
On Detecting High-Level Changes in RDF/S KBs

Vicky Papavassiliou1,2, Giorgos Flouris1, Irini Fundulaki1, Dimitris Kotzinos1,3,
and Vassilis Christophides1,2

1FORTH-ICS, Greece
2 University of Crete, Greece

3 TEI of Serres, Greece
{papavas,fgeo,fundul,kotzino,christop}@ics.forth.gr

Abstract. An increasing number of scientific communities rely on Semantic
Web ontologies to share and interpret data within and across research domains.
These common knowledge representation resources are usually developed and
maintained manually and essentially co-evolve along with experimental evidence
produced by scientists worldwide. Detecting automatically the differences be-
tween (two) versions of the same ontology in order to store or visualize their
deltas is a challenging task for e-science. In this paper, we focus on languages
allowing the formulation of concise and intuitive deltas, which are expressive
enough to describe unambiguously any possible change and that can be effec-
tively and efficiently detected. We propose a specific language that provably ex-
hibits those characteristics and provide a change detection algorithm which is
sound and complete with respect to the proposed language. Finally, we provide a
promising experimental evaluation of our framework using real ontologies from
the cultural and bioinformatics domains.

1 Introduction

An increasing number of scientific communities rely on Semantic Web ontologies to
share and interpret data within and across research domains (e.g., Bioinformatics or
Cultural Informatics1). These community ontologies are usually developed and main-
tained manually while essentially co-evolve along with experimental evidence produced
by scientists worldwide. Managing the differences (deltas) of ontology versions has
been proved to be an effective and efficient method in order to synchronize them [5]
or to explain the evolution history of a given ontology [13]. In this paper, we are in-
terested in automatically detecting both schema and data changes occurring between
asynchronously produced ontology versions.

Unless they are assisted by collaborative ontology development tools [8,9], ontology
editors are rarely able or willing to systematically record the changes performed to
obtain an ontology version. In particular, when there is no central authority responsible
for ontology curation, manually created deltas are often absent, incomplete, or even
erroneous [22]. Existing ontology diff tools, such as PromptDiff [14], SemVersion [23]
and others [24] aim to satisfy this need. These tools are essentially based on a language
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of changes, which describes the semantics of the different change operations that the
underlying algorithm understands and detects.

In its simplest form, a language of changes consists of only two low-level opera-
tions, Add(x) and Delete(x), which determine individual constructs (e.g., triples) that
were added or deleted [23,24]. In [10,14,15,17,19,22], high-level change operations are
employed, which describe more complex updates, as for instance the insertion of an en-
tire subsumption hierarchy. A high-level language is preferable than a low-level one, as
it is more intuitive, concise, closer to the intentions of the ontology editors and captures
more accurately the semantics of a change [10,21].

However, detecting high-level change operations introduces a number of issues. As
the detectable changes get more complicated, so does the detection algorithm; compli-
cated changes involve complicated detection procedures which may be inefficient, or
based on matchers [6] and other heuristic-based techniques [10] that make it difficult
to provide any formal guarantees on the detection properties. Another problem stems
from the fact that it is impossible to define a complete list of high-level changes [10],
so there is no agreed “standard” set of operations that one could be based on. Moreover,
it is difficult to specify a language of changes that will be both high-level and able to
handle all types of modifications (even fine-grained ones) upon an ontology.

The main contributions of our work are:

– the introduction of a framework for defining changes and of a formal language of
changes for RDF/S ontologies [2,12] which considers operations in both data and
schema and satisfies several desirable properties;

– the design of an efficient change detection algorithm which is sound and complete
with respect to the proposed language;

– the experimental evaluation of our framework using real ontologies from the cul-
tural (CIDOC [4]) and biological (GO [7]) domains.

The paper is organized as follows: Section 2 presents a motivating example that will
be used for visualization purposes throughout the paper. In Section 3, we introduce the
basic notions of RDF [12] and RDFS [2] as well as our language of high-level changes
and show that the language and the proposed detection algorithm satisfy several desir-
able properties. Section 4 describes changes which require heuristics and matchers in
order to be detected, thus extending our basic framework to include operations that are
interesting in practice. Section 5 presents our experimental findings on real ontologies
and section 6 discusses related work. We conclude in Section 7.

2 Motivating Example

In Figure 1 an example inspired from the CIDOC Conceptual Reference Model [4] is
depicted; CIDOC is a core ontology intended to facilitate the integration, mediation and
interchange of heterogeneous cultural heritage information. Table 1 shows the added
and deleted triples (the low-level delta) as well as the high-level change operations
that our approach will detect in this example. The table makes clear that even though
the low-level delta contains all the changes that have been performed, it is not really
useful as it captures the syntactical manipulations that led to the change, rather than
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Fig. 1. Motivating Example

Table 1. Detected Low-level and High-level Changes (From Figure 1)

Added Triples (Low-Level Delta) Deleted Triples (Low-Level Delta) Detected Changes (High-Level Delta)

(participants, domain, Event) (participants, domain, Onset) Generalize Domain(participants, Onset, Event)

(Birth, subClassOf, Event) (Birth, subClassOf, Onset) Pull up Class(Birth, Onset, Event)

– (Period, type, class)
Delete Class(Period, ∅, {Event}, ∅, ∅, ∅, ∅)

– (Event, subClassOf, Period)

(Stuff, subClassOf, Persistent) (Stuff, subClassOf, Existing)

Rename Class(Existing, Persistent)(started on, domain, Persistent) (started on, domain, Existing)

(Persistent, type, class) (Existing, type, class)

the intentions of the editor. Our work is motivated by the belief that the “aggregation”
of several low-level changes into more coarse-grained, concise and intuitive high-level
changes (third column of Table 1) would lead to more useful deltas.

