
1

On Provenance of Queries on Semantic Web Data
Yannis Theoharis, Irini Fundulaki, Grigoris Karvounarakis, and Vassilis Christophides

Abstract— Assessing the quality of data currently published
on the Semantic Web emerges as a crucial need of various
applications. Capturing trustworthiness, reputation and reliabil-
ity of Semantic Web data manipulated by SPARQL, requires
to represent adequate provenance information usually modeled
as annotations on source data and propagated to query results
along with query evaluation. Alternatively, one can use abstract
provenance models to capture the relationship between query
results and the source data by taking into account the employed
query operators. We argue the benefits of the latter for settings
in which the query results are materialized in several repositories
and analyzed by multiple users. We investigate the extent to which
relational provenance models can be leveraged for SPARQL
queries and identify their limitations. Finally, we advocate the
need for new provenance models capturing the full expressive
power of SPARQL.

H.2.1 [Database Management]: Data Models

I. INTRODUCTION

Recently, the W3C Linking Open Data initiative1 has boosted
the publication and interlinkage of massive amounts of data
sets on the Semantic Web as RDF data, queried with the
SPARQL query language2. Together with Web 2.0 technologies
(e.g. mashups) they have essentially transformed the Web from a
publishing-only environment into a vibrant place for information
dissemination where data is exchanged, integrated, and materi-
alized in distributed repositories behind SPARQL endpoints. In
this open environment where Semantic Web data is represented
by incomplete or replicated sets of RDF triples, it is crucial to
be able to assert the trustworthiness, reputation and reliability of
the published information. This functionality essentially calls for
representing and reasoning on the provenance of Semantic Web
data manipulated by SPARQL queries. For instance, in the case of
trust assessment [1] (one of the key applications recognized by
the W3C Provenance Incubator Group3), the trustworthiness of
query results is determined based on the trustworthiness of data
sources from which they were derived. For simple boolean trust
assessment we only need to determine which output data should
be trusted. For ranked trust assessment we need to choose the
most trusted among competing evidence from diverse sources.
Additionally, for uncertain and fuzzy data, the probabilities of
query results are derived based on the probabilities associated
with the original data [2].

In all these cases, the goal is to compute appropriate anno-
tations for query results that reflect data quality, based on the
annotations of source data. If source annotations were static and

Y. Theoharis, I. Fundulaki, G. Karvounarakis and V. Christophides are with
the Institute of Computer Science, FORTH. Y. Theoharis and V. Christophides
are also with the Department of Computer Science, University of Crete,
Greece. G. Karvounarakis is also with LogicBox, USA (Email: {theohari,
fundul, gregkar, christop}@ics.forth.gr).

1linkeddata.org
2SPARQL: www.w3.org/TR/rdf-sparql-query
3http://www.w3.org/2005/-Incubator/-prov/wiki/W3C Provenance Incubator-

Group Wiki

common for all users, this computation could be done together
with the query evaluation (as for annotated databases [3], [4], [5]).
However, in general, different users have different beliefs about
e.g., the trustworthiness of source data, and these beliefs may
change over time, even when the relationship of query results
with source data is unchanged. For this reason, an alternative
approach is to use abstract provenance models to capture this
relationship along with the query operators that combined source
data to derive query results. This information can be recorded [6]
in the repository when the data is imported, and used to compute
appropriate annotations for different applications and users at a
later time [7].

In this paper, we focus on data provenance in the style
of [8], i.e. provenance of data in the result of declarative
queries. This is different from workflow provenance [9] (e.g.
OPM4), which typically describes procedural data processing,
and where operations are usually treated as black boxes [10]
due to their complexity. As a result, workflow provenance is
in general less fine-grained than data provenance. Moreover, we
are interested in implicit provenance [11] of queries that only
manipulate data and are oblivious about the possible annotations
thereof. Implicit provenance captures the abstract structure and
properties of query operators and can, thus, be used for various
annotation computations [7], [12]. This is in contrast with work
on explicit provenance [11], where queries can also manipulate
source annotations and specify explicitly the annotation of the
results. Consequently, the resulting annotations can be arbitrary
and may not reflect the structure and properties of query operators,
as needed to support alternative annotation computations.

