CONSERVATOIRE NATIONAL DES ARTS ET METIERS

Année : 2003 No attribué par la bibliothéque

THESE

presentée pour obtenir le grade de :

Docteur en Sciences

Discipline: Informatique
par

Irini FUNDULAKI

Titre de la thése :

Intégration et Interrogation de Ressources XML pour
Communautés Web

Date de Soutenance : 13 janvier 2002 devant le jury composé de :

Mr. M. SCHOLL Directeur
Mr. G. GARDARIN Rapporteur
Mr. N. SPYRATOS Rapporteur
Mr. B. AMANN Examinateur
Mr. C. BEERI Examinateur
Mme I. WATTIAU Examinatrice

Abstract

In this thesis we have studied the problem of querying and integration of heterogeneous and
autonomous XML resources. Our contribution is two-fold : first we have examined the problem of
the construction of metadata schemas by the integration of ontologies and structured vocabularies
(thesauri). Second, we have elaborated a model for the integration and querying of XML resources
using the mediator-wrapper architecture where the schema of the mediator is an ontology.

In the first part of our work we developed a methodology for the construction of metadata
schemas by the integration of an ontology and of structured vocabularies (thesauri). Ontologies
describe the generic structures in the domain of interest by concepts and roles. Thesauri are vocab-
ularies of terms with precise semantics which are not well-structured. Ontologies have a double role
in our model : they define a generic view of information and a structural interface over thesauri.
The resulting metadata schema allows the description of a large number of different resources using
the generic schema provided by the ontology and the precise semantics of thesaurus terms. The re-
sults of this research were validated by the prototype ELIOT developed in the context of a contract
between CNAM-Paris and the Service de 'Inventaire of the French Ministry of Culture.

In the second part of our work, we have studied the integration and querying of heterogeneous
and autonomous XML resources. Our approach, STyX , is based on the mediator-wrapper architec-
ture where the global schema of the mediator is an ontology which is not materialized : the actual
data resides in the sources.

Our contributions in this context are multiple. First we have defined a simple but expressive
model for describing XML resources. The resources are described by means of mapping rules between
XML fragments specified by XPath location paths and ontology paths. The use of an ontology at
the mediator level (which can be perceived as a conceptual schema with symmetric and inheritance
relations) and the XPath language, allows one to represent a large number of XML resources. In
addition, the approach of path-to-path mapping allows one to attribute specific semantics to the
parent/child relationship between the nodes in an XML document.

We have developed a rewriting algorithm for tree gueries, which transforms a user query for-
mulated in terms of the ontology, into one or more XQuery queries expressed in terms of the local
sources schema. User queries are tree queries with no joins, restructuring or aggregation. The
rewriting algorithm calculates the variable to rule bindings by examining each query variable in the
context of its father. The algorithm considers both the full bindings (complete answers) and the
partial bindings (partial answers) between the query variables and the mapping rules. In this last
case, the query is decomposed recursively in a prefix query which is evaluated by the source and
one or more suffix queries which are considered for evaluation by the remaining sources. The join
operation is used to complete the partial answers obtained by the evaluation of these queries.

In this context we have addressed the problem of identification of information. The XML
resources which we consider are heterogeneous and autonomous. In consequence, the assumption of
persistent object identifiers is not realistic. Towards this direction, we have introduced the notion
of global keys at the ontology level : a key is a set of paths which identify the instances of a
concept. Each source can in this way control the fragment identifiers exported by the mapping rules
associated with the key paths. The S7TyX rewriting algorithm considers the presence of keys for the
decomposition of the queries and the construction of the results.

Ithaca

When you set out on your journey to Ithaca,
pray that the road is long,

full of adventure, full of knowledge.

The Lestrygonians and the Cyclops,

the angry Poseidon — do not fear them:

You will never find such as these on your path,
if your thoughts remain lofty, if a fine
emotion touches your spirit and your body.
The Lestrygonians and the Cyclops,

the fierce Poseidon you will never encounter,
if you do not carry them within your soul,

if your soul does not set them up before you.

Pray that the road is long.

That the summer mornings are many, when,
with such pleasure, with such joy

you will enter ports seen for the first time;
stop at Phoenician markets,

and purchase fine merchandise,
mother-of-pearl and coral, amber and ebony,
and sensual perfumes of all kinds,

as many sensual perfumes as you can;

visit many Egyptian cities,

to learn and learn from scholars.

Always keep Ithaca in your mind.

To arrive there is your ultimate goal.

But do not hurry the voyage at all.

It is better to let it last for many years;

and to anchor at the island when you are old,
rich with all you have gained on the way,

not expecting that Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.
Without her you would have never set out on the road.
She has nothing more to give you.

And if you find her poor, Ithaca has not deceived you.
Wise as you have become, with so much experience,
you must already have understood what Ithacas mean.

Constantine P. Cavafy (1911)

Contents

1 Introduction

1.1 Web Communities oo e e
1.2 Contributions L e
1.2.1 Creation of Portal Schemas and Content Descriptive Metadata
1.2.2 STyX : Ontology-based Integration of XML Web resources
1.3 Organisation of the document o o o
2 Semantic Data Integration
2.1 Ontologies and Thesauri
2.1.1 Ontologles« o o v e
2.1.2 Thesauri« . oo e
2.1.3 Ontology Representation Languages
2.2 Metadata
2.2.1 Metadata languageso Lo
2.2.2 HTML Document Annotation Languages and Systems
2.3 Web Data Integration Systems Lo
2.3.1 Mediator/Wrapper Architecture L.
2.3.2 Local As View e
233 Global As View
2.3.4 Comparison between the LAV and GAV approaches
2.4 Data Integration Systems following the Local as View Approach
2.4.1 Information Manifold L o
2.4.2 Xyleme : A Web Scale XML Repository
243 Infomaster. L
244 PICSEL e
245 AgOTa
2.5 Data Integration Systems following the Global as View approach
2.5.1 Tsimmis e
2.6 Bibliographic Notes L e
3 Generation of Metadata Schemas
3.1 Ontologies and Thesauri
311 Thesauri« o o e e e
3.1.2 Ontologiles o e e
3.2 Creating Metadata Schemas from Ontologies and Thesauri
3.3 RDF Metadata Schemas and Resource Descriptions
3.3.1 Controlled Creation of RDF Schemas

11
12
12
14
16
17
18
26
27
28
30
33
33
34
34
40
47
49
51
52
52
55

3.3.2 Metadata Descriptions
Object Oriented Implementation of a DB
Representing Concepts as Classes
3.4.2 Representing Thesaurus Terms as Classes
3.4.3 Representing Thesaurus Terms as Values
The ELIOT Cultural Portal
ELIOT Metadata Schema
3.5.2 System Architecture
3.5.3 Bibliographic Notes on Labeling Schemes

Integrating XML resources in STyX

4.1 System overview through a cultural example
XML resources
4.1.2 STyX Global Schema
4.1.3 Publishing XML sources in S7TyX
4.1.4 Query Evaluation
STyX Ontology
Ontology Data Model
Ontology Paths

Derived Ontology
Identity-based Join and Fusion
Mapping Language

Integrated Database
Obtaining a partial database
4.4.2 Obtaining the Integrated Database
Query Language

Query Evaluation
Binding variables to Rules Algorithms
4.6.2 Query Decomposition
4.6.3 Generation of Query Execution Plans
Comparing STyX and Xyleme
Global Schema
4.7.2 Mapping Language
The STyX Prototype
STyX System Architecture

Conclusions and Future Work
5.1 Creation of Portal Schemas

5.2 STyX : Ontology-based Integration of XML Web resources
Future Work

A1 XML Syntax
XML Declaration
Declaration of the Document Type
XML Entities

XML Elements

CONTENTS

CONTENTS 3

A.1.5 XML Attributes 158

A2 XML : Document Type Definitions 159
A.2.1 Element Declaration 160

A.2.2 Attributes Declaration 161

B XML Path Language (XPath) 163
B.1 XPath Data Model 163
B.1.1 XPath expressions e 166

B.1.2 XPath Functions L 168

CONTENTS

Chapter 1

Introduction

1.1 Web Communities

During the last decade, the Web has become the basic infrastructure for a large number of human
communications and information-based activities. Web data comes from different organizations,
communities and individuals, and covers a huge and diverse spectrum of interests.

Due to the wide use of the Web as the basic means for exchanging information, a number of Web
communities have been created. Members of such communities are persons interested in a specific
domain ranging from culture, education, music to business and have in common some identified and
formalized knowledge that they use and make evolve in their joint activities along with a variety
of heterogeneous information sources (e.g. documents, data). In this context, the main challenge
is to provide a single point of access to the various information sources. Towards this direction
community web portals have been developed whose basic objective is to provide to their users the
means to publish and access in a meaningful way diverse information resources in the domain of
interest.

Recently, the Semantic Web initiative was launched to handle the issues related to the de-
ployment of Web community portals. The goal of the Semantic Web is to “develop enabling tech-
nologies and standards to support richer discovery, data integration, navigation and automation of
tasks” [221]. The idea behind this initiative is to build on top of the actual data, a layer that actually
describes the semantics of Web data, independently of the format in which it is represented.

One of the basic issues in a Web community portal is that information sources are developed in
an autonomous way. This autonomicity results in sources which are highly heterogeneous in structure
and access interfaces. Data can be structured coming from relational [147] and object oriented [123]
databases, semi-structured [3, 31] (e.g. XML data [4]) and finally unstructured documents (e.g.
HTML documents or documents in proprietary formats such as Postscript, PDF etc.). As far as
access interfaces are concerned, a relational source supports SQL [192] queries and an object oriented
one OQL queries [53, 42]. HTML documents in a Web portal can be accessed by simple keyword-
based interfaces similar to those provided by search engines such as Google [99|, Altavista [14]| and
Yahoo [223] or by more elaborate interfaces using HTML forms.

An orthogonal problem to that of heterogeneity concerns the distribution of data. Due to the
autonomous way in which information sources are developed, the information a user is looking for
is not located in a single source but can be found in several sources. For example, in a cultural
portal, one source might contain descriptions of Van Gogh paintings, and a second one studies of
the paintings. Consequently, a user who looks for Van Gogh’s paintings and studies about them
must access both sources (using the source specific interfaces). During these searches, a user might

5

6 CHAPTER 1. INTRODUCTION

possibly access several irrelevant sources to discover the information she looks for. Hence, due to
source heterogeneity and distribution of information, looking for information in a Web portal is a
cumbersome task.

To support efficient access of information sources, a Web community portal can be considered
as a database [210] providing users with a single point of access (i.e. schema) and a single query
interface. The portal schema is the backbone of the portal which provides to the users a single
point of access to the sources and describes the basic notions in the domain of interest. To deal
with the autonomicity and heterogeneity of the sources, it is important that portal schemas be
built independently of the structures of the underlying sources. They can either be constructed
from scratch, or by reusing ezisting conceptual structures such as ontologies [103] and terminological
structures such as thesauri [114].

Although the development of XML [4] is slowly changing the picture for the exchange and
representation of Web data, a large number of resources in a Web portal are basically HTML
documents either produced dynamically from databases or created by community members. One
way to make the sources, which do not have a well defined structure, accessible in a community web
portal, is to provide appropriate metadata [190]. Metadata can be distinguished between content
descriptive metadata which capture the semantics of a source that is not explicitly present in its
content, structure descriptive which are related to the source structure and finally administrative
metadata which concern information such as the document’s date of creation, access rights etc..
Sources are basically published in a portal by providing their content descriptive metadata defined in
terms of the portal schema. Metadata description languages like RDF' [179], XML Topic Maps [166]
and more recently DAML+OIL [59] were developed for this purpose.