For instance, consider the change in the domain of property participants from
Onset to Event (Figure 1). The low-level delta reports two “changes”, namely the
deletion and the insertion of a domain for the property whereas the reported high-level
operation Generalize Domain combines them into one, capturing also the fact that the
old domain is a subclass of the new domain (by exploiting semantical information in
the two versions). A similar case appears in the change of the position of Birth in the
subsumption hierarchy which our framework reports as Pull Up Class and in the dele-
tion of class Period where the deletion of all edges originating from, or ending in, the
deleted class are combined in a single operation. Regarding the latter, only a subclass
relation is deleted (Event), whereas other relations, such as superclasses, supertypes,
subtypes, comments and labels are absent (denoted by empty sets in Table 1). In total,
only 4 high-level changes will be reported as opposed to 12 low-level ones.

Apart from being more concise, the reported high-level changes are also more intu-
itive. For example, the Generalize Domain operation provides the additional informa-
tion that the new domain is a superclass of the old. This may be useful for the evaluation
and understanding of the change performed. For example, if we know only that a do-
main changed we cannot presume anything about the validity of the existing data, but
if we know that the domain changed to a superclass we can assume, according to the
RDF/S specification, that validity is not violated [10].
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Another interesting example is the Rename Class operation, which is reported in-
stead of the deletion of class Existing and the subsequent addition of Persistent.
Unlike the changes discussed so far, the detection of Rename (as well as other opera-
tions, such as Merge and Split) requires the use of a matcher that would identify the two
concepts (Existing and Persistent) to be the same entity using heuristics.

Note also that all the triples of the low-level delta (in Table 1) are associated with
one, and only one, high-level change. This allows the partition of low-level changes
into well-defined high-level changes, in a unique way. This property guarantees that the
detection algorithm will be able to handle all possible low-level deltas in a deterministic
manner, i.e., that any set of low-level changes between two versions would be associated
with one, and only one, set of high-level changes. The latter requirement calls for a
careful definition of the change operations and is not directly related to the detection
algorithm per se. Thus, we claim that the detection algorithm should be based on the
defined language of changes, instead of the other way around.

Defining a language with the above properties is a challenging task, because it re-
quires establishing a tradeoff between partly conflicting requirements. On the one hand,
coarse-grained operations are necessary in order to achieve concise and intuitive deltas.
On the other, fine-grained operations are necessary in order to capture subtle differences
between a pair of versions. The existence of both fine-grained and coarse-grained oper-
ations in the language may allow the association of the same set of low-level changes
with several different sets of high-level ones, thus jeopardizing determinism. In the next
section, we will describe a language and a detection algorithm that avoids these prob-
lems and provably satisfies the above properties, while being efficient.

3 Change Detection Framework, Language and Algorithm

3.1 Formal Definitions

The representation of knowledge in RDF [12] is based on triples of the form (subject,
predicate, object). Assuming two disjoint and infinite sets U, L, denoting the URIs and
literals respectively, T = U × U × (U ∪ L) is the set of all triples. An RDF Graph
V is defined as a set of triples, i.e., V ⊆ T . RDFS [2] introduces some built-in classes
(class, property) which are used to determine the type of each resource. Following the
approach of [20], we assume that each resource is associated with one type determined
by the triples that the resource participates in. The typing mechanism allows us to con-
centrate on nodes of RDF Graphs, rather than triples, which is closer to ontology cura-
tors’ perception and useful for defining intuitive high-level changes. RDFS [2] provides
also inference semantics, which is of two types, namely structural inference (provided
mainly by the transitivity of subsumption relations) and type inference (provided by the
typing system, e.g., if p is a property, the triple (p, type, property) can be inferred). The
RDF Graph containing all triples that are either explicit or can be inferred from explicit
triples in an RDF Graph V (using both types of inference), is called the closure of V
and is denoted by Cl(V ). An RDF/S Knowledge Base (RDF/S KB) V is an RDF Graph
which is closed with respect to type inference, i.e., it contains all the triples that can be
inferred from V using type inference.
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For a pair of RDF/S KBs (V1, V2 ⊆ T ), we define their low-level delta in a manner
similar to symmetric difference:

Definition 1. Let V1, V2 be two RDF/S KBs. The low-level delta between V1, V2, de-
noted by ∆(V1, V2) (or simply ∆) is a pair of sets of triples defined as: ∆(V1, V2) =
〈V2 \ V1, V1 \ V2〉. For brevity, we will use the notation ∆1,∆2 for V2 \ V1, V1 \ V2

respectively (∆1 ⊆ T , ∆2 ⊆ T ).