It is worth noting that previous work on modeling provenance
in the Semantic Web mainly focuses on representing and querying
workflow provenance information for e-science using the RDF
[13] data model. Earlier work on RDF data provenance includes
named graphs [14], which have been proposed as a means to
define ownership of RDF triples by objectifying (through URIs)
the RDF graphs to which they belong. They are an annotation
mechanism where graph identifiers are explicitly stored and
queried along with the original triples. Finally [15] has studied
implicit data provenance for a SPARQL fragment that is closer
to the positive relational algebra. In this vision paper, we take
a first step towards designing an abstract provenance model for
SPARQL. In particular, we:

• identify the basic characteristics of abstract provenance
models and argue on the benefits of using those to compute
annotations for various applications on Semantic Web data
(Section II).

• review relational abstract provenance models, that can be
used to capture the provenance of relational queries over
Semantic Web data (Section III).

• explore the extent to which these models can be leveraged
for SPARQL queries over Semantic Web data, and identify

4http://twiki.ipaw.info/bin/view/Challenge/OPM



2

their limitations (Section IV). The main challenges stem
from the SPARQL OPTIONAL operator, which is crucial
for dealing with the incompleteness of Semantic Web data
but – as we explain later – cannot be handled by relational
provenance models. For this reason, we advocate the need
for new provenance models for SPARQL queries.

II. ABSTRACT PROVENANCE MODELS

In this section we study the basic characteristics of abstract
provenance models to support a range of annotation computations
required by different applications and users. We pay particular
attention to the benefits of recording abstract provenance infor-
mation when data is materialized in a repository through queries.

In different application settings there is a need to identify and
refer to source data involved in the derivation of query results.
To this end, the most common approach in the relational world is
to annotate source data with appropriate, unique, abstract labels
called provenance tokens [16]. The granularity of the annotated
data items typically depends on the main constructs of the data
model, e.g. sets of attributes [17], [18], tuples [12], [16], [17],
[19], [20] or relations [17] for the relational data model.

Then, we can abstractly describe the provenance of output
data in a query result as a set of provenance tokens of source
data. For Semantic Web data, this can be achieved by defining a
named graph per triple. However, for applications such as trust
assessment, simply knowing the provenance tokens of source data
may not be sufficient. Consider for instance, queries combining
data from different sources, some of which are trusted. Multiple
sources may be involved in alternative derivations of a data item
in the query result. Thus, to make trust judgments, we need more
detailed provenance expressions, that in addition to provenance
tokens also record the query operators involved in the derivation
of a data item, thereby storing information on how input data
items were combined to produce the item in question.

Once abstract provenance expressions have been computed
and materialized along with the query results, one can evaluate
them to compute the annotations for a particular application. This
amounts to the substitution of the provenance tokens and abstract
operations with a concrete set of values and operations on them,
respectively. The former reflects user beliefs about how source
data should be annotated, while the latter reflects the particular
application needs.

An alternative approach is to annotate source data with appro-
priate values and compute annotations for query results during
query evaluation. This approach was followed in previous work
on query answering for annotated databases, for several kinds of
annotations ranging from probabilistic event expressions [3] to
boolean expressions dealing with incompleteness or uncertainty
[4], or to tuple multiplicities [5].

In the context of Semantic Web data, abstract provenance
models are highly beneficial compared to annotated databases,
because data is materialized in repositories from various sources
and there is a need to assess its quality afterwards. More precisely:

• an application may require the evaluation of multiple new
or existing dimensions of data quality;

• for a particular application, different users may have dif-
ferent perceptions that may change over the time about the
appropriate source data annotations;

• users typically want to compute annotations for a (possibly
small) subset of the items in the repository;

• source data imported into the repository may be unavailable
when a user tries to assess some dimension of data quality.

Ideally, one would like to have an abstract provenance model
that can support all applications of interest. However, there is
often a tradeoff between the expressiveness of provenance models
and the cost for storing and manipulating the corresponding
provenance expressions. As a result, for systems that only need
to support a subset of these applications it may be desirable to
rely on less-informative abstract provenance models if they can
provide improved performance.