Users can formulate structured queries in terms of the portal schema and the portal is then
responsible for exploiting the available content descriptive metadata to discover those that contain
information relevant to the user’s request. Resource discovery [159] is one of the basic functionalities
that a portal offers to its users. The result of a user request is a set of source addresses which contain
information relevant to the user query. Then the user can navigate in each of the sources to locate
the information she looks for.

Although metadata is one way of answering user requests, users need to actually query the
contents of information sources. Consider again a cultural portal where sources publish information
about cultural artifacts, expositions in museums and reviews for them. Information about an
artifact can be found from several sources. A user looking for “the French museums with Van
Gogh ezxpositions and reviews” must find the sites of French museums, search for expositions of Van
Gogh paintings and then for these expositions discover reviews from specialized sites. In this case,
the user must 'manually’ combine information found from a possibly large number of information
sources. The objective here is to relieve the user from this cumbersome task : in other words, the
functionality that should be provided by a Web portal is that of a data integration system.

A number of research efforts during the last years focused on the problem of data integration. The
first generation of such systems are multidatabases [142] and federated [110] systems. Nevertheless,
given that we are in the Web environment the fact that sources are autonomous must be taken into
account. Due to the preservation of autonomicity, rigid data integration architectures, based on
the integration of local sources schemas introduced by multidatabase systems [142], are difficult to
apply. Wiederhold in [216] proposed the mediator-wrapper architecture which has been extensively
used in data integration systems. The backbone of the mediator is a mediated or global schema which
offers a single view of the underlying data. The global schema is not materialized : data resides in
the actual sources. To access this data, sources are integrated in the mediator by providing their
source descriptions. User queries are formulated in terms of the global schema and are rewritten to

1.2. CONTRIBUTIONS 7

queries expressed in terms of the local sources schemas using the source descriptions.

Before the emergence of XML [4] a large number of data integration projects concerned the
integration of structured [136, 200, 47, 97, 154, 202] and semi-structured (94, 54] sources. The
emergence of XML has changed the picture. A number of research projects have proposed XML
as a language to express a common interface between existing databases or to express a uniform
view to integrate heterogeneous data sources [149, 187, 70, 87, 88]. This thesis is concerned with
the querying and integration of XML resources.

1.2 Contributions

In this context we propose a framework for the deployment of Web communities portals supporting
the following functionalities :

e the creation of portal schemas that define the basic notions in the domain of interest which
can be used as metadata schemas and as mediator schemas [18];

e the publication of Web resources in terms of their content descriptive metadata [19, 12] and

e finally the querying and integration of autonomous and heterogeneous XML resources [17, 16,
15].

This framework has been validated in the context of various projects in the cultural domain [62,
157] and different prototype implementations [176, 92].

1.2.1 Creation of Portal Schemas and Content Descriptive Metadata

In a number of specific applications or domains of interest, there already exist specific ontologies [146]
that describe the semantics of the domain. For example, in the cultural domain which is the reference
example in this thesis, there exists the ICOM/CIDOC Reference Model [75] which is the result of
an effort undertaken by the International Council of Museum Documentation [113]. This model
is used in a consistent way for the exchange of data coming from different museums. In addition
to these ontologies, a large number of controlled vocabularies or thesauri have also been developed
and extensively used. For example, for the cultural domain there exist (among others) the Art
& Architecture Thesaurus [194, 2] and the ULAN [203] thesaurus from the Getty Institute, the
MERIMEE [156] thesaurus of the French Ministry of Culture and the RCHME [178| thesaurus of
the Royal Commission of Historical Monuments of England. Thesauri contain several hundreds or
thousands of terms to describe the concepts in a specific domain and are used as efficient means for
consistent indexing and retrieval of information [90].

Our idea was to produce rich portal schemas by the integration of ontologies and thesauri [18]
which can be considered as orthogonal ways for describing information. The former provide struc-
tural, sharable views of information, with usually shallow semantics. They are declarative specifica-
tions of the concepts and roles in a domain of discourse. Thesauri are structured vocabularies, with
rich semantics but little or no structure. For example, although the Art & Architecture Thesaurus
includes extended taxonomies of cultural artifacts and styles, there is no explicit relationship ex-
pressing that artifacts are associated with a style. In the context of our approach, ontologies have
a dual role : provide a generic view of information and a structural interface over thesauri.

As mentioned before, portal schemas can be used as metadata schemas for the controlled gener-
ation of content specific metadata. In this thesis we show how ontologies enriched with thesauri are

8 CHAPTER 1. INTRODUCTION

very useful for the creation of such metadata and we propose a resource description language [19]
for this task.

We have implemented a research prototype to validate our approach for the development of rich
metadata schemas [176] where we followed an object-oriented approach using the OODBMS O [91]
for storing the resulting schema, and the source metadata. These descriptions are then queried
using OQL [53], the standard language for querying object-oriented databases.

Our approach has been validated by the European research project C-Web (Community Webs) [50,
62| and by a national contract between the French Ministry of Culture [66] and the Conservatoire
National des Arts et Métiers in Paris [209].

The purpose of the C-Web project was to support specific communities (e.g. in commerce,
education, culture, health sectors) that share formalized knowledge in form of an ontology and
information sources (like documents or data sources). In order to support Web communities, C-
Web offers a number of functionalities : (i) the creation of conceptual schemas, (ii) the publication of
metadata for community resources and (iii) the querying of information sources using the available
metadata.

The basic objective of the contract between the CNAM and the French Ministry of culture was
to create a portal for the different services of the ministry. In a first step we collaborated with people
from the different services to define an ontology that would capture the basic notions in the domain
of discourse. The second task was to create a rich portal schema by integrating the ontology with
the available thesauri following our approach. Last, the resulting schema was used to record content
descriptive metadata for the digital documents of two services within the divisions of “Patrimoine
et Archéologie”. The result of this collaboration was the ELIOT cultural portal [176].

1.2.2 STyX : Ontology-based Integration of XML Web resources

In the context of the Semantic Web, we propose a new approach for the integration of heterogeneous
and autonomous XML resources in a Web community, based on the mediator-wrapper architec-
ture and following the local as view approach which is validated by the STyX prototype [92]. To
summarize, the contributions of this thesis in the area of XML data integration are :

Ontology-based Mediation : Most of the integration systems dealing with the integration of
XML data which follow the local as view approach use either a relational schema or an XML DTD
as the mediator schema. In contrast, we use an ontology-based mediator [15] and we shall argue
why this approach better responds to the challenges set by the Semantic Web. The ontology is
defined independently of the actual source structures and contains the basic notions in the domain
of interest. Concepts in the ontology are used to represent entities, symmetric binary roles between
concepts describe semantic relationships between entities and finally attributes represent the entities’
properties. Finally, concepts can be related by inheritance relationships which, as in traditional
object oriented models, represent commonality of structures.

Mapping Language : Mapping rules that associate XPath [52] location paths to ontology paths [17,
16] are used to publish XML resources in STyX. Mapping rules allow one to describe an XML re-
source as a view of the global schema, as done in the local as view approach, independently of the
other sources. The major benefit of this approach is that any modification of a source does not
affect neither the mediator, nor the descriptions of the other sources.

The use of ontology paths in the mapping rules, allows one to describe source structures which
cannot be directly mapped to the ontology. This need arises from the nature of the ontology which is

1.3. ORGANISATION OF THE DOCUMENT 9

defined independently of the structure of the sources and contains concepts which are not necessarily
represented in a source.

The use of XPath location paths to describe the XML source structure was dictated by the fol-

lowing reason : when this work started, there existed a limited number of XML resources available
on the Web. These resources were basically XML documents stored in some Web server and the
only way to access them was by their URL. Hence, these sources were not able to evaluate queries
expressed in some full fledged XML query language. But, existing software can be installed very
easily on top of Web servers and used to evaluate simple XPath expressions.
Moreover, XPath is the standard for addressing XML data and is used in a number of XML query lan-
guages (XQuery [44], XQL [71], Quilt [45] among others) and XML related technologies (XSLT [82],
XPointer [186] etc.). More specifically, XPath is extensively used by XQuery which, hopefully, will
be the standard XML query language. Because of its expressive power and its simplicity w.r.t. more
complex languages, XPath as not only as a language for adressing XML document parts but also
as a query language, is expected to last for a significant time.

Query Evaluation : The user queries the information sources using simple tree queries formulated
in terms of the ontology.

To obtain answers to a query, this must be evaluated against all sources that might contain
all or part of the information requested. To evaluate a query over an XML resource, this must be
rewritten into an XML query (e.g. XQuery) expressed in terms of the local source’s schema. During
this rewriting, the mapping rules that provide answers to the query are selected. It might be the
case, that when attempting the rewriting of a query for a source, full answers from the source are
not obtained (i.e. the source does not give answers to all the query variables). In this case, in
contrast to [55] we attempt to complete these partial answers by decomposing the query. The result
of this decomposition is (i) the query that the source can answer and (ii) a set of subqueries that
can be possibly answered by the other sources. The partial answers obtained from the sources are
then joined at the mediator site.

Using the mapping rules selected by the rewriting process, the user query is rewritten into an
XML query expressed in terms of the local source’s schema.

To perform the joins between the partial results we need a way to identify the XML fragments
obtained by the sources. Another contribution of our work consists in the definition of keys. We in-
troduce two different types of keys : local keys which are used to decide whether two XML fragments
correspond to the same XML fragment and global or semantic keys which are used to identify XML
fragments that originate from different or the same source. Most of the data integration projects use
either persistent object identifiers [149], or identifiers created using Skolem functions [20, 170, 54].
Both approaches are based on the assumption that information sources have some common way to
identify their objects and do not consider the case where this is not true. In contrast, our approach
on introducing global keys at the ontology level which are defined independently of the sources
supports a common way of object identification.

1.3 Organisation of the document

This thesis is organized as follows :

Chapter 2 is a state of the art on ontologies as well as web data integration issues. First, the
notion of ontologies as encountered in computer science and more specifically in the field of knowledge
engineering and issues related to ontologies such as ontology representation languages, classification
and examples of ontologies are presented. Second, metadata related issues are discussed such as the

10 CHAPTER 1. INTRODUCTION

state of the art metadata representation languages : RDF [133], DAML+OIL [59] and XML Topic
Maps [166]. This part of the chapter is concluded with a discussion on HTML document annotation
systems which can be considered as one of the first approaches for specifying the semantics of
HTML documents by means of annotations which can be considered as a kind of content descriptive
metadata.

In the second part of the chapter issues related to Web data integration are presented. We first
discuss informally the local and global as view approaches and then describe a number of systems
that follow these approaches by examining their (i) data model, (ii) query language, (iii) source
description language and (iv) query rewriting algorithms.

Chapter 3 describes our contribution related to the construction of portal schemas by integration
of existing ontologies and thesauri. The notions of ontologies and thesauri are formally presented
and then we illustrate in detail how a portal schema can be built out of these structures. The
resulting portal schemas are language independent and can be represented in different ways. We
first illustrate a simple translation to RDF schemas [179], a standard language for the definition of
metadata schemas. Then we discuss different translations into an object oriented model and their
efficiency w.r.t. query processing. The chapter is concluded by the presentation of the ELIOT [176]
Web portal developed in the context of a National contract between the French Ministry of Culture
and the Conservatoire National des Arts et Métiers.