Note that ∆1 corresponds to the triples added in V1 to get V2, and ∆2 corresponds to the
triples deleted from V1 to get V2. The low-level delta alone may not be enough to fully
capture the intuition behind a change: sometimes we need to consider conceptual infor-
mation that remained unchanged (see, e.g., the change of the domain of participants in
Figure 1 and the subsequent analysis in Section 2). Therefore, the definition of the de-
tection semantics should consist of the triple(s) that must exist in the low-level delta, as
well as of a set of conditions that must hold (in V1 and/or V2) in order for the detection
to take place:

Definition 2. A change c is defined as a triple 〈δ1, δ2,φ〉, where:

– δ1 ⊆ T : required added triples. Corresponds to the triples that should be in V2 but
not in V1 (i.e., in ∆1), in order for c to be detected.

– δ2 ⊆ T : required deleted triples. Corresponds to the triples that should be in V1

but not in V2 (i.e., in ∆2), in order for c to be detected.
– φ: required conditions. Corresponds to the conditions that should be true in order

for c to be detected. A condition is a logical formula consisting of atoms of the form
t ∈ V or t /∈ V , where t ∈ T and V is of the form Vi or Cl(Vi) for i ∈ {1, 2}.

For simplicity, we will denote by δ1(c) (δ2(c)) the required added (deleted) triples of
a change c, and by φ(c) the required conditions of c. Tables 2, 3 show the definition
of some high-level changes. The complete list of defined changes can be found at [16].
We restrict our attention to changes for which δ1 ∪ δ2 '= ∅ and δ1 ∩ δ2 = ∅. The first
condition guarantees that at least something must be in ∆1 or ∆2 for a change to be
detected. The second condition guarantees that no change would require the addition
and deletion of the same triple to happen at the same time.

As discussed in Section 2, both fine-grained and coarse-grained high-level changes
are necessary in order to support determinism, conciseness and intuitiveness. For this
reason, we follow a common approach in the literature [10,17,21] and classify high-
level changes into basic and composite. Basic changes are fine-grained and describe a
change in one node or edge of the RDF/S KB taking into account RDF/S semantics. On
the other hand, composite changes are coarse-grained and closer to the user’s intuition,
as they describe, in a concise way, changes affecting several nodes and/or edges of the
RDF/S KB. The introduction of the two levels should be done carefully, as it may cause
problems with determinism. For instance, in the motivating example (Figure 1 and Ta-
ble 1), the deleted triple (participants, domain, Onset) could be associated with the
basic change Delete Domain(participants,Onset), as well as with the composite change
Generalize Domain(participants,Onset,Event) (see also Tables 2, 3). This double asso-
ciation would jeopardize determinism, because the same low-level delta would corre-
spond to two different high-level deltas. To avoid this problem, we define two different
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Table 2. Formal Definition of some Basic Changes

Change Delete Superclass(x,y) Add Property Instance(x1, x2,y) Delete Domain(x,y)
Intuition IsA between x, y is deleted Add property instance (x1, y, x2) Domain y of property x is deleted
δ1 ∅ {(x1, y, x2)} ∅
δ2 {(x, subClassOf, y)} ∅ {(x, domain, y)}
φ (x, type, class) ∈ Cl(V1) (y, type, property) ∈ Cl(V2) (x, type, property) ∈ Cl(V1)

Table 3. Formal Definition of some Composite Changes

Change Generalize Domain(x,y,z) Change Domain(x,y,z) Reclassify Individual Higher(x,Y,Z)
Intuition Domain of property x changes from

y to a superclass z
Domain of property x changes from
y to a non-subclass/superclass z

Individual x is reclassified from
class(es) Y to superclass(es) Z

δ1 {(x, domain, z)} {(x, domain, z)} {(x, type, z)|z ∈ Z}
δ2 {(x, domain, y)} {(x, domain, y)} {(x, type, y)|y ∈ Y }
φ (x, type, property) ∈ Cl(V1)∧

(x, type, property) ∈ Cl(V2)∧
(y, subClassOf, z) ∈ Cl(V1)∧
(y, subClassOf, z) ∈ Cl(V2)

(x, type, property) ∈ Cl(V1)∧
(x, type, property) ∈ Cl(V2)∧
((y, subClassOf, z) /∈ Cl(V1)∨
(y, subClassOf, z) /∈ Cl(V2))∧
((z, subClassOf, y) /∈ Cl(V1)∨
(z, subClassOf, y) /∈ Cl(V2))

(x, type, resource)∈ Cl(V1)∧
(x, type, resource)∈ Cl(V2)∧
∀y ∈ Y, ∀z ∈ Z :
(y, subClassOf, z)∈ Cl(V1)∧
(y, subClassOf, z) ∈ Cl(V2)

notions, detectability and initial detectability, and postulate that the detection of com-
posite changes takes precedence over the detection of basic ones.

Definition 3. Consider two RDF/S KBs V1, V2, their respective ∆(V1, V2) and a change
c. Then, c is initially detectable iff δi(c) ⊆ ∆i, i ∈ {1, 2}, and φ(c) is true.
If c is a composite change, then c is detectable iff it is initially detectable.
If c is a basic change, then c is detectable iff it is initially detectable and there is no
initially detectable composite change (say c′) for which δi(c) ⊆ δi(c′), i ∈ {1, 2} and
φ(c′) * φ(c).