III. PROVENANCE MODELS FOR RELATIONAL QUERIES OVER
SEMANTIC WEB DATA

As a first step towards capturing the provenance of Semantic
Web data, we consider the case in which we query them using
positive relational algebra (denoted by RA+). Indeed, since RDF
is the basic data model for representing Semantic Web data as
triples of the form (subject, predicate, object), they can be stored
in a relational table with three columns. Therefore, it is possible
to query them using RA+ queries. Then, we can take advantage
of previous work on relational provenance models to capture the
provenance of query results.

Table (a) of Figure I shows an RDF triple set, denoted by T ,
in relational form. S, P and O stand for the subject, predicate
and object of a triple. The fourth column represents the triple’s
provenance token.

Consider the query Q(T ) = πSO(πSP (T ) !" πPO(T ) ∪
πSO(T ) !" πPO(T )). The first column of Table (b) of Figure
I shows the result of Q(T ). To illustrate the main characteristics
and differences of the various relational provenance models, we
will focus on the provenance of the last tuple (f, e) in the result
of Q(T ). This tuple has three derivations. One is obtained as a
projection of tuple (f, g, e) from subquery πSP (T ) !" πPO(T )
and the other two as projections on the results of subquery
πSO(T ) !" πPO(T ).

The lineage [19] of a tuple in the result of a query is the set of
(provenance tokens of) source tuples that were involved in some
derivation of that result tuple. The first and second derivations
of (f, e) only use tuple (f, g, e), annotated with the provenance
token c3. The third derivation uses both (f, g, e) and (d, b, e), the
latter annotated with c2. Consequently, we obtain the provenance
expression {c2, c3} (see Table (b) of Figure I).

Other relational provenance models also encode some infor-
mation about the operators that were used in each derivation. For
instance, why-provenance [17] encodes all the different deriva-
tions of a tuple in the query result by storing a set of provenance
tokens for each derivation.In our example, the first and second
derivations of (f, e) only involve c3, so they are both represented
by the same set ({c3}), whereas the last one involves both c3 and
c2. Therefore, the why-provenance of (f, e) is {{c3}, {c2, c3}}
(see Table (b) of Figure I). Intuitively, each inner set represents
one or more derivations that involve the same source data, while
multiple tokens in an inner set, e.g. {c2, c3}, indicate a join
between the corresponding tuples.

Perm [20] employs the tuples, instead of provenance to-
kens, to encode provenance of source data. To illustrate how
Perm works, we consider the provenance expression of the
last tuple in the result (S:f,O:e), where S, O represent at-
tribute names of T . Perm retains two tuples for (S:f,O:e),
one for every derivation. In particular, the first tuple is



3

Triple Set T
S P O Prov.
a b c c1
d b e c2
f g e c3

Q(T ) = πSO(πSP (T ) !" πPO(T ) ∪ πSO(T ) !" πPO(T ))
S O Lineage Why Trio-lineage How
a c {c1} {{c1}} {{c1}, {c1}} (c1 " c1)⊕ (c1 " c1)
a e {c1, c2} {{c1, c2}} {{c1, c2}} c1 " c2
d c {c1, c2} {{c1, c2}} {{c1, c2}} c1 " c2
d e {c2, c3} {{c2}, {c2, c3}} {{c2}, {c2}, {c2, c3}} (c2 " c2)⊕ (c2 " c2)⊕ (c2 " c3)
f e {c2, c3} {{c3}, {c2, c3}} {{c3}, {c3}, {c2, c3}} (c3 " c3)⊕ (c3 " c3)⊕ (c2 " c3)

(a) (b)

FIGURE I
EXAMPLE OF lineage, why-PROVENANCE, Trio-lineage AND how-PROVENANCE (b) FOR THE QUERY Q OVER T (a)

(S:f,O:e,S1:f,P1:g,O1:e,S2:f,P2:g,O2:e), where the first
two attributes represent the result tuple (f, e), while the two
occurrences of (f, g, e) encode the fact that it has been used
twice to derive the tuple (f, e). On the other hand, tu-
ple (S:f,O:e,S1:f,P1:g,O1:e,S2:d,P2:b,O2:e), encodes that
(f, g, e) and (d, b, e) were used to derive (f, e). In this manner,
the provenance information that Perm encodes is similar to why-
provenance.