Chapter 4 discusses our contribution for the querying and integration of heterogeneous XML
resources using an ontology-based mediator. We first define the S73X mediator model and mapping
language. Then we present (i) the STyX query language, (ii) the query rewriting and query decom-
position algorithms and (iii) the generation of query execution plans. The chapter is concluded by a
discussion on the choices for the STyX global schema and mapping language and by a presentation
of the STyX prototype which implements our approach.

Finally Chapter 5 summarizes the work of this thesis and presents some interesting research
directions for future work.

Chapter 2

Semantic Data Integration

During the last decade, the Web has become the basic infrastructure for a large number of human
communications and information-based activities. Web data comes from different organizations,
communities and individuals, and covers a huge and diverse spectrum of interests. The principle
of the Web is that information is exchanged in the form of files, that are uniquely identified by a
Uniform Resource Locator (URL). Web data is mostly encoded using the HTML (Hypertext Markup
Language), which is the lingua franca for publishing hypertext information on the Web.

Users issue keyword-based queries to search engines such as Google [99], Altavista [14] and
Yahoo [223] to discover pages of interest. The results of these searches are lists of URLs of Web
pages which contain the set or a subset of the query keywords. From this set of pages the user must
look at each of them to find the page that contains the information she looks for.

A first attempt to better organize Web data in order to access it in more meaningful ways, is the
recording of descriptive information in the form of metadata [190]. Metadata can describe either
the content or administrative information about actual data. Metadata vocabularies have been used
for (i) the creation of metadata for digital information sources and (ii) resource discovery. Whereas
metadata based systems can be used for resource discovery they do not support the querying of the
source contents. This is the purpose of data integration systems which allow their users to query
autonomous and heterogeneous information sources like a single source with a unique schema and
query interface.

The common component in resource discovery and data integration systems is the use of a
single schema of the underlying sources. In the former this is provided by a metadata vocabulary
and in the latter by a mediated or global schema. Ontologies, which capture the basic notions of a
domain of interest and are developed independently of the source structures by domain specialists
and knowledge engineers, can be used for both purposes.

In this chapter issues related to ontologies and thesauri are presented (Section 2.1). More specifi-
cally, we discuss the notion of ontology and how an ontology can be used to resolve the different kinds
of heterogeneities encountered in digital information sources. We also give Guarino’s classification
of ontologies and describe the notion of thesauri (Section 2.1.2). Examples of ontologies are also
given and the most important ontology representation languages are discussed. Metadata related is-
sues are presented in Section 2.2 including some representative metadata languages (RDF [30, 133],
DAML+OIL [59] and XML Topic Maps [166]).

Web data integration systems are discussed in Section 2.3. First we present the general idea
behind data integration systems, and show how the dimension of the Web affects their architecture.
Then, the two basic approaches for describing the source contents to the system are illustrated :
the local as view and the global as view approaches. The most important systems that follow these

11

12 CHAPTER 2. SEMANTIC DATA INTEGRATION

approaches are presented in Sections 2.4 and 2.5. For each of the systems we examine (i) its data
model, (ii) the language used for the source descriptions and (iii) the query rewriting algorithms.

2.1 Ontologies and Thesauri

2.1.1 Ontologies

The term ontology was first introduced as a “philosophical discipline, a branch of philosophy that
deals with the nature and the organization of reality”. It was presented by Aristotle in his work
about Metaphysics as the science of being which tries to answer the following questions such as
“what is being” and “what are the features common to all beings?”.

In the computer science field, the term ontology refers to an engineering artifact which :

e is constituted by a specific vocabulary used to describe a certain reality (i.e. domain of
interest);

e and a set of explicit assumptions regarding the intended meaning of the vocabulary.

Ontologies are formal specifications of a specific domain and provide a shared understanding of
the domain. According to Gruber [101] an ontology is “an explicit specification of a conceptualization”
whereas Uschold and Gruninger [206] define an ontology as a “shared understanding of some domain
of interest”.

In the context of our work, an ontology captures the basic notions in a domain of interest :
entities, semantic relationships between entities and properties of entities. The term concept is used
to denote the entity types in the domain of discourse. The New Oxford Dictionary of English gives
the following definition for the term concept :

“An idea or thought that corresponds to some distinct entity or class of entities, or to its essential
features, or determines the application of a term, and thus plays a part in the use of reason or
language.”

The notion of concept as it is presented in Description Logic languages, accounts to a set or a
class of individual objects [165]. In Artificial Intelligence the notion of frame and in Object Oriented
paradigm the notion of class are similar to that of a concept.

A tremendous amount of work has been done recently concerning the use of ontologies as the
basic means to resolve the semantic heterogeneities between data originating from different sources.
Semantic heterogeneities fall into the broader category of logical heterogeneities [119]. This term is
used to denote the semantic, schematic and last structural heterogeneities between the sources.

Semantic Heterogeneities concern the semantics of data and schema. Semantics of data is de-
fined by Wood in [219] as the “the meaning and the use of data”. For example, a database
schema consists of constructs (e.g. relations/classes, attributes) which have a name denoting
the real world concepts and relationships. For example, for the same concept, different appli-
cations might use different names : they may both talk about persons, but one refers to this
concept using the name “Person” while the other uses the name “Human”. This is the case of
synonyms. On the other hand, the same name can refer to two different concepts (homonyms).

Schematic Heterogeneities refer to the different encoding of the same concept in different appli-
cations or database schemas. For example, in a relational source, a concept can be recorded

2.1. ONTOLOGIES AND THESAURI 13

as a relation, an attribute, or an attribute value. In the XML context, a concept can be
represented as an element an attribute, or an attribute value.

Structural Heterogeneities arise when the same concept is represented in the same data model
by different structures. For example, two relational applications might model the concept of
person using the relation Person but associating different attributes with it.

The above types of heterogeneities lead to poor communication between users and systems. Peo-
ple, organizations and software systems associated with a specific domain of interest communicate
between them using an ontology which has well established semantics, is defined independently of
the underlying structures and is agreed by the members of the community.

In some broader sense, ontologies (of all kinds) can be used not only for describing the exact
structure of information sources in order to resolve the semantic heterogeneities between them, but
also to represent metadata. In the Web context, ontologies are used to exchange metadata between
digital information resources. Ontologies in this case are called metadata vocabularies. Metadata
related issues are presented in Section 2.2.

There are a number of different ways of describing, using and organizing ontologies. We present
here the classification proposed by Guarino in [104] concerning the use of ontologies :

o Top-level ontologies describe very general concepts such as space, time, event which are inde-
pendent of a particular problem or domain. If we are concerned with large communities of
users interested in a variety of domains it is necessary to have such wide-spread ontologies.

e Domain ontologies are specializations of top-level ontologies. They describe a vocabulary re-
lated to a domain of interest by specializing the concepts introduced by the top-level ontology.

o Tusk ontologies are specializations of top-level ontologies. They describe the vocabulary related
to a generic task or activity by specializing the top-level ontology concepts.

o Application ontologies are the most specific ones. The concepts introduced here correspond
to entities associated with a specific domain of interest and with a specific activity.

Examples of top-level ontologies are Wordnet [161, 220], the Upper CYC Ontology [63] and
the IEEE Standard Upper Ontology [205]. WordNet falls into a specific class of ontologies, called
lexical semantic networks. Its scope goes beyond the scope of an application or a task and covers
an extensive set of lexico-semantic categories or synsets as they are usually referred to. A word
in Wordnet is associated with a meaning, and belongs to a synset. A synset organizes words that
have similar meanings. Words belonging to a synset are also characterized with a syntactical form :
adjective, adverb, verb and so on.

Synsets are organized using predefined semantic relationships : synonymy, antonymy, hyponymy,
meronymy [162]. According to Oxford’s dictionary, “two words are synonymous, if they have the
same meaning in the same language, though perhaps with a different style, grammar or technical
use”. For example the words ’kill’ and 'murder’ are synonymous. On the other hand, “two words
are antonyms if they have opposite meanings” : words ’old’ and 'new’ are antonyms. Hyponymy is
a relationship that organizes synsets into hierarchies. The higher a synset is found in a hierarchy,
the more general is the meaning of the words that belong to the synset. Finally, meronymy is the
relationship used to represent part-whole relationships (e.g. the ’cardio-vascular system’ is part of
the ’circulatory system’).

14 CHAPTER 2. SEMANTIC DATA INTEGRATION

Another example of a top level ontology is the Upper CYC ontology which is a formalized
representation of a “wast quantity of fundamental human knowledge” and contains about 10° gen-
eral concepts and 108 assertions on these concepts. Its scope is not restricted to any domain or
application and is used to represent knowledge in a large number of domains.

Examples of domain and application-specific ontologies are the UMLS [204], Dublin Core [79]
and the KA2 Ontology [116]. The UMLS (Unified Modeling Language System) contains a number
of knowledge sources : (i) a metathesaurus which contains 730.000 concepts of the medical domain
(ii) a lexicon which provides synonyms, lexical variants and grammatical forms of words appearing
in the meta-thesaurus and (iii) a semantic network that encodes the relationships such as cause,
symptom between medical terms.

Dublin Core is a simple ontology for recording administrative data about digital documents and
is presented in Section 2.2. Finally, the KA2 ontology models the basic concepts in the knowledge
acquisition domain (like researchers, topics, products etc.).

2.1.2 Thesauri

Thesauri contain several hundreds or thousands of terms often associated with a specific domain
of interest and can be classified as application ontologies. They are used as efficient means for
consistent indezing and retrieval of information [90] and as data value standards from the point of
documentation or cataloging. In this context they can be considered as a controlled vocabulary or
an authority [74]|. They can also be used as assisting tools in database retrieval systems [169].

A thesaurus according to [114] is a “structured set of controlled terms. Terms are selected from
natural language and used to represent, in summary form, the subjects of documents”. A term is
controlled if it is considered by the experts in the domain as an unambiguous term to name a real
world concept. Terms in the thesaurus are organized using a priori defined relationships. Examples
of such relationships are broader/narrower and related term relationships.

A tremendous amount of work has been done for the development of thesauri in a number of
different domains. For example, for the cultural domain there exist (among others) the Art &
Architecture [194, 2] and the ULAN [203] thesauri from the Getty Institute, the MERIMEE [156]
thesaurus of the French Ministry of Culture and the RCHME [178] thesaurus of the Royal Commis-
sion of Historical Monuments of England. The scope of the first one is art, architecture, decorative
arts, material culture and archival materials. It contains 120.000 terms and its coverage ranges from
antiquity to the present. The second contains an extended list of artist names (220.000 names), or
corporate bodies (i.e. groups of people working together to create an artifact).

Thesaurus Structure Thesaurus terms are considered as the “representation of concepts in
the form of a noun or a noun phrase” [114]. Concepts are perceived by thesaurus developers as
referring collectively to a set of objects (concept instances) [158| that are considered as such not with
respect to a formal classification process but through a common agreement. Under this perspective,
the interpretation of a thesaurus term is a set of concept instances, which is called the extension of
the term. Thesauri include a fixed set of semantic, a priori defined, term relationships. Due to the set
theoretic definition of terms, a subset of these relationships can be interpreted as relations between
sets [115, 193, 76]. A thesaurus allows terms that are associated with a subject to be regrouped
into hierarchies which are cross-referenced with other groups of terms that can be relevant to this
subject.

