is contained in R1 (//patient[treatment] � //patient) as the
former returns patients with treatment subelement whereas the latter all patients.
Consequently, after this process rule R3 will be included in the dependency list of
rule R1 and vice versa. We should clarify that we are interested in dependencies be-
tween rules that have opposite effect, in contrast to the offline policy optimization
where we eliminated rules of the same effect.

We consider that the updates are XPath expressions that specify the location
of the nodes to be inserted or deleted. When an update u occurs we must de-
termine the XML nodes that must be re-annotated. The idea is that the nodes
that must be re-annotated are in the scope of the access control rules that are
“related to” the update u. To discover this set of rules we run the Trigger

Controlling Access to XML Documents 135

algorithm which tests the containment between the query and the expansion of
policy rules, and then adds the dependent rules based on the previously con-
structed dependency graph.

Trigger(P, u)

1: rules← ∅
2: for all p ∈ P do
3: X ← Expand(p)
4: for all x ∈ X do
5: if x � u ∨ x � u ∨ x = u

then
6: rules← rules

⋃{p}
7: end if
8: end for
9: end for

10: for all r ∈ rules do
11: rules← rules

⋃
r.depends

12: end for
13: return rules

Fig. 8. Trigger algorithm

The complexity of this algorithm is
O(n · h), where n is the number of rules
and h the height of the XML document
tree.

The need for rule expansion and depen-
dency resolution can be supported with a
simple example. Consider the XML tree
in Figure 2 and the accompanying pol-
icy of Table 1. The rules R1 and R3

say that all patients are accessible except
those that have a treatment as child el-
ement. Also consider that the incoming
update query specifies the deletion of
//patient/treatment nodes. After this op-
eration one would expect that all patient
elements are now accessible. To make this
happen we should consider triggering the
positive rule //patient (R1) for the re-
annotation process. This is accomplished
in two steps: (i) rule R3 expands to

//patient[treatment] −→ //patient
//patient/treatment

the latter part of which matches the query, (ii) the dependency resolution finds
that positive rule R1 is a dependent of R3 (by means of containment) and conse-
quently is included in the set of rules to consider. If the expansion had not taken
place, the positive rule R1 would not have been triggered and thus the previous
annotations would have incorrectly been preserved.

This rule expansion does not cover the case in which the XPath expressions
of the access control rules contain predicates with descendant axes. Consider the
hospital document and rules R1 and R5. Consider an update that deletes all
treatment elements (//treatment) and their subtrees. The query will not trigger
any rules that do not contain the treatment tag. This is not right because pa-
tient elements should be accessible now, as there is no descendant experimental
element under patient anymore. To deal with this problem, we need to replace
all descendant axes that occur inside a predicate of an access control rule with
relative paths using only the child axis. With the schema information these
replacements are finite. Rule R5 now expands to

//patient[.//experimental] −→ //patient
//patient//experimental

−→ //patient
//patient/treatment/experimental

136 L. Koromilas et al.

After the expansion, rule R5 is triggered by the query. This triggers also rule R1

because of containment, and accessibility of nodes is updated correctly.
The full picture of the re-annotation process can be perceived as a sequence of

the steps described previously. The idea is the following: we first obtain the set of
triggered rules by calling Trigger. We then produce an annotation query Q for
this set of rules (using algorithm Annotation-Queries). We then re-annotate
the nodes that are in the semantics of Q as accessible.

6 Implementation

Our system transforms XML data and stores it in a relational database by shred-
ding them using ShreX1. We modified ShreX to better interface with external
code modules. For uniformity of evaluations we decided to use the MonetDB2

database. MonetDB offers the advantage of providing both XML and supporting
and SQL module. This permitted us to directly compare the two methods using
the same engine. We also chose to evaluate our system using PostgreSQL3. We
used the PL/Python feature, which enables PostgreSQL functions to be written
in Python.

The core of the application that handles all the input and transactions was
also written in Python. We used the py-psycopg2 module for PostgreSQL and
the MonetSQLdb module distributed with the MonetDB project.