In our running example, Change Domain(participants,Onset,Event) is not initially de-
tectable (thus, not detectable) because its conditions are not true (specifically, the part:
(Onset, subClassOf, Event) /∈ Cl(V1)∨ (Onset, subClassOf, Event) /∈ Cl(V2)). On
the other hand, Generalize Domain(participants,Onset,Event) is initially detectable;
given that it is a composite change, it is also detectable. Finally, the basic change
Delete Domain(participants,Onset,Event) is initially detectable, but not detectable (be-
cause Generalize Domain(participants,Onset,Event) is initially detectable).

So far, we were only concerned with detection semantics of changes. However,
changes can also be applied upon RDF/S KBs, where the application and detection se-
mantics of a set of changes should be consistent. To be more precise, given two RDF/S
KBs V1, V2, the application (upon V1) of the delta computed between them should give
V2, irrespective of the order of application of the changes [24]. Therefore, we also need
to define the application semantics of changes:

Definition 4. Consider an RDF/S KB V and a change c. The application of c upon V ,
denoted by V • c is defined as: V • c = (V ∪ δ1(c)) \ δ2(c).

As an example, the application of Generalize Domain(participants,Onset,Event) would
lead to the addition of the triple (participants, domain, Event) and the deletion of
(participants, domain, Onset).
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3.2 Formal Results on the Proposed Language of Changes

Our framework was used to define L, a specific language of changes (some of which
are shown in Tables 2, 3) that satisfies several interesting properties. For a full definition
of L and the proofs of the described properties, see [16].

First of all, L should conform to the property of Completeness by capturing any pos-
sible change, so that the detection algorithm can always process the input and return a
delta. Moreover, the language should satisfy the property of Non-ambiguity by associ-
ating each low-level change with one, and only one, high-level change, and each set of
low-level changes with one, and only one, set of high-level ones. These two properties
are needed in order to guarantee that L supports a deterministic detection process.

Theorem 1. Consider two RDF/S KBs V1, V2, their respective ∆(V1, V2) = 〈∆1,∆2〉
and the set C = {c ∈ L|c : detectable}. Then, for any i ∈ {1, 2} and t ∈ ∆i, there is
some c ∈ C such that t ∈ δi(c).

This theorem proves that L satisfies the property of Completeness. In order to prove that
it also satisfies the property of Non-ambiguity, we must first show that each low-level
change is associated with at most one detectable high-level change.

Theorem 2. Consider two RDF/S KBs V1, V2, their respective ∆(V1, V2) = 〈∆1,∆2〉
and two changes c1, c2 ∈ L. Then one of the following is true:

1. δi(c1) ∩ δi(c2) = ∅ for i ∈ {1, 2}
2. δi(c1) ! ∆i or δi(c2) ! ∆i for some i ∈ {1, 2}
3. φ(cj) is not true for some j ∈ {1, 2}
4. cj is a basic change, ck is a composite change and δ1(cj) ⊆ δ1(ck), δ2(cj) ⊆

δ2(ck) and φ(ck) * φ(cj) for some j, k ∈ {1, 2}, j '= k

This theorem shows that the changes in L have been chosen in such a way that a change
is either not detectable, or irrelevant to other detectable changes. In particular, if condi-
tion 1 is true then the required added and deleted triples of c1 are disjoint from the ones
of c2. Hence, c1, c2 cannot be associated with the same low-level change. If conditions
2 or 3 are true then at least one of c1, c2 is not detectable (by Definition 3), so, again,
a low-level change cannot be associated with both changes. Finally, if condition 4 is
true, then change ck is composite and more “general” than the basic change cj . There-
fore, by Definition 3 again, even if both of them are initially detectable, only ck will be
detectable. The usability of this theorem is to set the conditions that should hold for a
change in order to allow us to add it to L without jeopardizing determinism.

Given this analysis, the following theorem is straightforward and proves that any two
changes in L are non-ambiguous, ergo L satisfies the property of Non-ambiguity:

Theorem 3. Consider two RDF/S KBs V1, V2, their respective ∆(V1, V2) = 〈∆1,∆2〉
and the set C = {c ∈ L|c : detectable}. Then, for any two changes c1, c2 ∈ C, it holds
that δi(c1) ∩ δi(c2) = ∅ for i ∈ {1, 2}.

Theorems 1 and 3 guarantee a deterministic detection process. To see this, take any
V1, V2, i.e., any ∆, and any triple t ∈ ∆: by Theorem 1, t is associated with at least one
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detectable high-level change; moreover, by theorem 3, all detectable high-level changes
have disjoint sets of required added (and deleted) triples; thus, t is associated with
exactly one detectable high-level change. This means that any set of low-level changes
can be fully partitioned into disjoint subsets, each subset being associated with a single
detectable high-level change.

In the rest of this subsection, we will consider the application of changes and show
that the detection and application semantics are such that, given V1, V2, the application
of the set of detectable changes between them upon V1 would give V2. Before showing
that, we must generalize Definition 4 to apply for sets of changes; given that elements
in a set are unordered, before doing this generalization, we must first guarantee that the
order of application does not matter.

Definition 5. Two changes c1, c2 are called conflicting iff (δ1(c1)∩δ2(c2))∪(δ1(c2)∩
δ2(c1)) '= ∅. A set C of changes is called conflicting iff C contains at least one pair of
conflicting changes.