Thesauri can be monolingual or multilingual. In the first case, terms originate from a single
language and in the second, terms originate from different languages. In this work we consider only

2.1. ONTOLOGIES AND THESAURI 15

monolingual thesauri defined according to the ISO 2788 standard [114] for the documentation and
establishment of such thesauri.

The ISO 2788 standard distinguishes between preferred and non-preferred terms. A preferred
term is used unambiguously to represent a given concept. This term is also referred to as a descriptor
and is considered to be the lexical identifier of the concept. From this point on, and for thesauri
we use interchangeably the words descriptor and concept. A thesaurus might contain descriptors

PAAY PP s

denoting concrete concepts (“paintings”, “sculptures”, “clay”), abstract concepts (“impressionism”, “oil
on canvas”), disciplines or sciences (“archeology”, “mathematics”), units of measurement and finally
individual entities (“Holland”, “Vincent Van Gogh”).

Non-preferred terms are synonyms (or quasi-synonyms) of descriptors. Although such a term
can be assigned to a document, it cannot be used as an entry point neither to a thesaurus nor to
an alphabetical index.

In the majority of thesauri, each descriptor is identified by a record. A record is associated with
a unique ID. For each descriptor, there is a note in natural language explaining its scope. It is also
associated with a list of non-preferred terms (synonyms) that can be used as its alternatives when
querying. A descriptor can also have related descriptors which have same or overlapping meanings.

Relationships between thesaurus terms are represented by the ISO 2788 standard hierarchical,
equivalence and associative intrathesaurus relationships.

Hierarchical relationships : This is the basic type of thesaurus relationships which distinguishes
a systematic thesaurus from an unstructured list of terms (such as a glossary or a vocabulary).
Hierarchical relationships include the generic, whole-part and instance relationships.

The generic relationship (called broader term generic), denoted by btg, is the generalization
relationship between concepts. For example this relationship records the fact that “painting”
is a “work of art”. The inverse of the btg relationship is narrower-term generic, denoted by
ntg. The majority of thesauri are constructed using the broader-term generic btg relationship.

The whole-part relationship (called broader-term partitive) is denoted by btp. This relationship
designates that a concept is part of another. It covers a limited range of situations where the
name of a part implies the name of its whole in some context. This relationship allows to
represent facts such as for example that the “cardio-vascular system” is part of the “circulatory
system”. Last, the instance relationship (called broader instance) is denoted by bt. It identifies
a link between a general category of things or events expressed by a common noun and an
individual instance of this category. For example, this relationship is used to describe the fact
that “Vincent Van Gogh” is a “painter”.

Relationships of this kind are only used to connect descriptors. Since each descriptor is
the lexical counterpart of a concept, and the latter is associated with instances, the above
relationships have well defined semantics.

Equivalence Relationship : The use relationship is used to associate a descriptor to one or more
non-preferred terms. Its inverse is the uf (used-for relationship). Both relationships do not
have well defined semantics. A non-preferred term does not denote a concept but is seen
as a lexical alternative of the descriptor denoting the concept, hence it has no set-theoretic
interpretation.

Associative Relationship : It is used to record relationships between descriptors that can neither
be considered as equivalent, nor be associated by one of the previously mentioned hierarchical
relationships. This relationship, called related-term relationship, is denoted by rt and is re-
flexive. Usually the descriptors associated with such a relationship, denote concepts that have

16 CHAPTER 2. SEMANTIC DATA INTEGRATION

overlapping meanings. Related descriptors are associated to such an extent that the explicit
representation of their relation would reveal alternative descriptors that are used for indexing.
In information retrieval, this relationship is used to broaden the result set of a user query. It
does not have well defined semantics but it is very common in monolingual thesauri. More
specifically, it is used to denote associations between descriptors belonging to a) the same
category (i.e. concepts with overlapping meanings, such as boats and ships) or b) different
categories (i.e. terms referring to different conceptual types), such as computer systems and
data processing).

2.1.3 Ontology Representation Languages

There are a number of proposals for ontology representation languages. According to Gruber [101]
knowledge in ontologies can be formalized using five different kinds of components: concepts, rela-
tions, functions, arioms and instances. Nevertheless, not all languages support all five constructs.

Description Logics Description Logic languages [27, 77] is a family of languages suitable to rep-
resent a large class of ontologies. They distinguish between class and instance definitions. They
support the definition of concepts and roles which stand for concept attributes and properties. De-
scription Logic languages provide a set of constructors (such as ezistential/universal quantification,
conjunction and disjunction of concepts, number restrictions on roles, and concept inclusion) to de-
fine more complex concepts (known as concept expressions). These constructors allow the definition
of tazonomies of concepts and roles. The power of Description Logic languages is the possibility to
define assertions for concepts and roles, as well as assertions for instances. They provide mecha-
nisms to reason on whether a concept or role expression is coherent, subsumes, is disjoint from, or
equivalent to another concept or role expression [21].

OIL OIL [85] is based on standard frame-based languages and its formalization is done through
Description Logic style logical formulas. It allows the definition of classes, properties of classes and
class hierarchies. For example, consider the definition for class Person appearing below.

1. class-def Person

2. subclass-of Actor

slot-constraint has_name
has-value String
max-cardinality 1

slot born

NS Ot w

has-value Event or Date

Class Person is defined as a subclass of class Actor (an actor can be a person, an organization
etc.) (line 2). It has two properties : has_name and born (lines 3 and 6). The former takes its
values in type String (line 4). It is also associated with the cardinality constraint maz-cardinality
(line 5) which states that a person can have at most one name. The latter takes its values in either
class Event or class Date (line 7). OIL allows also to define that a class is disjoint or is not a
subclass of another. For example, the following definition states that a person is not a subclass of
Man Made Object.

class-def Person
subclass-of not Man Made Object

2.2. METADATA 17

F-Logic F-Logic [122] is a language that inherits notions from Object Oriented languages, Horn
Logic and Deductive Databases. In F-Logic one can define objects and methods. Objects are referred
to by unambiguous names, and have an identity that is independent of their values (as is the case
in object oriented models). Methods allow the definition of relations between objects.

F-Logic statements express facts about objects (instances). For example, one can state that
object 'Van Gogh’ created objects ’Starry Night’ and "Vincent’s room at Arles’ by the following
statement :

Van Goghl[created ->> { Starry Night, Vincent’s room at Arles }]

F-Logic allows one to define classes, and relationships between classes. For example one could
define that the relationship created is defined between the classes Person and Man_Made_Object
by the following expression :

Person[created => Man_Made_Object]

It is possible to express in F-Logic that a class is a subclass of another. The expression
Person: :Actor states that class Person is a subclass of Actor.

F-Logic also supports the declaration of instances of classes : for example one can write that
"Van Gogh’ is a person, or that ’Starry Night’ is a man made object by the following expressions :

’Van Gogh’::Person, ’Starry Night’::Man_Made_0Object

Finally, F-Logic supports the specification of rules which allow one to derive facts (assertions)
from existing facts. For example, one could express the fact that if a person z is a father of a person
y, then z is an ancestor of y :

FORALL z,y z[ancestor— >>y| «+ z[father— > y]

One can query an F-Logic knowledge base by gqueries which are rules with an empty head. For
example, if someone looks for “the paintings created by Van Gogh”, one can write the expression :

FORALL y < Van Gogh|created— >> y :: Painting]

Notice here that variable y is restricted to be an instance of class Painting and not an object in
general.

The advantages of F-Logic is that it has an expressive mechanism for reasoning with instances.
Its object oriented view allows a good interaction with object oriented and relational systems.

2.2 Metadata

In the context of the Web, digital information sources are developed in an autonomous way. This
autonomicity results in information sources which are highly heterogeneous in structure, interfaces
and semantics.

To achieve interoperability between information sources, the approach of metadata has been
introduced. Metadata are classified according to [189] into :

e content independent metadata which capture information such as the author, creation/modification
date of the document (administrative metadata), the technical access mechanisms (communi-
cation protocols, source query capabilities etc.), the quality of the source (such as the relia-
bility, update-frequency etc.) and user profiles.

18 CHAPTER 2. SEMANTIC DATA INTEGRATION

e content dependent metadata which represent the content of information sources. These meta-
data are classified into :

1. logical metadata such as the data dictionaries of relational database management systems,
data guides of semi-structured data sources, or class diagrams in object-oriented database
systems.

2. semantic metadata : They describe the semantics of data, independent of any schema.
This kind of metadata does not consider the data model of the source. Ontologies can
be used to record semantic metadata about digital sources.

Metadata can support a number of functions such as information location and discovery and
documentation of data. A great amount of effort has been invested in the development of metadata
vocabularies for the exchange of information across different applications and domains.

The Dublin Core [212] ontology is a metadata vocabulary used to record administrative and seman-
tic metadata about digital information resources. It consists of a common set of elements which
can be used to describe in a consistent manner administrative and semantic metadata. Examples
of elements in the Dublin Core element set are title, creator, publisher and subject. These elements
are used to describe basically the administrative data about a document. Only the subject element
is used to describe information about its actual content. Nevertheless, this element by itself cannot
be considered as a sufficient way to model the semantic metadata of a document.

Another metadata vocabulary is the Warwick framework [130] which proposes a container record
architecture comprising more and different types of metadata elements than those proposed by the
Dublin Core. For example, elements specifying the terms and the conditions of the document’s use,
security information, authenticity, signatures. Another example of a domain independent meta-
data vocabulary is RSS (RDF Site Summary) [185] which is a lightweight multipurpose extensible
metadata description and syndication format.

The above vocabularies are general purpose and their focus is mostly on describing the docu-
ment’s administrative data. Another example of domain or application dependent metadata vocab-
ularies is USMARC [207] which is issued by the Library of Congress and defines a set of descriptive
elements for the exchange of bibliographic items. In the cultural domain, the Aquarelle project [159]
uses the SGML CI DTD of the French Ministry of Culture to describe a set of element names, ded-
icated to territory inventory making. Last the RETSINA [181] ontology provides interoperability
between RDF based calendar descriptions on the Web and can be used in Personal Information
Management Systems such as Microsoft Outlook.

2.2.1 Metadata languages

During the last years there has been number of formalisms developed for representing metadata
vocabularies. Ontology languages can also be used to represent metadata schemas. The former
come basically from Knowledge Representation and more specifically Description Logic languages.
Metadata languages share several features with ontology representation languages but they are used
for the representation and exchange of Web data.

PICS One of the first standards for describing metadata for Web resources is PICS (Platform
for Internet Content Selection) [173] which consists of a set of specifications which enable people
to distribute metadata about the content of digital material in the form of labels. It was originally

2.2. METADATA 19

1. <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

2. <rdf :Description about=
"http://metalab.unc.edu/louvre/paint/monet/first/impression">

3 <title>Web Museum: Monet, Claude: Impression: soleil levant</title>

4 <presents>

5. <rdf:Description about="soleil_levant'">

6. <type>oil painting</type>

7 <title>Impression : soleil levant<title>

8 <style>impressionism<style>

9. <period>first-impressionism<period>

10. </rdf :Description>

11. </presents>

12. <creator>Nicolas Pioch<creator>

13. </rdf:Description>
14. </rdf:RDF>

Figure 2.1: An RDF description for resource http://metalab.unc.edu/louvre/paint/monet/-
first/impression.

introduced to screen out materials unsuitable for children on the Internet. PICS led to the develop-
ment of the Resource Description Framework (RDF) [179, 29| which is a foundation for processing
metadata.