In some cases we used object serialization and disk storage, to keep an al-
gorithm’s computation or a procedure’s output for future use. For example,
document shredding which is a very time consuming process, or containment
comparisons, which are an issue mostly because our current implementation is
in Java, and we must pay the cost of JVM initialization.

7 Evaluation

7.1 Setup

To evaluate our system and runtime environment we used the following param-
eters: (i) size of the XML document, (ii) size of the policy, (iii) the coverage of
the policy, and we designed our experiments to measure: (i) loading time, (ii)
annotation time, (iii) response time, (iv) re-annotation time.

The XML data were generated with xmlgen from the XMark project [21]. We
should also note that we modified xmlgen’s code that generates XML —and as
a consequence the conforming schema— in an effort to eliminate all recursive
paths. This is crucial for the specific shredding procedure to work properly. With
xmlgen we generated a set of documents of variable sizes (see Table 5). The sizes
of the respective SQL files are also displayed.

We manually designed policies with variable coverage, that is, we crafted
several policy files to force our system to annotate increasingly larger portions
1 http://shrex.sourceforge.net/
2 http://monetdb.cwi.nl/
3 http://www.postgresql.org/

http://shrex.sourceforge.net/
http://monetdb.cwi.nl/
http://www.postgresql.org/

Controlling Access to XML Documents 137

of the data.4 In this fashion we obtain information about the system’s behavior
when managing small or large number of annotations. We refer to these policies
as the coverage policy dataset.

Table 5. Documents gen-
erated with xmlgen and
their sizes

factor size (bytes)
XML SQL

0.0001 19K 33K
0.001 85K 149K
0.01 804K 1.6M
0.1 7.9M 17M
1.0 79M 78M
2.0 158M 140M

10.0 793M 310M

We shred the XML files to text files containing
SQL INSERT statements representing the data. Load-
ing time is the time needed to run these SQL files on
a relational database. Similarly, with respect to native
XML storage, loading time refers to the time needed to
load the document from the XML file to the XQuery
database. The annotation process for the relational
store consists of evaluating the query obtained by al-
gorithm Annotation-Queries, performing set op-
erations on their results to determine the tuples that
need updating, and finally execute UPDATE queries if
needed as discussed in Section 5.2. Annotation time
is the time required for these actions to complete. In
a similar manner, for the XML store, we measure the
time needed to evaluate the Annotation-Queries

with MonetDB XQuery. Response time is the time
needed to check whether a user has access to the data they request. Finally,
re-annotation time is the time spent to get the database to a consistent state,
after an update occurs.

We run our experiments on a Dell OptiPlex 755 Desktop with an Intel R©CoreTM

2 Duo CPU E8400 @ 3.00GHz with 3GB of memory, running FreeBSD 7.0.

7.2 Experimental Results

We run a series of experiments to evaluate the efficiency and feasibility of the
system. Loading the documents in native XML form is fairly quick to complete,
whereas running all the equivalent INSERTs is over one order of magnitude

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9 10

tim
e

(s
ec

)

document size (xmlgen f)

avg loading time

xquery
monetsql
postgres

Fig. 9. Loading time comparison

 0

 1

 2

 3

 4

 5

 6

 7

 0.0001 0.001 0.01 0.1 1

tim
e

(s
ec

)

document size (xmlgen f)

avg response time

xquery
monetsql
postgres

Fig. 10. Response time comparison

4 We evaluated the actual coverage percents with XQuery after each document anno-
tation.

138 L. Koromilas et al.

slower. Among the two relational databases, we found that PostgreSQL performs
about twice faster than MonetDB/SQL when inserting data (see Figure 9).

In Figure 10 we show the performance on client requests. We run 55 different
queries (of the same complexity as the coverage policy dataset) and calculated
their average response time for each document. The required time is roughly
analogous to the document size. MonetDB/SQL performs better than Post-
greSQL on large documents, but compared to XQuery they both perform 34
times slower on average (and growing).