By definition, c1, c2 are conflicting iff the detection of c1 requires the addition (or dele-
tion) of a triple whose deletion (or addition) is required by c2. For example,
Delete Domain(participants,Event) is conflicting with Change Domain(participants,
Onset,Event), because the detection of the former requires the deletion of (participants,
domain, Event) whereas the latter requires the same triple to be added. It is easy to see
that when applying a conflicting set of changes upon a version, the order matters (e.g., in
the above example, depending on the order, Event would, or would not, be the domain
of participants); however, for non-conflicting sets of changes, the order is irrelevant:

Theorem 4. Consider an RDF/S KB V and a non-conflicting set of changes C =
{c1, . . . , cn}. Then, for any permutation π over the set of indices {1, . . . , n} it holds
that: (. . . ((V • c1) • c2) • . . .) • cn = (. . . ((V • cπ(1)) • cπ(2)) • . . .) • cπ(n).

Definition 6. Consider an RDF/S KB V and a non-conflicting set of changes C =
{c1, . . . , cn}. The application of C upon V , denoted by V • C, is defined as: V • C =
(. . . ((V • c1) • c2) • . . .) • cn.

Theorem 5. Consider two RDF/S KBs V1, V2 and the set C = {c ∈ L|c : detectable}.
Then C is non-conflicting and V1 • C = V2.

Definition 6 is the generalization of Definition 4 for non-conflicting sets. Given that we
cannot define the application of sets of changes for conflicting sets, the result that C is
non-conflicting is a critical part of Theorem 5. Theorem 5 shows that we can apply the
detected delta upon one version in order to get the other.

An interesting corollary of Theorem 4 is that changes are composable, i.e., they can
be applied either simultaneously or sequentially:

Theorem 6. Consider an RDF/S KB V and two sets of changes C1, C2 such that C1,
C2, C1 ∪C2 are non-conflicting. Then: (V •C1)•C2 = (V •C2)•C1 = V •(C1∪C2).

Another useful property of L is Reversibility, i.e., for each change c, there is some
change whose application cancels the effects of c. Thus, by keeping only the newest
version of an RDF/S KB and the changes that led to it, previous versions can be restored.
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Table 4. Look-up Table (Excerpt)

Low-Level Change Considered Low-Level Change(s) Searched For Potential High-Level Change

(x, domain, z) ∈ ∆2 – Delete Domain(x,z)

(x, domain, z) ∈ ∆2 (x, domain, y) ∈ ∆1 Change Domain(x,y,z)

(x, domain, z) ∈ ∆2 (x, domain, y) ∈ ∆1 Generalize Domain(x,y,z)

Definition 7. A change c1 is called the reverse of c2 iff δ1(c1)=δ2(c2) and δ2(c1)=δ1(c2).

Theorem 7. Consider two changes c1, c2 such that c2 is the reverse of c1. Then, c1 is
the reverse of c2 and c1, c2 are conflicting.

Theorem 8. Every change in L has a unique reverse.

Theorem 8 shows that the reverse of a change always exists and is unique; we will
denote by c−1 the reverse of c ∈ L. For example, the reverse of Change Domain (par-
ticipants,Onset,Event) is Change Domain(participants,Event,Onset).

Theorem 9. Consider two RDF/S KBs V1, V2 and the sets C = {c ∈ L|c : detectable},
C−1 = {c−1|c ∈ C}. Then, C−1 is non-conflicting and V2 • C−1 = V1.

Theorem 9 shows how a set of changes can be canceled by applying its reverse upon
the result. This allows for both “undoing” an unwanted change, and reproducing older
versions of an RDF/S KB.

3.3 Change Detection Algorithm

An essential part of our approach is the detection algorithm for L (Algorithm 1), which
should be efficient, scalable and should correctly return the detectable changes. The
first step of the algorithm is to pick a low-level change (i.e., a triple in ∆1 or ∆2),
say (participants, domain, Onset) ∈ ∆2 (cf. Figure 1 and Table 1). Regardless of the
particular input (V1, V2), there are certain high-level changes whose detection cannot be
triggered by a given low-level change. For example, the deletion of triple (participants,
domain, Onset) cannot be related to the detection of Delete Superclass, as no low-level
change of this form appears in the required deleted triples of Delete Superclass (see Ta-
ble 2). On the other hand, it can potentially trigger the detection of a Delete Domain or
a Change Domain operation if the latter is coupled with some other low-level change
in ∆ specifying the addition of a new domain for participants (Table 3).