Trio-lineage [12] is similar to why-provenance, but additionally
records separately even derivations involving the same set of
source tuples. A Trio-lineage expression is a bag of sets of tokens,
each of which corresponds to one derivation. Hence, for the first
two derivations of (f, e) (see Table (b) of Figure I) we obtain
{{c3}, {c3}} whereas for the last we have {{c2, c3}}.

Finally, how-provenance [16] encodes not only the union and
join operators, but also the number of times a tuple participates
in a join. To this end, it employs the abstract binary operator
⊕ to encode union and projection and " to encode join. In our
example (see Table (b) of Figure I), tuple (f, g, e), participates
twice in the first two derivations of (f, e) and, thus, each one
has provenance c3 " c3. The remaining derivation results from
a join between (f, g, e) and (d, b, e), annotated with c3 and c2
respectively, resulting in the provenance expression c2"c3. Thus,
the provenance of (f, e) is (c3 " c3) ⊕ (c3 " c3) ⊕ (c2 " c3).
Compared to lineage, why-provenance and Trio-lineage, how-
provenance is the most informative [21] provenance model. More
precisely, as shown in [16], it is universal for all provenance
models (such as the aforementioned ones) that can be expressed
as semirings.

A. Expressiveness of Provenance Models
As we explained above, some provenance models capture more

information than others, at the expense of producing more com-
plex provenance expressions. For some applications the additional
information is necessary while for others it is not. In this section,
and the rest of this paper, we focus on the applications of boolean
and ranked trust assessment, to illustrate such differences in
expressiveness requirements, but we are generally interested in
abstract provenance models that can also be used for a wide range
of applications [7], [16].

1) Boolean Trust Assessment: In this case, given a query, the
goal is to find which result tuples are trusted, based on the
trustworthiness of the input tuples. More specifically, a derivation
is trusted only if all contributing tuples are trusted. For tuples
with multiple derivations, they are trusted if at least one of the
derivations is trusted. Based on this semantics, which is also
followed in the relational context [6], [16], one can compute the
trusted result tuples by answering the query on the subsets of the
input relations containing only the trusted tuples.

Trusted result tuples can be computed through provenance, by
assigning the values true (resp. false) to provenance tokens of
trusted (resp. untrusted) tuples. Consider for instance the why-
provenance of (f, e) in the output, i.e. {{c3}, {c2, c3}} and let
c1 = c3 = true, c2 = false. Then, (f, e) is trusted, because there
exists a derivation (namely {c3}), for which all tokens represent
trusted source tuples (i.e., have the value true).

2) Ranked Trust Assessment: In ranked trust assessment [7],
every source tuple is associated with a rank, i.e., a natural number
that denotes how trusted it is. In particular, 0 is the rank of the
most trusted tuples, while ∞ indicates tuples that are completely
untrusted.

If a tuple has multiple derivations, as a result a union or
projection operator in the query, the rank of the output tuple is
the minimum rank among all derivations, i.e. that of the most
trusted derivation. In the case of a join, the rank of the resulting
tuple is the sum of the ranks of the input tuples. In this respect,
it has a higher rank, i.e. is less trusted, than both of them.

For instance, let c1 = 1, c2 = 2, c3 = 3. Then, if we
consider the most detailed provenance expression derived by
how-provenance, the rank of (f, e) in the output is computed as
min(min(c3 + c3, c3 + c3), c2 + c3) = min(min(3+3, 3+3), 2+
3) = min(6, 5) = 5. Had we considered a less expressive model,
we would have computed an incorrect rank for (f, e). Consider
for instance Trio-lineage. The operator “+” applies on annotations
included in an inner set and the results (one sum per inner set) are
then combined with min, i.e. the evaluation of the Trio-lineage
expression for (f, e) would produce min(min(c3, c3), c2 + c3) =
min(min(3, 3), 2 + 3) = min(3, 5) = 3. We conclude that Trio,
as well as the less expressive why-provenance and lineage, fail
to compute the correct rank. Therefore, comparing ranked with
boolean trust assessment, we observe that the former requires a
more expressive provenance model than the latter.

IV. CAPTURING THE PROVENANCE OF SPARQL QUERIES

In the previous section we explained how relational provenance
models can be used to capture the provenance of relational queries
over Semantic Web data. However, since Semantic Web data
are by default represented in RDF, in this section we focus on
capturing the provenance of SPARQL queries typically employed
to manipulate them.