Figure 11 presents the results for variable coverage policies of the actual anno-
tating process on all the database systems we used. There is a small performance
gain on small documents when using relational databases, but in the long run

 0.01

 0.1

 1

 10

 100

 1000

 25 30 35 40 45 50 55 60 65 70

tim
e

(s
ec

)

doc coverage (%)

avg annotation time

f0.0001
f0.001
f0.01
f0.1

f1

(a) MonetDB/XQuery

 0.01

 0.1

 1

 10

 100

 1000

 25 30 35 40 45 50 55 60 65 70

tim
e

(s
ec

)

doc coverage (%)

avg annotation time

f0.0001
f0.001
f0.01
f0.1

f1

(b) MonetDB/SQL

 0.01

 0.1

 1

 10

 100

 1000

 25 30 35 40 45 50 55 60 65 70

tim
e

(s
ec

)

doc coverage (%)

avg annotation time

f0.0001
f0.001
f0.01
f0.1

f1

(c) PostgreSQL

Fig. 11. Annotation time comparison

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

(s
ec

)

document factor

avg reannotation time

reannot
fannot

(a) MonetDB/XQuery

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

(s
ec

)

document factor

avg reannotation time

reannot
fannot

(b) MonetDB/SQL

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tim
e

(s
ec

)

document factor

avg reannotation time

reannot
fannot

(c) PostgreSQL

Fig. 12. Reannotation vs full annotation

Controlling Access to XML Documents 139

the MonetDB/XQuery database performs best when annotating actions. There
is little difference between MonetDB/SQL and PostgreSQL.

Optimization results in the case of re-annotation are shown in Figure 12. We
run the same 55 queries (derived from the coverage dataset) as delete updates
and calculated the average re-annotation time per document. The re-annotation
time is not actually dependent to the document size. On XQuery, for documents
of tens of MBs or larger it becomes efficient as a technique, and is 5 times faster
than full annotation. On relational databases it is almost always more efficient
to perform partial re-annotation, and on average it’s 9 and 7 times faster on
MonetDB/SQL and PostgreSQL respectively. Among the relational and native
XML re-annotation, the latter is about twice as fast on average.

8 Conclusions

In this paper we have studied the problem of enforcing access control on XML
documents stored in relational and native XML databases. We have presented
a novel re-annotation algorithm that computes the XPath query which desig-
nates the XML nodes to be re-annotated when an update operation occurs. We
performed exhaustive experiments to evaluate the effectiveness and efficiency of
the proposed solutions. We concluded that performing access control on XML
documents stored in native XML databases outperforms the relational-based
solution.

Schema-aware optimizations should be further studied, as they can extend
our mechanism to support larger XPath fragments and produce more accurate
results. As a future work, we also plan to extend our framework to handle access
control for update operations (inserts and deletes).

Acknowledgments

This work was supported in part by the Marie Curie Actions – Reintegration
Grants project PASS. We would like to thank James Cheney for interesting
discussions during the first steps of this work and Loreto Bravo for insightful
comments.

References

1. Amer-Yahia, S., Du, F., Freire, J.: A comprehensive solution to the XML-to-
relational mapping problem. In: Proc. of the 6th Annual ACM Int’l workshop
on Web Information and Data Management, pp. 31–38. ACM, New York (2004)

2. Benedikt, M., Fan, W., Kuper, G.: Structural properties of XPath fragments. The-
oretical Computer Science 336(1), 3–31 (2005)

3. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM Transactions on Information and System Security 5(3), 290–331 (2002)

140 L. Koromilas et al.

4. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes Second Edition, Octo-
ber 2004, W3C Recommendation (2004), http://www.w3.org/TR/xmlschema-2/

5. Cho, S.R., Amer-Yahia, S., Lakshmanan, L.V.S., Srivastava, D.: Optimizing the
secure evaluation of twig queries. In: Proc. of the 28th Int’l Conf. on Very Large
Data Bases, pp. 490–501. VLDB Endowment (2002)

6. Clark, J., DeRose, S., et al.: XML path language (XPath) version 1.0. W3C rec-
ommendation (1999), http://www.w3c.org/TR/xpath