This kind of reasoning allows us to build a look-up table (excerpt shown in Table 4),
which is used by findPotentialChanges(t,∆) (line 3) to return the set of high-level
changes potC, whose detection could, potentially, be triggered by the selected low-level
change (t). findPotentialChanges works as follows: if the selected t is in the left
column of Table 4, then we check whether the low-level changes in the middle column
appear in ∆; if so, then t could trigger the detection of the high-level change in the right
column, so this high-level change is put in potC. In our example, potC will contain
Delete Domain(participants,Onset), Change Domain(participants,Onset,Event) and
Generalize Domain(participants,Onset, Event).
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Algorithm 1. Change Detection Algorithm
1: changes = ∅
2: for all low-level changes t do
3: potC := findPotentialChanges(t,∆)
4: for all c ∈ potC do
5: if φ(c) = true then
6: changes := changes ∪ {c}
7: ∆1 := (∆1 \ δ1(c)), ∆2 := (∆2 \ δ2(c))
8: break
9: end if

10: end for
11: end for
12: return changes

Method findPotentialChanges performs a first “filtering”, guaranteeing that the
only (per Theorem 3) detectable high-level change associated with the low-level change
under question is one of the changes in potC. To find it, we check the required con-
ditions of each member of potC, and, once we find one whose conditions are true,
we add it to the list of detectable changes (line 6). In our running example, General-
ize Domain(participants,Onset,Event) will be detected. Note that in order for the cor-
rect detection to take place, composite changes should be considered first in the for loop
of line 4. Therefore, even though the conditions of the basic change Delete Domain(
participants,Onset) are also true, the algorithm will never reach that point (due to the
“break” command in line 8). This is according to our definition that a basic change is
detectable only if there is no composite change that is also detectable and more gen-
eral. Note also that the elimination of the associated low-level changes from ∆ (line 7)
would not cause problems thanks to Non-ambiguity (done for performance purposes).
The presented algorithm is sound and complete with respect to L:

Theorem 10. A change c ∈ L will be returned by Algorithm 1 iff c is detectable.

Now suppose that the size of ∆ is N . The look-up table used by findPotential-
Changes has a constant size, so it takes O(1) time to search it. For each matching
low-level change (left column in Table 4), a full search of the ∆ is made for finding out
the required low-level changes (middle column) by using a hash table, so it takes O(N)
time (worst-case). This determines the potential changes to be put in potC, per the right
column of Table 4. Since the table is of constant size, the size of potC will be O(1) as
well; therefore, computing potC takes O(N) in total.

For each change in potC, we need to determine whether its conditions are true.
The time required for this depends on the change considered. For some changes (e.g.,
Delete Domain), it takes O(1) number of checks; for others, the cost is either O(M)
(e.g., Delete Class) or O(M2) (e.g., Reclassify Individual Higher), where M is the
number of triples in δ1 and δ2 of the respective high-level change. Note that each indi-
vidual check can be done in O(1), a result which can be achieved using sophisticated
labeling algorithms, as described in [3].
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To calculate the complexity of the algorithm, we will consider the worst-case sce-
nario. The for loop (line 2) iterates over the low-level changes. Let us consider the i-th
iteration: for the selected change, we need O(N) time for findPotentialChanges,
plus O(1) iterations of O(M2

i ) cost (lines 4-10), where Mi is the total size of δ1
and δ2 for the high-level change considered. Then, the total cost (for the entire al-
gorithm) is: O(

∑
i=1,...,N (N + M2

i )). However, note that:
∑

i=1,...,N (N + M2
i ) =

N2 +
∑

i=1,...,N M2
i ≤ N2 + (

∑
i=1,...,N Mi)2. The sum in the last equation cannot

exceed the size of ∆ by more than a constant factor (i.e., it is O(N)). Therefore, the
complexity of the algorithm is O(N2). As a final note, recall that the cost of computing
∆(V1, V2) is linear with respect to the larger of V1, V2. Thus:

Theorem 11. The complexity of Algorithm 1 for input V1, V2 is O(max{N1, N2, N2}),
where Ni is the size (in triples) of Vi (i = 1, 2) and N is the size of ∆(V1, V2).

In practice, our algorithm will rarely exhibit the quadratic worst-case complexity de-
scribed in Theorem 11. There are several reasons for that. First of all, the complexity
of searching through ∆ (in findPotentialChanges) was calculated to be O(N); for
most changes, this will be O(1) on average, due to the use of hash tables. Secondly,
evaluating the conditions (line 5) varies from constant to quadratic over Mi, depending
on the type of changes in potC. Furthermore, even though Mi may, in the worst case,
be comparable to N , this will rarely be the case; therefore, even operations that exhibit
quadratic complexity over Mi, will rarely exhibit quadratic complexity over N . The
above arguments appear more emphatically for basic changes, as the cost of evaluating
the conditions of any basic change is O(1). The above observations will be verified by
the results of our experiments (Section 5).

4 Operations Based on Heuristics

The detection semantics of the changes described so far used no heuristics or other
approximation techniques, and were based on the implicit assumption that no termino-
logical changes occurred between the RDF/S KBs. However, as described in Section 2,
this is not always true. In Figure 1 for example, a matcher could identify that classes
Existing and Persistent correspond to the same entity, so a Rename Class operation
should be detected (rather than the addition of a class and the deletion of another). Oper-
ations like Rename Class are different from the changes discussed so far, because they
can only be detected using matchers [6], which employ various sophisticated, heuristic-
based techniques for identifying elements with different names that correspond to the
same real world entity.