A. SPARQL in a Nutshell

We base our presentation of SPARQL on the algebra presented
in [22]. This algebra is based on triple patterns, i.e. triples of the
form (x, y, z), where x, y, z can be constants or variables, the
latter prefixed with “?”. Triple patterns are used to bind variables
to values in the dataset. A set of pairs (variable, value), i.e. the



4

Ω = evaluation of Ω1 = Ω2 = Ω3 = Ω4 =
(?x, ?y, ?z) over T π?x,?y(σ?z=e(Ω)) π?x,?z(σ?y=b(Ω)) π?y(σ?z=e(Ω)) π?y,?z(σ?x=a(Ω))

?x ?y ?z
a b c
d b e
f g e

?x ?y
µ1 : d b
µ2 : f g

?x ?z
µ3 : a c
µ4 : d e

?y
µ9 : b
µ10 : g

?y ?z
µ17 : b c

(a) (b) (c) (d) (e)

Ω1 ∪ Ω2 (Ω1 ∪ Ω2) !" Ω3 Ω1−
−!"Ω4

?x ?y ?z
µ5 : d b −
µ6 : f g −
µ7 : a − c
µ8 : d − e

?x ?y ?z
µ11 : d b −
µ12 : f g −
µ13 : a b c
µ14 : a g c
µ15 : d b e
µ16 : d g e

?x ?y ?z
µ19 : d b c
µ20 : f g −

(f) (g) (h)

FIGURE II
EXAMPLE OF SPARQL ALGEBRA OPERATORS

SPARQL analog of the relational valuation, is called a mapping.
For instance, the pattern (?x, ?y, c) only matches triples whose
object has the value c, and the result of matching it to the first
triple of T (Table (a) in Figure I), is the mapping {(?x, a), (?y, b)}
indicating that variables ?x, ?y are bound to values a and b,
respectively. The evaluation of a triple pattern on a set of triples is
a bag of mappings, i.e. a set of mappings along with a cardinality
function, that associates every mapping of the set with an integer.
To simplify the presentation, we will use the tabular representation
of the mapping bags shown in Figure II, where each column
corresponds to a variable in the mappings.

The SPARQL algebra in [22] defines: a) the unary operators
σ (filtering) and π (projection) that correspond to the SPARQL
constructs FILTER and SELECT, respectively and b) the binary
operators, ∪, !", −−!" for the SPARQL constructs UNION, AND,
and OPTIONAL respectively.

Filtering on the triple components is expressed by fixing one
of them to a constant. For instance, let Ω (Table (a) of Figure
II) denote the evaluation of (?x, ?y, ?z) over T . Then σ?x=a(Ω)
contains only mapping {(?x, a), (?y, b), (?z, c)}.

Projection specifies the subset of variables to be returned in
the query result. For example, Ω1 = π?x,?y(σ?z=e(Ω)) is the
bag of mappings obtained from projecting the variables ?x, ?y
of σ?z=e(Ω) (Table (b) of Figure II). Similarly, Ω2 in Table (c)
of Figure II denotes the result of query π?x,?z(σ?y=b(Ω)). To
simplify the presentation, we employ symbols µi in Figure II to
identify individual mappings.

Unlike relational union that is defined on relations with the
same attributes, the union (∪) operation of the SPARQL algebra
can be applied on bags of mappings containing different variables.
In such cases, the result may include mappings with unbound
variables, denoted by “-” in Table (f) of Figure II (in SQL that
would be a null value).

In order to define the semantics of the join (!") operator, [22]
introduces the notion of compatible mappings. Two mappings are
compatible if they agree on their common variables. The output of
!" for two compatible input mappings is a mapping whose set of
variables is the union of their bound variables. For each variable

in the output, its value is the same as in the corresponding input
mapping(s). Unlike in relational algebra, where a null value in
an attribute makes any join condition fail, unbound variables in
SPARQL do not affect the compatibility of mappings. Figure II
shows the result of (Ω1∪Ω2) !" Ω3 in Table (g), where Ω1∪Ω2 is
shown in Table (f), while Ω3 in Table (d). Note that, although ?y
is unbound e.g., in µ7, SPARQL considers µ7 to be compatible
with µ9 and µ10, for which ?y is bound.