RDF Syntax and RDF Schema RDF can be used to describe any kind of resource [133] that
is identified by a URI (Uniform Resource Identifier), such as a Web server, an XML document or
an element of an HTML page (e.g. an image). RDF supports the definition of resource properties
whose values can be other resources or literals (strings, integers). A collection of property/value
pairs that refers to a specific resource is called an RDF description and can be represented as a
labeled directed graph where nodes correspond to resources or literals (values) and edges to resource
properties. RDF descriptions can be defined independently of any RDF schema.

Consider for example the RDF description about a painting of the French painter Claude Monet
shown in Figure 2.1. Line 2 tells us that the description that follows concerns the HTML page which
can be accessed by the URL http://metalab.unc.edu/louvre/paint/monet/first/impression/.
The title of this page is “Web Museum: Monet, Claude : Impression : soleil levant ” (line 3) and has
been created by Nicolas Pioch (line 12). To describe properties of the painting, it is necessary to
define a local resource which is identified by URI soleil_levant that refers to the painting (line 5).
The painting’s properties are its type (0il painting, line 6), title (Impression : soleil levant,
line 7), style (impressionism, line 8) and period (first-impressionism, line 9). The properties of
the resources defined for the web page and the painting are specified independently of some schema.
Nevertheless, RDF gives the possibility to use and to distinguish among different RDF schemas used
in RDF descriptions using the XML namespace mechanism. Figure 2.2 shows the RDF description
illustrated in Figure 2.1 : lines 2 and 3 define two prefixes where the first (web-page) contains
general properties of HTML pages (e.g. title, presents, creator) and the second (artifact)
specifies properties of cultural artifacts (e.g. title, style, type, period). In Figure 2.2, the
declarations <?xml:namespace ns = ... > is used to define these prefixes. This mechanism is
very important since it permits the reuse of existing, distinct RDF schemas within the same RDF

20 CHAPTER 2. SEMANTIC DATA INTEGRATION

1. <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

2 xmlns:web-page ="http://metalab.unc.edu/louvre/namespaces/web-pages"

3. xmlns:artifact ="http://metalab.unc.edu/louvre/namespaces/artifacts">

4. <rdf:Description
about="http://metalab.unc.edu/louvre/paint/monet/first/impression'>

5. <web-page:title>Web Museum: Monet, Claude: Impression: soleil levant
</web-page:title>

6 <web-page:presents>

7 <rdf :Description about="soleil_levant">

8. <artifact:type>oil painting</artifact:type>

9. <artifact:title>Impression : soleil levant</artifact:title>

10. <artifact:style>impressionism</artifact:style>

11. <artifact:period>first-impressionism</artifact:period>

12. </rdf :Description>

13. </web-page:presents>

14. <web-page:creator>Nicolas Pioch</web-page:creator>

16. </rdf:Description>
16. </rdf:RDF>

Figure 2.2: An RDF description for resource http://metalab.unc.edu/louvre/paint/monet/-
first/impression.

description, without creating naming conflicts (e.g. web-page:title, artifact:title).

RDF Schema Specification Language The RDF Schema Specification Language [30] is a
declarative language used for the definition of RDF schemas' incorporating aspects from knowl-
edge representation models (e.g. semantic nets), database schema definition languages and graph
models. It is a simple language of restricted expressive power compared to predicate calculus based
specification languages such as CycL [134] and KIF [121].

An RDF schema defines classes and properties which can be instantiated in RDF descriptions.
More specifically, an RDF schema is comprised of (1) a vocabulary, i.e. a set of class and property
names to describe information in a domain, and (2) a set of semantic relationships to structure this
information.

Classes are organized in hierarchies using the property subclass0f which which has the standard
semantics of inheritance relationships in object oriented data models. This relationship is denoted
in the document using the prefizr rdfs which is associated with the URL http://www.w3.org/-
1999/02/22-rdf-syntax-ns. For example, the RDF schema illustrated in Figure 2.3 defines class
Man Made Object (line 4) and its subclass Iconographic Object (line 5). It also defines classes
Style (line 7) and Period (line 8).

RDF Schema allows both typed and untyped properties. Properties in our example are typed
(i.e. they have a restricted domain and range). In Figure 2.3, property period (line 15) is defined
between classes Man Made Object (line 16) and Period (line 17), using the RDF Schema properties
rdfs:domain and rdfs:range respectively.

Summarizing, RDF offers a rich, comparatively simple, graph-based data model and supports the
definition of source specific metadata (RDF descriptions) and metadata schemas (RDF schemas).

n the following, RDF Schema will denote the specification language used to define RDF schemas.

2.2. METADATA 21

1. <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

2 xmlns:rdfs="http://www.w3.0rg/TR/1999/PR-rdf-schema-19990303#"

3 xmlns:artifact="">

4 <rdfs:Class rdf:ID="Man Made Object"></rdfs:Class>

5. <rdfs:Class rdf:ID="Iconographic Object">

6 <rdfs:subclass0f rdf:resource="#Man Made Object"/></rdfs:Class>
7 <rdfs:Class rdf:ID="Style"></rdfs:Class>

8 <rdfs:Class rdf:ID="Period"></rdfs:Class>

9 <rdf :Property rdf:ID="style">

10. <rdfs:domain rdf:resource="#Iconographic Object"/>

11. <rdfs:range rdf:resource="#Style"/> </rdf:Property>

12. <rdf:Property ID="title">

13. <rdfs:domain rdf:resource="#Man Made Object"/>

14. <rdfs:range rdf:resource="#rdfs:Literal"/></rdf:Property>
15. <rdf:Property rdf:ID="period">

16. <rdfs:domain rdf:resource="#Man Made Object"/>

17. <rdfs:range rdf:resource="#Period"/></rdf:Property>

18. </rdf:RDF>

Figure 2.3: An RDF schema for describing cultural resources.

It uses XML for the syntactical representation, exchange, and processing of these metadata.

RDF syntax = XML As already mentioned, RDF uses XML [4] as its syntax, to communi-
cate and process metadata. Metadata communicated between different sources have been defined by
different user communities (authorities), and consequently reflect their understanding of the seman-
tics for a given domain or application. Under this perspective, each authority can associate different
semantics to the same name used (term or word) in the metadata schema, or use different names
to denote the same semantics, giving rise to naming conflicts [190] (e.g. homonyms, synonyms).
RDF uses the XML namespace mechanism [164|, which provides a method to distinguish among
the different metadata schemas used in source descriptions.

RDF Systems There are a number of systems that deal with the management of RDF data
and schemas. One of the most important works in the domain is RDFSuite [180]. The major
contributions of this work is the implementation of RDF storage and querying on top of an object-
relational DBMS (PostgreSQL). This project is the first to propose an RDF validator and loader
(VRP) [13], an RDF description base and a query language interpreter RQL [118]. The basic
contribution of RQL is that one is able to query both RDF instances (descriptions) and RDF
schemas.

Another system is SiLRI [67] which is based on F-logic. Its purpose is the manipulation of
RDF descriptions and schemas. In an opposite direction to SiLRI, Metalog [152] uses Datalog to
model RDF statements as binary predicates. The last two approaches consider standard logic-
based frameworks which are not particularly suited to capture the semi-structure nature of RDF
descriptions. The RDF query language proposed by IBM [148] follows a different approach where
RDF descriptions are considered as XML documents. The issue is that RDF descriptions are labeled
graphs with labels on the nodes as well as on the edges which cannot be translated into XML without

22 CHAPTER 2. SEMANTIC DATA INTEGRATION

loss of semantics.

DAML-+OIL DAML+OIL [59] is an expressive language for the definition of metadata vocabu-
laries. It builds on W3C Standards such as RDF and RDFS and extends these languages with much
richer modeling primitives. It inherits many aspects from OIL and provides mechanisms which are
common to frame-based languages.

Similar to object oriented data models, where the universe of discourse is divided into objects and
atomic values, DAML+OIL introduces the object and the datatype domains. The object domain
consists of instances of classes, and the datatype domain consists of values that belong to XML
Schema datatypes.

DAML+OIL Classes DAML+OIL supports the expression of constraints that are much
more powerful than those expressed in the RDF Schema Specification Language [30]. First of all,
it defines a new subclass of rdfs:Class, daml:Class. A daml:Class class can have more than one
superclasses, and can be declared as disjoint from another class :

<daml:Class rdf:ID="Painting">
<rdfs:subClass0f rdf:resource="#Man_Made_Object"/>
<rdfs:subClassO0f rdf:resource="#Iconographic_Dbject"/>
<daml:disjointWith rdf:resource="#Sculpture"/>
</rdfs:Class>

DAML+OIL allows the definition of classes as the union, disjoint union and intersection of other
DAML+OIL classes (similar to concept expressions in Description Logic languages). For example,
one can define that class Person is the disjoint union of classes Male, and Female.

<daml:Class rdf:ID="Person">
<daml:disjointUnionOf>
<daml:Class rdf:resource="#Male"/>
<daml:Class rdf:resource="#Female"/>
</daml:disjointUnionOf>
</daml:Class>

A class can also be defined as an intersection of classes using the <daml:intersectionOf>
construct.

DAML-+OIL Properties DAML distinguishes between object and data type properties.

<daml:0ObjectProperty rdf:ID="period">
<rdfs:domain rdf:resource="#Man_Made_Object"/>
<rdfs:range rdf:resource="#Period"/>
</daml:0bjectProperty>

<daml:DatatypeProperty rdf:ID="has_title">

<rdfs:domain rdf:resource="#Man_Made_Object"/>

<rdfs:range rdf:resource="http://www.w3.0rg/2001/10/XMLSchema/#string"/>
</daml:DatatypeProperty>

2.2. METADATA 23

The previous example defines two properties. Object property period, whose domain is class
Man_Made_0Object and range class Period. Datatype property has_title is defined in class Man_-
Made_0Object and takes its values in the XML Schema data type string. The distinction between
object and datatype properties is not possible in RDF Schema. Nor it is possible to use the atomic
data types proposed by the XML Schema [26].

Besides the domain and range restriction of properties, DAML+OIL allows the definition of car-
dinality constraints on properties. For example, one can define that a property is unique. For
example, if an artifact can have only one title, one can write the following :

<daml:UniqueProperty rdf:ID="has_title">

<rdfs:domain rdf:resource="#Man_Made_Object"/>

<rdfs:range rdf:resource="http://www.w3.0rg/2001/10/XMLSchema/#string"/>
</daml:UniqueProperty>

Another interesting point is that DAML+OIL allows to overwrite a property that has been
defined on a superclass, in the definition of its subclasses. For example, imagine that class Person
is a subclass of Mammal. In the latter, the property has father is defined which takes its values in
class Mammal. If one wants to say that a person can have only a person as her father, then one writes
the following :

1. <daml:Class rdf:ID="Person">

2 <rdfs:subClass0f rdf:resource="Mammal"/>

3 <rdfs:subClass0f>

4 <daml:Restriction>

5. <daml:onProperty rdf:resource="#has_father"/>
6 <daml:toClass rdf:resource="#Person"/>

7 </daml :Restriction>

8. </rdfs:subClass0f>

9. </daml:Class>

The expression daml:Restriction (line 4) defines an anonymous class, namely the class of all
'things’ which satisfy the following restriction : the values of the property has father (line 5) of
instances of this class, are instances of class Person (line 6).