For evaluation purposes, we implemented a simple matcher that associates elements
based on the similarity of their “neighborhoods”, i.e., the sets of nodes and links that
are pointing from/to the elements under question. If the similarity exceeds a certain
threshold, then a matching is reported. In particular, if an element in V1 is matched with
an element in V2, we detect a Rename operation, whereas if it is matched with a set of
elements in V2, we detect a Split operation; on the other hand, if a set of elements in V1

are matched with an element in V2, a Merge operation is detected.
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Another case where matchers are necessary appears when an object is associated
with a different comment in V1, V2, which could be either because the old comment
was deleted and a new one was added, or because the old comment was edited. In
this case, we use the Levenshtein string distance metric [11] which compares the sim-
ilarity of the respective comments and determines whether a pair of Delete Comment-
Add Comment, or a single Change Comment, should be returned (similarly for labels).

It should be noted that once the matchings are calculated and the corresponding de-
tected operations are reported as above, we continue with the normal, non-approximate
change detection process (as described in Section 3). This means in practice that the
detection of heuristic changes takes precedence over composite ones, in the same way
that the detection of composite changes takes precedence over basic changes. For exam-
ple, in Figure 1, we would not report a Change Domain(started on,Existing,Persistent),
because Existing and Persistent are identified as the same class.

The focus of this paper is not on developing a sophisticated matcher, but on change
detection. Our design was modular, so that any custom-made or off-the-shelf matcher
could be used to calculate the required matchings; moreover, the user may choose to
circumvent the matching process altogether. Thus, the matching process can be viewed
as an optional, pre-processing phase to the actual change detection algorithm, and is an
extension of our basic framework.

5 Experimental Evaluation

The evaluation of our approach was based on experiments performed on two well-
established ontologies from the cultural (CIDOC [4]) and biological (GO [7]) domains.
It aims at showing the intuitiveness and conciseness of the changes contained in L
(Figure 2 and Table 5) as well as verifying that the performance of the implemented
algorithm conforms to the average-case analysis of Section 3.3 (Table 6).

CIDOC consists of nearly 80 classes and 250 properties, but has no instances. For our
experiments, we used versions v3.2.1 (dated 02.2002), v3.3.2 (dated 10.2002), v3.4.9
(dated 12.2003), v4.2 (dated 06.2005) and v5.0.1 (dated 04.2009), which are encoded
in RDF and are available in [4]. The detected changes apply mostly on properties, and
many involve the heuristic change Rename (see Figure 2). For the detection of the
heuristic changes a special-purpose matcher was developed, that exploited CIDOC’s
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naming policy which attaches a unique, change preserving ID in the names; this way,
the precision and recall of the matchings for CIDOC was 100%. CIDOC versions are
accompanied by release notes describing in natural language the differences with the
previous version; our algorithm uncovered certain typos, omissions and other mistakes
in these notes, which were verified by one of CIDOC’s editors. This highlights the need
for automated change detection algorithms, as even the most careful manual recording
process may be inaccurate.

The Gene Ontology (GO) [7] describes gene products, and is one of the largest and
most representative data sets for ontology evolution due to its size and update rate. GO
is composed of circa 28000 classes (all instances of one meta-class), and 1350 prop-
erty instances of obsolete which is, sometimes, used by the GO editors to mark classes
as obsolete instead of deleting them. Although GO is encoded in RDF/XML format,
the subsumption relationships are represented by user-defined properties instead of the
standard subClassOf property, so we used versions of GO released by the UniProt Con-
sortium [1], which use RDFS semantics. GO is updated on a daily basis, but UniProt re-
leases a new version every month and only the latest version is available for download2.
During the time of our experiments we were able to retrieve 5 versions of GO (dated
25.11.08, 16.12.08, 24.03.09, 05.05.09 and 26.05.09). The detected heuristic changes
(Merge) were very few (0.08% of the total) as shown in Figure 2; the string matcher, on
the other hand, detected several Change Comment and Change Label operations. The
rest of the changes were mostly additions and deletions of classes, as well as changes
in the hierarchy. The detected basic changes (not pictured) included, among others, ad-
ditions of property instances. Even though we weren’t able to find any recent official
documentation regarding the changes on GO, the changes reported by certain studies
(e.g., [25]) show that the detected operations capture the intuition of the editors.

Table 5. Evaluation Results

Versions V 1 V 2 ∆ Basic Basic + Composite + Heuristic

CIDOC

v3.2.1 - v3.3.2 952 1081 870 834 202+120+39 = 361

v3.3.2 - v3.4.9 1081 1110 287 285 13+15+34 = 62

v3.4.9 - v4.2 1110 1254 571 538 287+6+10 = 303

v4.2 - v5.0.1 1254 1318 339 327 44+51+52=147

GO

v25.11.08 - v16.12.08 183430 184704 2979 2260 326+296+307 = 929

v16.12.08 - v24.03.09 184704 188268 7312 5053 745+706+440 = 1891

v24.03.09 - v05.05.09 188268 190097 3108 2322 359+362+97 = 818

v05.05.09 - v26.05.09 190097 191417 2663 1983 265+312+147 = 724

Table 5 shows the number of detected changes between different pairs of CIDOC
and GO versions. The columns report the compared versions and their sizes, the size
of ∆ and the number of detected basic (only) and high-level (in general, i.e., basic,
composite and heuristic) changes. The number of detected basic changes is comparable

2 ftp://ftp.uniprot.org/pub/databases/uniprot datafiles by format/rdf/
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to the size of ∆, showing that deltas consisting entirely of basic changes are not concise.
On the other hand, the size of the delta is significantly reduced (44%-78% for CIDOC,
59%-74% for GO) when composite and heuristic changes are also considered.