Finally, the application of the operator −−!"between mapping
bags Ωl and Ωr returns the mappings contained in the result of
Ωl !" Ωr , as well as all mappings from Ωl that are not compatible
with any mapping in Ωr . In this manner, −−!" is similar to the
left outer join operator of the relational algebra. Figure II shows
the result of Ω1 −

−!" Ω4 in Table (h), where Ω1 is shown in
Table (b) and Ω4 in Table (e). For instance, µ19 is in the result
because of the join between µ1 and µ17, while µ20 appears in the
result because µ2 belongs to Ω1 and is not compatible with µ17.
Following [22], we denote with Ωl \Ωr the mappings of Ωl that
are not compatible with any Ωr mapping, e.g. Ω1 \ Ω4 = {µ2}.
As shown in [22], the following equivalence holds:

Ωl −
−!" Ωr = (Ωl !" Ωr)∪ (Ωl \Ωr) (1)

We should stress that there are some subtle differences between
the “\” operator of [22] and the relational minus operator (denoted
“−” below). The former checks mappings for compatibility,
while the latter only compares tuples for equality. It should
be mentioned that compatibility between mappings is an 1 − n
relationship, i.e. a mapping of Ωl may be compatible with many
mappings of Ωr . On the contrary, equality between tuples is an
1 − 1 relationship. Consider for instance, the relational query
Rl − Rr . A tuple of Rl relation can be equal to at most one
tuple of Rr . As a consequence, the existence of multiple copies
of a mapping in Ωl and Ωr does not affect the cardinality of that
mapping in the result: if a mapping µ has cardinality m in Ωl and
there is one compatible mapping with cardinality n in Ωr , µ will
have cardinality 0 in the result, i.e., it will not appear in it. On the
contrary, in the relational context, if a tuple t has cardinality m
in relation Rl and n in Rr , then the cardinality of t in Rl −Rr ,
is m− n, if m > n, and 0, otherwise.



5

Ω1 Ω4

?x ?y
µ1 : d b
µ2 : f g

?y ?z
µ17 : b c

(a) (b)

Ω1 −
−!" Ω4

µ17 trusted µ17 untrusted
?x ?y ?z

µ19 : d b c
µ20 : f g −

?x ?y ?z
µ21 : d b −
µ20 : f g −

(c) (d)

FIGURE III
EXAMPLE OF BOOLEAN TRUST

B. Provenance Models for Positive SPARQL

From the previous presentation, there is a clear analogy of
the SPARQL algebra operators of projection (π), filter (σ), join
(!") and union (∪) with the corresponding operators of positive
relational algebra (RA+). For this reason, we refer to the fragment
of SPARQL consisting only the above operators as positive
SPARQL (denoted by SPARQL+) and investigate whether prove-
nance models for RA+ queries presented in Section III, can be
also applied to SPARQL+ queries, despite their subtle differences.

One difference lies in the fact that relational algebra operates on
tuples, while SPARQL algebra operates on mappings. However,
this is easily handled by associating mappings that are returned
by triple patterns with the provenance tokens of the triples they
matched. Moreover, SPARQL algebra adopts bag semantics by
default, although set semantics can be enforced through the use
of the operator DISTINCT. Among the provenance models for
relational queries, only how-provenance can be used to compute
correct result multiplicities under bag semantics [16], while all
models can handle set semantics. Finally, the differences (men-
tioned in Section IV-A) between SPARQL and relational algebra
for the ∪ and !" operators do not affect the provenance of output
mappings. As a consequence, all abstract provenance models
for RA+ presented in Section III, can be applied to SPARQL+

under set semantics, while how-provenance can be used when bag
semantics is needed.

C. Towards Provenance for SPARQL

However, relational provenance models are not sufficient to
capture provenance for the SPARQL algebra, essentially due to
the use of the −−!" operator. This is because −−!" involves a form
of negation (see the use of \ in expression (1)), while most of
the aforementioned models capture the provenance of positive
queries. We illustrate the challenges posed by −

−!" through an
example of boolean trust assessment (Section III-A).