DAML+-OIL allows one to define inverse properties. For example, one could write the following
to state that property carried_out_ by is the inverse of carried_ out.

<daml:0bjectProperty rdf:ID=’’carried_out_by’’>
<daml:inverseOf rdf:resource=’’#carried_out’’/>
</daml:0bjectProperty>

Another interesting feature of DAML+OIL is that one is able to specify that a property is
transitive using the construct daml:TransitiveProperty. For example, one can specify that the
property part of is transitive as follows :

<daml:TransitiveProperty rdf:ID=’’part_of’’/>

Instances of DAML-+OIL classes and properties are defined following the RDF [133] syntax.
Here we list some examples of definitions of instances.

24 CHAPTER 2. SEMANTIC DATA INTEGRATION

<Person rdf:ID="Theodorus Van Gogh"/>
<rdf:Description rdf:ID="Vincent Van Gogh">
<rdf:type>
<rdfs:Class rdf:about="#Person"/>
</rdf :type>
<has_father rdf:resource="#Theodorus Van Gogh"/>
</rdf :Description>

~N O O WN -

Resources “‘Theodorus Van Gogh’’ and ‘“Vincent Van Gogh’’ are instances of class Person (lines
1 and 2-5) respectively. The two resources are related with the property has_ father (line 6).

There is no unique name assumption for objects in DAML+OIL. Nevertheless, there is a possi-
bility of stating that two resources are the same, using the <daml:sameIndividualAs> or distinct,
using the <daml:differentIndividualFrom> construct. The situation is different for datatype
values, where the XML Schema Datatype identity is used.

XML Topic Maps Topic Maps, in contrast to RDF and DAML+OIL, have been developed to
represent knowledge about resources in general and are not restricted to Web resources. Neverthe-
less, we present here XML Topic Maps [166] which are used to describe Web information resources.

The role of a topic map is “to connect information so that we can use it in a more meaningful way

than just web hyperlinks. A topic map organizes large sets of information and builds a structured
semantic link network over the resources. This network allows easy and selective navigation to the
requested information” [166].
The basic construct in topic maps is topic, similar to the notion of resource in RDF and DAML~+OIL.
A topic like a resource can be anything, “regardless whether it exists or not, whether it is of physical
nature or just an idea or erpression” [166]. Similar to RDF, where a resource can be associated
with other resources, a topic can be in association with other topics. Topics can play different roles
in associations and can also contain any number of external references, such as web pages, which
supposedly elaborate on a specific topic.

In an XML Topic Map, several topics can be defined. Each topic is associated with an internal
identifier, and with at least one external identifier. Internal identifiers are names used to refer to
this topic. In addition to these identifiers, topics are associated with base names which indicate how
the topic is presented to the end-user. For example, the topic map shown in Figure 2.4 defines three
topics : van_gogh (lines 1-11), starry_night (lines 12-16) and Paris (lines 16-23). The internal
identifier of the first topic is van_gogh (line 1) and its base name is Vincent Van Gogh (line 2). It
might be the case that the internal identifier and the base name are the same : this is the case for
topic Paris (lines 16, 17).

XML Topic Maps allow one to make references to Web pages where information about topics
is found. These references are defined by means of occurrences. An occurrence can be associated
with information which can be external to a topic map, such as references to web sites; or, they
can be integrated directly into a topic map as a (short) text. In topic map terminology external
resources are managed via the resourceRef while internal ones are managed via the resourceData
construct. For example, topic van_gogh has two occurrences : the first one is associated with the
Web page http://www.vangoghgallery.con (line 4). The second is associated with the Web page
http://webexhibits.org/vangogh (line 7) and with the internal reference Vincent’s Van Gogh
Home Page (line 8).

A topic can be an instance of one or more topics. For example topic van_gogh is an instance
of the topic painter (line 10) and topic Paris is an instance of topics city and capital (lines 21
and 22 respectively). These topics are defined in a similar manner as the ones in Figure 2.4.

2.2. METADATA 25

© 00 NO Ok WN -

10.
. </topic>
. <topic id="starry_night">

NNNNRFE B B B R s s e
W NP, O OO0 ~NOO Ok WN -

<topic id="van_gogh">
<baseName><baseNameString>Vincent Van Gogh</baseNameString></baseName>
<occurence>
<resourceRef xlink:href="http://www.vangoghgallery.com"/>
</occurence>
<occurence>
<resourceRef xlink:href="http://webexhibits.org/vangogh/"/>
<resourceData>Vincent’s Van Gogh Home Page</resourceData>
</occurence>
<instanceOf><topicRef xlink:href="#painter"/></instance0f>

<baseName><baseNameString>Starry Night</baseNameString></baseName>
<instanceOf><topicRef xlink:href="#painting"/></instance0f>

. </topic>
. <topic id="Paris">

<baseName><baseNameString>Paris</baseNameString></baseName>
<occurence>

<resourceRef xlink:href="http://www.paris.org"/>
</occurence>
<instanceOf><topicRef xlink:href="#city"/></instance0f>
<instanceOf><topicRef xlink:href="#capital"/></instance0f>

. </topic>

Figure 2.4: Topics

26 CHAPTER 2. SEMANTIC DATA INTEGRATION

1. <association>

2. <instance0Of>

3. <topicRef xlink:href="#painted"/>

4. </instance0f>

5. <member>

6. <roleSpec><topicRef xlink:href="#painter"/></roleSpec>
7. <topicRef xlink:href="#van_gogh"/>

8. </member>

9. <member>

10. <roleSpec><topicRef xlink:href="#painting"/></roleSpec>
11. <topicRef xlink:href="#starry_night"/>

12. </member>
13. </association>

Figure 2.5: Associations in Topic Maps

Topics participate in relationships, called associations, which are themselves topics, in which
they play roles. Roles are themselves topics. For example, one can define the topic painted (to
denote for example the relationship between a painter and the paintings she created). In Figure 2.5
an association is defined. It is an instance of topic painted (lines 2-4) and the members of this
association are topics van_gogh (line 7) and starry_night (line 11). The role of the former is
specified by the topic painter (line 6) and of the latter by the topic painting (line 10).

Comparing RDF or DAML+OIL to XML Topic Maps, one can observe that they have the
same principle : everything is a resource for the first two, and everything is a topic for the last.
Nevertheless, the distinction between schema and instances (descriptions) is explicit in RDF and
DAML+OIL while in XML Topic Maps this is not the case.

2.2.2 HTML Document Annotation Languages and Systems

Document annotation systems follow a different approach for recording the metadata of HTML
documents. The basic problem with HTML is that it is a language which does not capture explicitly
the semantics of the documents and the only way to retrieve HTML documents is by keyword-
based queries or navigation. Web query languages such as WebSQL [155] or WebLog [131] tried to
deal with this problem by allowing the combination of querying HTML documents with controlled
automated navigation using the outgoing hyperlinks of these pages. For example, WebSQL allows
the specification of SQL-like queries on the document contents and structure. One can express a
query requesting the documents containing the text “Van Gogh” and all the documents reached
from these, by following all outgoing hyperlinks from this page which in their turn contain the text
“0il On Canvas”.

Nevertheless, in both cases of indexes and web query languages the problem is that the semantics
is expressed in the query (i.e. it is explicit in the case of Web languages and implicit in the case of
a keyword based query), and not so in the actual data.

Document annotation systems tackled this problem by introducing special semantic tags which
specify the semantics of the document leading to a more structured Web. For example, consider an
HTML page that talks about Van Gogh and its paintings. The part of the document mentioning
Van Gogh is annotated by the semantic tag painter, and the part containing his paintings can be
annotated by the tag paintings. These semantic tags originate from domain or application specific

2.3. WEB DATA INTEGRATION SYSTEMS 27

ontologies which describe the basic notions in the domain of interest, along with basic relations
within the domain. These annotations can be considered as content metadata for the resources and
can be used for resource discovery.

SHOE [109] is a system supporting a set of Simple HTML Ontological Extensions with its own
DTD that specifies tags and allowable combinations of those tags, similar to XML and RDF. SHOE
supports (i) the definition of ontologies (ii) and annotations of HTML documents classified by those
ontologies.

The principle behind SHOE is that in order to annotate an HTML document, the first thing
to be done is to specify the ontology which will be used for this purpose. The SHOE ontology
definition language (ODL) allows the creation of a SHOE ontology which specifies the basic entity
types or categories in the domain of interest. SHOE ODL supports the definition of n-ary relations
between categories as well as inheritance relations between them. It supports also the definition
of inference rules which are used to deduce instance relationships between entities and categories
and/or inheritance relations between the latter.

SHOE annotations language allows the specification of annotations within the HTML document.
The ontology used for these annotations is specified in the document by means of a URL, and a
prefiz (similar to XML prefixes), is defined for it.

SHOE annotations are done either for the HTML document or for document fragments. In both
cases these annotations are included in the document. The annotated part of the document (or
the document itself) is considered as a SHOE instance and is identified by a unique key. This key
consists of the document URL, and the position of the text in the document. Each of the instances,
is explicitly declared to be an instance of one or more categories specified in the ontology. Keys are
used to specify relations between the SHOE instances.

Annotated HTML pages are gathered by the SHOE crawler. These annotations are extracted
from the actual HTML pages and are stored in a Parka knowledge base [83, 196]. Parka is a
high performance knowledge representation system whose roots lie in semantic networks and object
oriented systems. Data in a Parka knowledge base is stored in a relational database. Once the
HTML pages annotated with the SHOE language are gathered they are queried by issuing first
order comjunctive queries.

Similar to SHOE, Ontobroker [86] consists of tools that enhance query access and inference
services for Web documents. Ontobroker provides languages to annotate Web documents with on-
tological information, to represent ontologies and to formulate queries. Ontobroker query formalism
and document annotation language are oriented towards a frame-based representation of ontolo-
gies. Ontobroker also allows the specification of inference rules (similar to those in Description
Logics [27]) that allow to derive facts not present in the actual document. Annotations of HTML
pages in Ontobroker are done as in SHOE, i.e. by incorporating special semantic tags. Parts of the
annotated HTML pages, are considered as objects, instances of defined ontology classes, attribute
values and relationships between objects. Annotated HTML pages are gathered, annotations are
extracted and stored in the Ontobroker knowledge base.

2.3 Web Data Integration Systems

The problem of gquerying and integrating data coming from multiple heterogeneous information
sources has received significant attention during the last decades. The goal of integration systems
is to offer a uniform interface to a number of data sources.

As an example, consider the task of providing information about movies from data sources on the
Web. There are several sources concerning this kind of information, for example the Internet Movie

28 CHAPTER 2. SEMANTIC DATA INTEGRATION

Database (providing a list of movies, along with their actors, directors, etc.), Pariscope (providing
the playing times of movies for Paris) and several sites providing reviews for these movies. Suppose
that a user wants to find the cinemas in Paris playing the movies of Cohen brothers created before
1995, and also the reviews written about each of these movies. None of these sources, considered in
isolation, answers this query. Nevertheless, by combining data from these sources one can obtain the
answer to this query and even to more complex ones. For the previous query, the user should first
look for the movies of Cohen brothers from the Internet Movie Database, then look in Pariscope
for the movies playing in Paris, and finally for their reviews on the reviews sites. A user needs to
combine information from a number of sources in order to obtain the information she looks for.
Moreover, she has to know (i) the structure of the sources and (ii) their query interfaces.