Table 6 reports the running time of the detection algorithm, measured on a Linux
machine equipped with a Pentium 4 processor running at 3.4GHz and 1.5GB of main
memory. The times for the detection of basic changes were, in general, linear to the in-
put verifying our average-case analysis in Section 3. With respect to composite changes,
the execution time reveals some interesting anomalies. For example, comparing the re-
sults for versions v3.3.2-v3.4.9 and v3.4.9-v4.2 (for CIDOC) we see a reduction in the
running time, despite the increase of the input size (cf. Table 5). This is due to the very
small number of detected composite changes for the second input (see Table 5). Also,
when comparing the results of v16.12.08-v24.03.09 to v25.11.08-v16.12.08 (GO) we
see that the running time increases in a sub-linear fashion with respect to the input.
This can be explained by considering the types of detected composite changes, which
reveals that for versions v16.12.08-v24.03.09 the changes whose complexity for evalu-
ating the conditions is quadratic are 4.5% of the total, whereas for v25.11.08-v16.12.08
such changes constitute 15% of the total. The slow execution times related to heuristic
changes is due to the overhead caused by the employed matcher.

Table 6. Running Time

Versions ∆ Basic Changes Composite Changes Heuristic Changes

CIDOC

v3.2.1 - v3.3.2 95.91 ms 13.53 ms 3.35 ms 26.19 ms

v3.3.2 - v3.4.9 91.45 ms 3.94 ms 1.01 ms 5.54 ms

v3.4.9 - v4.2 95.75 ms 8.05 ms 0.26 ms 9.68 ms

v4.2 - v5.0.1 120.58 ms 5.50 ms 2.12 ms 861.77 ms

GO

v25.11.08 - v16.12.08 35.214 s 133.79 ms 28.60 ms 45.195 s

v16.12.08 - v24.03.09 36.610 s 249.66 ms 39.65 ms 345.419 s

v24.03.09 - v05.05.09 36.684 s 146.20 ms 23.99 ms 38.006 s

v05.05.09 - v26.05.09 36.712 s 131.22 ms 24.45 ms 40.067 s

6 Related Work

Change detection algorithms in the literature report either low-level deltas ([23,24]), or
high-level ones, which, like in our paper, are usually distinguished in basic and com-
posite ([15,17,22]). In [10,14,15,18,19,21] authors describe several operations and the
intuition behind them. However, a formal definition of the semantics of such operations
([10,14,15,19]), or of the corresponding detection process ([15]), is usually missing;
thus, they cannot guarantee any useful formal properties.

Authors in [10,14] describe a fixed-point algorithm for detecting changes, which is
implemented in PromptDiff, an extension of Protégé [8]. The algorithm incorporates
heuristic-based matchers in order to detect the changes that occurred between two ver-
sions. Therefore, the entire detection process is heuristic-based, thereby introducing
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an uncertainty in the results: the evaluation reported by the authors showed that their
algorithm had a recall of 96% and a precision of 93%. In our case, such metrics are
not relevant, as our detection process does not use heuristics and any false positives or
negatives will be artifacts of the matching process, not of the detection algorithm itself.

In [18] the Change Definition Language (CDL) is proposed as a means to define
a language of high-level changes. In CDL, a change is defined and detected using
temporal queries over a version log that contains recordings of the applied low-level
changes. The version log is updated when a change occurs which overrules the use of
this approach in non-curated or distributed environments. In our work, version logs
are not necessary for the detection, as the low-level delta can be produced also a
posteriori. Note also that, in [18] changes that require heuristics for their detection
(such as Rename) are completely ignored. This reduces the usefulness of the proposed
language.

In our framework, changes that require heuristics are considered separately. This
way, we can support operations that require heuristics, while maintaining determin-
ism for the operations that don’t need them. In addition, we have the option to ignore
such changes, which may be useful for applications that require perfect precision and
recall.

7 Conclusion and Future Work

The need for dynamic ontologies makes the automatic identification of deltas between
versions increasingly important for several reasons (storing and communication effi-
ciency, visualization of differences etc). Unfortunately, it is often difficult or impossible
for curators or editors to accurately record such deltas without the use of automated
tools; this was also evidenced by the mistakes found in the release notes of CIDOC.

In this paper, we addressed the problem of automatically identifying deltas. We pro-
posed a formal framework and used it for defining a language of high-level changes
for both schema and data, L, and an algorithm that correctly detects changes from L.
We proved that L satisfies several intuitive properties (Completeness, Non-ambiguity,
Reversibility). Note that the existence of other languages satisfying these properties is
not ruled out. However, if the intuitiveness of the changes is not taken into account, the
languages will end up being artificial and without practical use in real-world scenarios.
Thus, the intuitiveness of the changes that L contains was a critical factor in our design
and experimental evidence on the usefulness of L was provided. The detection algo-
rithm itself was shown to be quite efficient, namely of quadratic worst-case complexity
(even though, in practice, it seems to exhibit linear average-case complexity). The ap-
proach can be extended to more expressive ontology languages but the details depend
on the semantics of the language and must be determined. As future work, we plan to
extend L by considering complex changes, which aggregate several composite changes
together. Moreover, we plan to conduct empirical studies involving real users.
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