To compute the set of trusted mappings in the result of a
SPARQL query, we can evaluate the SPARQL query on the
subsets of input mapping sets that include only the trusted
mappings. Hence, trusted mappings of Ω1 of Figure III that are
not compatible with any trusted mapping of Ω4 should appear
in the query output as trusted. This semantics also coincides
with tSPARQL5, if we apply the EnsureTrust operator to filter
out untrusted mappings from input mapping sets (by setting the
lower (l) and upper (u) bounds to true).

5http://trdf.sourceforge.net/ documents/tsparql.pdf

Suppose, for example, that mappings µ1, µ2 of Ω1 and µ17 of
Ω4 are trusted (see Tables (a) and (b) of Figure III). The trusted
mappings of Ω1 −

−!" Ω4 are depicted in Table (c). One can observe
that µ19 belongs to the result as a derivation of two compatible
and trusted mappings, µ1 and µ17, while µ20 is trusted because µ2

is trusted in Ω1 and is not compatible with any trusted mapping
of Ω4.

On the other hand, if µ1, µ2 were trusted but µ17 was untrusted,
µ1 would not be compatible with any trusted mapping of Ω4.
Thus, mapping µ21 should appear in the result as trusted (see
Table (d) of Figure III). One can easily observe that, although
µ21 (resp. µ19) does not belong to the query result illustrated in
Table III (c) (resp. (d)), an abstract provenance model that can
be used for such trust computations would need to associate for
both those mappings with appropriate provenance expressions.

Existing provenance models for RA+ queries (see Section III)
do not support the semantics of SPARQL −

−!" or \. Even Perm,
which captures negation, does not record sufficient information
for enabling annotation computations such as the boolean trust
assessment (see Figure III). More precisely, Perm records the
reason why µ20 exists in the result, i.e. that µ2 is not compatible
with µ17, by keeping in the output the mapping {(?x, f), (?y, g),
(?y17, b), (?z17, c)}. However, it does not encode any provenance
expression for µ21. Thus, when µ17 is untrusted, it has no way
to infer that µ21 should appear in the result as trusted.

Similarly to Perm, [15] documents that µ20 exists in the result
because µ2 is not compatible with µ17. However, it does not
encode provenance information for µ21, and therefore it can not
infer that µ21 should be in the result as trusted, if µ17 is untrusted.

M-semirings [23] is a recent extension of how-provenance
for capturing the relational minus operator. To this end, it de-
fines an additional abstract operator, denoted by &. To compute
provenance expressions for our running example, the m-semiring
model would employ equation (1) for Ω1 −

−!" Ω4. The provenance
expressions for mappings in Ω1 !" Ω4 are computed in the same
manner as in the case of how-provenance, e.g. the provenance
of µ19 is c1 " c3, where c1 (resp. c3) is the provenance of µ1

(resp. µ17) in Ω1 (resp. Ω4). The & operator is employed to
compute the provenance of mappings in Ω1 \ Ω4. In particular,
the provenance of µ20 is c2 & 0, where c2 is the provenance
of µ2 in Ω1, while 0 denotes that µ2 does not belong to Ω4.
According to the formal properties of &, c2 & 0 = c2. Moreover,
the provenance of µ21 is c1 & c3. Consequently, in the case that
µ17 is untrusted, m-semirings infer that µ21 should appear in
the result as trusted. However, m-semirings follow the semantics
of relational minus, which differs from the semantics of \ in
SPARQL algebra. Consider for instance, that Ω4 had an additional
mapping µ22 = {(?y, b), (?z, e)}, that is compatible with µ1. Then
µ21 would appear in the result as trusted (as shown in Table (d)
of Figure III), only if both µ17 and µ22 were untrusted. However,
the m-semiring expression for µ21 could only encode a single
mapping of Ω4.

We conclude that a new provenance model is needed in order to
cope with the −−!" operator. In this model, provenance expressions
should be recorded for some mappings that do not appear in the
result of a query involving the −−!" operator, e.g. for µ21 in Ω1

−
−!" Ω4 in Table (c) of Figure III. It is worth mentioning that this
need also appears in the case that provenance expressions should
be computed for the relational left (or right) outer join.