The above problem is the standard problem of data integration which becomes more difficult
in the Web context due to the increasing number of available, highly heterogeneous information
sources. The basic goal of a data integration system is to enable its users to concentrate on what
they want rather than thinking on how to obtain their answers. As a result, the user is relieved
from the cumbersome task of exploiting each of a possibly large number of sources individually to
obtain the information she looks for. More precisely, the challenge of a data integration system is
to provide to its users a unique view of the underlying data : in this case, users query autonomous
and heterogeneous information sources as a single source with a single schema and a single query
interface. The task of the system is first to rewrite the queries into one or more queries to be
evaluated by the sources, then to combine and present the results to the user. To improve the query
translation process, as well as the response time, data from the sources can be materialized [143] in
the user view.

The explosion of the Web as the main road for digital data and information exchange has brought
new challenges to data integration. Web sources are autonomous and developed in an independent
way. This autonomicity of the sources results in highly heterogeneous sources in structure, semantics
and access interfaces. For example, Web data is not just structured (relational, object oriented,
hierarchical) but also semi-structured (e.g. XML data). Furthermore, since the Web is an evolving
environment, sources appear and disappear at any time.

The earlier approaches to achieving interoperability between information systems are those of
multi-database systems [142, 110]. In these systems there is a reasonably small number of sources
that are well-structured and do not change over time. Users access the underlying sources by issuing
queries in terms of a single schema which is the result of the integration of the sources schemas.
A significant number of techniques for schema integration has been developed in this context [163,
111, 68, 132, 120, 23]. Nevertheless, since Web sources are not necessarily well structured and new
sources can appear at any time, standard schema integration methodologies are difficult to apply.

2.3.1 Mediator/Wrapper Architecture

The mediator/wrapper architecture proposed by Wiederhold in [216] is a variant of the federated
database systems architecture [191] and considers the new challenges set by the Web. In this
architecture, the mediator offers a unified view of the data sources in a specific domain of interest
or a specific application. Figure 2.6 illustrates the mediator-wrapper architecture.

Mediator Schema and Source Descriptions The backbone of a mediator is a global schema
that describes the data that resides in the sources, and exposes the aspects of this data that
are of interest to the users. The global schema does not necessarily contain all relations/classes
modeled in each of the sources and is not materialized : the actual data is found in the sources.

2.3. WEB DATA INTEGRATION SYSTEMS 29

Query O J

Mediator l

Figure 2.6: Mediator-Wrapper Architecture

Sources are encapsulated by wrappers and are described in the mediator by providing their
source descriptions. These descriptions specify the relationships between the relations of
the global schema, and those in the sources schemas. A source description describes the
source contents (for example, the source contains paintings with their titles and the techniques
applied), constraints (e.g. it contains only paintings of the 19th century), its completeness
(e.g. it contains all paintings), and query processing capabilities (e.g. it can answer arbitrary
SQL queries, a limited class of XPath queries, or XQuery queries).

There is a number of problems related to the autonomous nature of the sources that must
be taken into account when deciding for the language used to define the global schema and
describe the sources :

e overlapping data between the sources : For example, two sources might both describe
Dutch painters of the 18th century. Sources might also contain contradictory data. A
source for example might specify that Homer was born in one of the Ionian islands, while
another might state that he was born in the Aegean island of Chios.

e semantic mismatches between the sources : Consider sources which contain XML doc-
uments about cultural artifacts. In a source the title of a painting is recorded as an
attribute, while in another as an element. Or, in a third source paintings are organized
below their respective painters, while in a fourth painters and paintings are recorded as
top level elements and horizontal relationships are used to relate them. Furthermore,
different names may be used for the same concept. For example, one source may use the
term ’artist’ and another the term ’creator’ to refer to an artist. In a source, the name of
a person is a string, while in another is represented as a tuple : (first name, last name).

e different naming conventions : A simple example is that various conventions may be used
for specifying addresses or dates. Another example, is that one source records the full
name of a person, while another contains only her initials. Methods based on textual
similarity can be applied to resolve this problem as done in [57].

Query Translation Users issue queries in terms of the global schema. Since the data resides in
the sources, the user query must be rewritten or translated into queries expressed in the local
sources schemas.

30 CHAPTER 2. SEMANTIC DATA INTEGRATION

The requirement is that the rewriting is sound (i.e. gives correct answers to the query) and
complete (i.e. all possible answers extracted from the data sources must be in the result of
the rewriting of the query). Moreover, this rewriting must ensure that the sources that do not
contribute to the query are not addressed.

Wrappers are proprietary software of sources and their basic purpose is to translate data from
the source to a form that is usable by the mediator. For example, if the mediator data model
is relational, and the sources are XML, then the wrapper must translate XML data into
relational tuples.

Data integration systems are classified according to how the sources are described to the media-
tor. There exist two approaches : the first, known as local as view (LAV), and the second as global
as view (GAV). We first give the framework for data integration in each of these approaches, and
then describe in detail some representative systems.

An orthogonal issue to how sources are described in the mediator is the choice of the data model
for the global schema (and consequently for source descriptions). The global schema can either be
a relational [136, 174], an object oriented [200], an XML DTD [149, 55, 78, 144], an ontology [154],
a Description Logic [47, 97] or a semi-structured schema [46].

Most of the integration systems follow the relational paradigm, which has some advantages.
In particular the same language can be used as the query language and as the language to define
the source to global schema mappings (also known as source descriptions). Table 2.1 illustrates a
classification of the systems based on the following two criteria : (i) the kind of approach (GAV
versus LAV) used for the source descriptions and (ii) the data model for the global schema.

| || GAV | LAV | Relational /OO | Description Logics | Semi-Structured |

Information Manifold
Infomaster
PICSEL
Xyleme
Agora
Tsimmmis
Nimble
MIX
MOMIS

B (XML)

u
B (XML)
B (XML)

Table 2.1: Data Integration Systems Classification

2.3.2 Local As View

In the local as view [139] approach, the global schema is defined independently of the local sources
schemas. A source is described in terms of the global schema relations?, and user queries are
formulated in terms of this schema as well. The source relations are defined as (materialized) views
over the global schema relations. This approach allows for the modification/publication/deletion of
sources without changing the global schema relations.

Let us illustrate an example using a relational global schema. Suppose that the domain of
interest is art. The mediator describes artifacts created by artists. The global schema relations are

2One usually says that in this case, the source is described as a (materialized) view of the global schema relations.

2.3. WEB DATA INTEGRATION SYSTEMS 31

ARTIFACT(TITLE, STYLE,NAME,GENRE), ARTIST(NAME,YEAR,SCHOOL) and CRITICS-
(TITLE,CRITIC). Relation ARTIST stores all artists. An artist is associated with a name, a year of
birth and a school (e.g. Dutch, French). Relation ARTIFACT stores artifacts, each one associated
with a title, a style, the artist who created it and a kind (e.g. painting, sculpture). Finally, relation
CRITICS stores all critics written for an artifact.

Suppose that two sources are integrated into the mediator : the first is described by relation V3
and the second by relation V5. They are both illustrated below. We call Vi and Vs source relations.

Vi(name,title) <+ ARTIFACT(title,style,name,genre) ,
ARTIST (name,year,school) ,
school="Dutch’, year > 1920, genre="painting’

Vo(title, critics) <+ ARTIFACT(title,style,name,genre) ,
CRITICS(title,critics) ,
genre=’ painting’

Relation V; contains the names of artists (relation ARTIST) and the titles of their artifacts
(relation ARTIFACT). The artists contained in the source are Dutch (condition school = ’Dutch’)
and born after 1920 (condition year > 1920). Finally the source artifacts are paintings (condition
genre = ’painting’). The second source, described by relation V5 contains the title and the critics of
paintings (relations ARTIFACT, CRITICS and condition genre=’painting’). Both views are defined
as rule-based conjunctive queries over the global schema relations.

The user formulates her queries in terms of the global schema and ignores the source relations
(and of course the schemas of the underlying sources). For example, query ¢ illustrated below, looks
for the name of Dutch artists born after 1900, the title and the critics of their paintings.

q(name, title, critics) < ARTIFACT(title,style,name,genre),
ARTIST (name,year,school),
CRITICS(title,critics),
school="Dutch’, year > 1900, genre="painting’

In order to obtain answers for the query, this must be translated into one or more queries,
expressed in terms of the local sources schemas. To find these queries, the initial one must be
transformed into a query, called rewriting which is formulated in terms of only the source relations.
In the previous example, neither of the two sources considered in isolation answers query q : the
first source returns the name of the Dutch artists and the titles of their paintings, and the second
the title of the paintings and their critics. To obtain answers for this query, one must query both
sources. In this case one rewriting is :

q (name, title, critics) < Vi(name, title), Va(title, critics)

This rewriting is a rule-based conjunctive query expressed in terms of only the source relations.
Intuitively, it is obtained by replacing each atom in the query by the source relation(s) which
contributes to this atom. For example, source relation V7 contributes with answers to the relations
ARTIFACT and ARTIST and V5 to the relations ARTIFACT and CRITICS. Moreover, V1 and Vs
satisfy the conditions in the query. V; satisfies all the conditions in the query but in a more general
case it could satisfy only a subset. If there existed some condition ¢ in Vi (e.g. year < 1900) such
that the conjunction of ¢ with the conditions in the query is not satisfiable, then V; would not have
been chosen for the rewriting.

32 CHAPTER 2. SEMANTIC DATA INTEGRATION

Rewriting Queries Using Views The query translation problem in the LAV approach is known
as the problem of rewriting queries using views [37, 135, 139]. Informally, the problem is the
following. Suppose that we are given a query @) over a database schema, and a set of view definitions
Vi,Va,...V, over the same database schema. Is it possible to answer the query using only the
answers to the views? This problem has received significant attention because of its relevance to a
wide variety of data management problems such as web-site design [89], semantic caching [64], data
integration [136, 175, 81| and data warehouse design 8, 224, 48, 107]. Authors in [40] distinguish
between two problems in wview based query rewriting : The first concerns query rewriting and the
second gquery answering.

In query rewriting, given a query and a set of view definitions the goal is to find a rewriting
that refers only to the views and provides answers to the original query. Given a query) and a
set of view definitions V = {Vi,Vs,...V,,}, a rewriting of the query using the views, is a query
expression @' that refers only to the views in V. Typically, the rewriting is formulated in the same
language used for the query and the views. The example at the beginning of this section illustrates
this problem.

In query answering, besides the query and the view definitions, the extensions of the views are
also given. The goal is to compute the set of tuples in these extensions i.e. the set of tuples that
are in the answer of the query in all the databases that are consistent with the views.

Query rewriting has been studied under different assumptions for the form of queries and views.
[140] studied the problem of rewriting in the presence of conjunctive queries and views. The language
of rewriting is a union of conjunctive queries. Authors proved that the problem of finding a rewriting
is NP-hard for two reasons : first because of the possible ways to map a single view into a query and
second due to the number of ways to combine the mappings of the different views into the query. The
problem of considering binding patterns for queries was studied in [177]. In [195, 56] the problem
of rewriting queries with aggregates using materialized views was considered. [24] considers query
rewriting in Description Logic. The problem of rewriting queries which use regular path expressions
was studied in [34]. The rewriting of recursive queries was considered in [80]. Finally [172] studies
the problem of query rewriting for semi-structured views.