7. Damiani, E., Di Vimercati, S.C., Paraboschi, S., Samarati, P.: A fine-grained access
control system for XML documents. ACM Transactions on Information and System
Security (TISSEC) 5(2), 169–202 (2002)

8. Du, F., Amer-Yahia, S., Freire, J.: ShreX: Managing XML documents in relational
databases. In: Proc. of the 30th Int’l Conf. on Very large data bases, vol. 30, pp.
1297–1300. VLDB Endowment (2004)

9. David, C.: Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition, October 2004, W3C Recommendation (2004),
http://www.w3.org/TR/xmlschema-0/

10. Fan, W., Chee-Yong, C., Garofalakis, M.: Secure XML querying with security
views. In: Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIG-
MOD), Paris, France, pp. 587–598 (2004)

11. Fundulaki, I., Marx, M.: Specifying access control policies for XML documents
with XPath. In: Proc. of the 9th ACM symposium on Access control models and
technologies, pp. 61–69. ACM, New York (2004)

12. Gottlob, G., Koch, C., Pichler, R., Segoufin, L.: The complexity of XPath query
evaluation and XML typing. Journal of the ACM 52(2), 284–335 (2005)

13. Haj-Yahya, K.: XPath-Containment Checker. Version: (2005),
http://www.ifis.uni-luebeck.de/projects/XPathContainment

14. Ioannidis, S.: Security policy consistency and distributed evaluation in heteroge-
neous environments. PhD thesis, Philadelphia, PA, USA (2005)

15. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A Logical Language for Expressing
Authorizations. In: Proc. IEEE Computer Society Symposium on Security and
Privacy, pp. 31–42 (1997)

16. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML security views. Int’l Jour-
nal of Information Security 8(3), 173–203 (2009)

17. Lupu, E.C., Sloman, M.S.: Conflict Analysis for Management Policies. In: Proc. of
the 5th IFIP/IEEE Int’l Symposium on Integrated Network Management IM, San
Diego, CA (1997)

18. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath.
Journal of the ACM 51(1), 2–45 (2004)

19. Neven, F., Schwentick, T.: XPath containment in the presence of disjunction,
DTDs, and variables. LNCS, pp. 315–329 (2003)

20. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based access control
model for XML databases. In: Proc. of the 14th ACM Int’l Conf. on Information
and Knowledge Management, pp. 115–122. ACM, New York (2005)

21. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R.: XMark:
A benchmark for XML data management. In: Proc. of the 28th Int’l Conf. on Very
Large Data Bases, pp. 974–985. VLDB Endowment (2002)

22. Schwentick, T.: XPath query containment. SIGMOD RECORD 33(1), 101 (2004)

http://www.w3.org/TR/xmlschema-2/
http://www.w3c.org/TR/xpath
http://www.w3.org/TR/xmlschema-0/
http://www.ifis.uni-luebeck.de/projects/XPathContainment

Controlling Access to XML Documents 141

23. Tan, K.L., Lee, M.L., Wang, Y.: Access control of XML documents in relational
database systems. In: Int’l Conf. on Internet Computing, pp. 185–191. Citeseer
(2001)

24. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part
1: Structures Second Edition, October 2004, W3C Recommendation (2004),
http://www.w3.org/TR/xmlschema-1/

25. Wadler, P.: Two semantics for XPath. Technical report (2000)
26. Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: A compressed acces-

sibility map for XML. ACM Transactions on Database Systems (TODS) 29(2),
363–402 (2004)

27. Zhang, H., Zhang, N., Salem, K., Zhuo, D.: Compact access control labeling for
efficient secure XML query evaluation. Data & Knowledge Engineering 60(2), 326–
344 (2007)

http://www.w3.org/TR/xmlschema-1/

	Controlling Access to XML Documents over XML Native and Relational Databases
	Introduction
	Motivating Example

	Preliminaries
	XML Trees
	XPath

	Access Control Framework
	System Architecture
	Controlling Access to XML Documents
	Access Control Policy Optimization
	Annotating XML Documents with Accessibility Information
	Re-annotation

	Implementation
	Evaluation
	Setup
	Experimental Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