Moreover, this model cannot be based on techniques used in



6

relational provenance models to deal with relational minus, due
to the differences (see also section IV-A) between the SPARQL
algebra \ operator and the relational minus. In particular, the
provenance expression of a mapping should encode some in-
formation about all the compatible mappings of the right-hand
mapping set, instead of encoding information of a single tuple in
the right-hand relation. Finally, the provenance expression for the
\ operator should conform to SPARQL semantics for cardinalities
of the corresponding mappings that, as explained in Section IV-A.

V. CONCLUSIONS

Unlike previous surveys [8], [9], in this paper we focused on
data provenance models for Semantic Web data. More specifically,
we discussed how implicit provenance information of SPARQL
query results can be used to compute annotations reflecting
various dimensions of data quality. We reviewed existing abstract
provenance models for the relational data model, and showed
that they can be leveraged for positive SPARQL queries over
RDF data. Finally, we identified the limitations of these models
in capturing the semantics of the SPARQL OPTIONAL operator,
that implicitly introduces negation. We are currently working on
the formalization of an abstract provenance model for SPARQL
that supports a wide variety of applications involving annotation
computations, as well as of less expressive provenance models
for less demanding applications.

REFERENCES

[1] D. Artz and Y. Gil, “A Survey of Trust in Computer Science and the
Semantic Web,” Web Semantics, vol. 5, no. 2, 2007.

[2] H. Huang and C. Liu, “Query Evaluation on Probabilistic RDF
Databases,” in WISE, 2009.

[3] N. Fuhr and T. Rölleke, “A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems,” ACM TOIS,
vol. 14, no. 1, 1997.

[4] T. Imielinski and W. Lipski, “Incomplete Information in Relational
Databases,” JACM, vol. 31, no. 4, 1984.

[5] I. S. Mumick and O. Shmueli, “Finiteness Properties of Database
Queries,” in ADC, 1993.

[6] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update
exchange with mappings and provenance,” in VLDB, 2007.

[7] G. Karvounarakis, Z. G. Ives, and V. Tannen, “Querying Data Prove-
nance,” in SIGMOD, 2010.

[8] J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in databases: Why,
where and how,” Foundations and Trends in Databases, vol. 1, no. 4,
2009.

[9] J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance for Compu-
tational Tasks: A Survey,” CiSE, vol. 10, no. 3, 2008.

[10] D. Srivastava and Y. Velegrakis, “Intensional Associations Between Data
and Metadata,” in SIGMOD, 2007.

[11] P. Buneman, J. Cheney, and S. Vansummeren, “On the Expressiveness
of Implicit Provenance in Query and Update Languages,” ACM TODS,
vol. 33, no. 4, 2008.

[12] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom, “ULDBs:
Databases with Uncertainty and Lineage,” in VLDB, 2006.

[13] S. Miles, S. C. Wong, W. Fang, P. Groth, K. P. Zauner, and L. Moreau,
“Provenance-based Validation of E-science Experiments,” Web Seman-
tics, vol. 5, no. 1, 2007.

[14] J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler, “Named Graphs,”
Web Semantics, vol. 3, no. 4, 2005.

[15] R. Dividino, S. Sizov, S. Staab, and B. Schueler, “Querying for
provenance, trust, uncertainty and other meta knowledge in RDF,” Web
Semantics, vol. 7, no. 3, 2009.

[16] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in PODS, 2007.

[17] P. Buneman, S. Khanna, and W. Tan, “Why and Where: A Characteri-
zation of Data Provenance,” in ICDT, 2001.

[18] F. Geerts, A. Kementsietsidis, and D. Milano, “MONDRIAN: Anno-
tating and Querying Databases through Colors and Blocks,” in ICDE,
2006.

[19] Y. Cui and J. Widom, “Lineage Tracing for General Data Warehouse
Transformations,” in VLDB, 2001.

[20] B. Glavic and G. Alonso, “Perm: Processing Provenance and Data on
the Same Data Model through Query Rewriting,” in ICDE, 2009.

[21] T. J. Green, “Containment of conjunctive queries on annotated relations,”
in ICDT, 2009.

[22] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,” ACM TODS, vol. 34, no. 3, 2009.

[23] F. Geerts and A. Poggi, “On Database Query Languages for K-
Relations,” Applied Logic, vol. 8, no. 2, 2010.