The problem of query answering was studied in [6, 38, 35, 36, 100]. The problem of query
answering was proven in [6] to be NP-hard and the same result was obtained in [24] for Description
Logic queries. A fundamental question in the context of data integration is how to find the rewriting
that returns the set of all possible answers to the query. This is formulated as the problem of finding
certain answers [6]. Authors distinguish between the cases where the view extensions are assumed
to be complete (closed world assumption), and the case where the view extensions are assumed to
be partial (open world assumption).

Let us discuss the problem of query rewriting using views. A rewriting can be equivalent or
contained in the initial query. Intuitively, given a set of views and a query) expressed over the
same set of relations, a query Q' is an equivalent rewriting of @Q iff for all database instances, the
set of answers obtained for Q and Q' are the same. Query ' is said to be a contained rewriting
of @ if the set of answers obtained for @)’ is a subset of the set of answers obtained for). In the
LAYV approach the rewriting algorithms try to find mazimally contained rewritings. The difference
between equivalent and maximally contained rewritings is that the latter are defined with respect
to a specific language for the rewritings. Intuitively, there might be a rewriting in a more expressive
language that may provide more answers for the query.

The algorithms for testing whether a candidate rewriting is equivalent or contained in the initial
query, do not provide a solution on how to find the rewriting. These two problems are orthogonal
and the last is handled by query rewriting algorithms.

2.3. WEB DATA INTEGRATION SYSTEMS 33

2.3.3 Global As View

In the global as view approach, the global schema is defined in terms of the local sources schemas?. If
the global schema and the sources schemas are relational, then one can write a rule-based conjunctive
query over the source relations. This query specifies how to obtain the tuples for the global schema
relations. In general, relational global as view descriptions are Horn rules that consider a single
global schema relation in the head of the rule, and a conjunction of atoms over the source relations in
the body of the rules. In contrast to the LAV approach, the head of the conjunctive query considers
the global schema relations, while the source relations are found in the body of the query.

Consider for example two sources S; and Sy. The former contains the names, school, year and
place of birth of artists, and the latter contains the title of the objects, their style and the names of
the artists who created the objects. A third source, S3, contains the reviews for artifacts.

ARTIST (name,school) +— Si(name,year, place, school)
ARTIFACT (title,name,style) < So(title, style,name)
CRITICS(title,name,review) < Ss(title, review), Sa(title, style, name)

The first description states that tuples for the global schema relation ARTIST(NAME,SCHOOL)
are found by source S;. The second, states that tuples for the global schema relation ARTIFACT(-
TITLE,NAME,STYLE) are obtained by source Sy. Finally, tuples for relation CRITICS(TITLE,-
NAME,REVIEW) are obtained by a join of the tuples originating from sources Sy and Ss.

User queries are rule-based conjunctive queries, formulated in terms of the global schema re-
lations. For example, suppose that a query looks for “the titles, reviews and styles of the objects
created by Van Gogh, and his school”.

q(title, review, style, school) <+ ARTIST('Van Gogh’ school),
CRITICS(title,review,”Van Gogh’),
ARTIFACT (title, "Van Gogh’, style)

Query reformulation or rewriting in the global as view approach is straightforward : because
the relations of the global schema are defined in terms of the source relations, one needs only to
substitute the former by their definitions*. For the previous query, when substituting the global
schema relations by their definitions, the resulting query is :

q (title, review, style, school) + Si1('Van Gogh',year, place, school),
Ss(title, review), So(title, Van Gogh', style)

In ¢/, relation ARTIST is replaced by relation S;, ARTIFACT by S and finally CRITICS by the
conjunction of relations Sy and S3. In ¢’ only one appearance of Sy is kept.

2.3.4 Comparison between the LAV and GAV approaches

As illustrated by the example in Section 2.3.3, the advantage of the global as view approach is the
simplicity of query rewriting : it consists of replacing each atom of the query by its definition, the
latter expressed in terms of the relations of the local sources.

The major drawback of this approach is its lack of flexibility with respect to the addition/deletion of
the sources to the mediator, or the modification of the sources schemas : each update of a source’s
schema results in an update of the global schema.

30ne says that the global schema is defined as a view over the local sources schemas.
4This substitution is called query unfolding.

34 CHAPTER 2. SEMANTIC DATA INTEGRATION

In contrast, in the local as view, any modification of the sources (addition/deletion of sources
to the mediator, or modification of the source schemas) does not affect neither the global schema
relations nor the other source descriptions.

Nevertheless, query rewriting in this approach is complex. As described in Section 2.3.2 this is
the problem of rewriting queries using views, which is known to be NP-hard [140] in the case of
conjunctive queries.

In the context of the Web, it is more appropriate to use the local as view approach where the
sources are described independently, and any modification of the sources does not affect the global
schema.

2.4 Data Integration Systems following the Local as View Approach

A number of data integration projects whether they have been designed for a Web environment or
not, have adopted the local as view approach for describing sources. Among the most important ones
are Information Manifold [136, 174], Infomaster [81], Xyleme [55], Agora [149] and PICSEL [97]
which are described in detail.

2.4.1 Information Manifold

Information Manifold [136, 125, 138] tackles the problem of data integration by providing a mecha-
nism to describe declaratively not only the contents but also the query capabilities of the information
sources. The contents of the information source are described by means of source descriptions which
are used efficiently by the system to prune the information sources that do not provide any answer
to a user query, and also to compute executable query plans.

The global schema is relational : it consists of a set of relations, augmented with a class hierarchy.
A source description is a conjunctive query over the global schema relations which will be referred
as view in the following. Information Manifold provides also a declarative mechanism for describing
the query capabilities of the sources by means of capabilities records. These provide a way to capture
the two kinds of source capabilities encountered more often in practice :

e the ability of the sources to apply a number of selections and

e the minimum and maximum number of allowed inputs and the possible outputs of the sources
(binding patterns).

In general these capabilities define how a source can interact with the other sources, and are used
to define executable query plans. In the presentation of Information Manifold that is given here, we
are restricted to the global schema data model, source descriptions and query rewriting algorithm.

User queries, similar to source descriptions, are conjunctive queries expressed in terms of the
global schema relations and classes. Query rewriting in Information Manifold is done by the Bucket
algorithm introduced in [138]. The MiniCon algorithm [175] is an improved version of the Bucket
algorithm.

As with other data integration systems, Information Manifold is not concerned with issues such
as updates and transaction but only with querying of the information sources. In the following, we
present the data model, source descriptions and the Bucket and MiniCon algorithms.

Data Model of the Global Schema Information Manifold uses the relational model for the
global schema, augmented with certain features from description logic languages. Those features

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 35

are useful for describing and reasoning about the contents of information sources. The data model
is based on relations of n-arity, and classes that form a class hierarchy which defines a partial order.
Each class is associated with a set of attributes. A class can inherit attributes from its superclasses
and attributes can be single-valued or multi-valued.

The extension of a relation is a set of tuples, while the extension of a class is a set of objects,
where each object has a unique object identifier. The values of the attributes of a relation or a class,
can be either atomic values or object identifiers. Multiple instantiation for classes is allowed : an
object can belong to different classes even if those are not related by the class hierarchy. Finally, it
is possible to declare that two classes are disjoint.

Classes and class attributes are encoded as unary and binary relations respectively® :

e If C is a class, and z is an identifier for some object, instance of C, then (z) is a tuple in
the unary relation C (i.e. (z) € C).

e If A is an attribute defined on class C, and z is the identifier of an object instance of C, then
(x,y) € Aif z.A =y (y is the value for z of attribute A).

e If C is a subclass of C' then C C C".

e To capture the partial order between classes, the inclusion dependency between their corre-
sponding relations is expressed. If two classes C, D are defined to be disjoint, then CND = ¢.

For our cultural example, the global schema classes are illustrated in Table 2.2.

Class Subclass Of Attributes Disjoint from

Actor carried_ out

Person Actor has_name, carried_ out

Event took place at, Actor
took_place_in

Activity Event has_produced,

took_place_ at,
took place in

Man Made Object has_title, created_ by Actor
Place placeName, city Actor
Date year, month, day Actor

Table 2.2: Examples of global schema relations in Information Manifold

To decide whether two objects retrieved from different sources correspond to the same real world
entity, each object (instance of some class), is associated with a unique identifier. This unique
identifier is calculated out of the value of some attribute (for example, the name of a person). [136]
does not provide any additional information on neither how these object identifiers are created nor
how the attributes, out of whose values the identifiers are created, are determined.

User Queries Users formulate their queries in terms of the global schema relations. A user
query is a conjunctive query over the mediated schema relations, using built-in comparison predicates

SFor each class C, a relation is defined with the same name as the class. For each attribute of the class, a binary
relation is created.

36 CHAPTER 2. SEMANTIC DATA INTEGRATION

(<, >, <, >). In general, a query is of the form
Q(X) + Ri(Zy),...Ru(Z,),Cq

where the R;’s are the global schema relations, Cg is a conjunction of comparison predicates of the
form ufv where u,v € Ulgignz_i or v is a constant, and X C Ulgignz_i-

For example the query illustrated below, looks for ‘the names of persons, the titles and year of
creation of the objects they created after 1800”.

g(N,T,Y) <« Person(P),has_name(P,N), carried _out(P,A),
Activity(A), has_produced(A, M),
Man _Made Object(M), has_title(M,T),
created_by(M, E), Event(E),
took _place_in(E, D), Date(D), year(D,Y),
Y > 1800

Table 2.3: User Query

Source Descriptions A source description in Information Manifold is expressed as a con-
junctive query over the global schema relations. The head of the conjunctive query is called a source
relation (or view).

Let us consider again the cultural example. The definitions of the source relations Vi, V5 and
V3 are illustrated in Table 2.4.

Vi(n,t) C Person(p), has_name(p,n),
carried_out(p,a), Activity(a),
has_produced(a,m), Man Made Object(m),
has_title(m,t)

Va(t,y) € Man_Made Object(m), has_title(m,t)
Event(e), created_by(m, e), took place in(e,d), Date(d),
year(d,y),y > 1850

V3(d)

N

Event(e), took _place_in(e,d), Date(d), year(d,y),y < 1700

Table 2.4: Source Descriptions

The first source relation Vi(n,t), returns the names of persons, and the title of the objects
created by them. V5(t,y) returns the title, and the year of creation of objects which have been
created after 1850. Last, V3(d) returns the dates of events occurred before 1700. The connective C
is used in the source descriptions to underline the fact that the source provides only a subset of the
tuples that satisfy the global schema relations instead of the connective < used in the user queries.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 37

The Bucket Algorithm Given a user query expressed in terms of the global schema relations,
and a set of views, the Bucket algorithm tries to rewrite the user query into a query that is expressed
only in terms of the source relations.

The algorithm finds rewritings by pruning the sources that do not contribute with answers to
the user query. Cases where a source cannot provide answers to a query are the following :

e the conjunction of the query constraints and those expressed in the source description is not
satisfiable. For example, the query requests the objects created after 1900 and the third source
contains objects created before 1700;

e the query requests instances of some relation R and the source returns instances of a relation
R' where R and R’ are disjoint. For example, the query requests instances of relation Fvent
and the source returns instances of relation Person.

e last, the query requests values of some attribute, but the source does not return these values.
For example, consider a source which contains the names of persons but does not export this
information in its description. Hence, this source cannot be used for queries that request the
names of persons.

The Bucket algorithm is a two phases algorithm :

1. In the first phase it considers each subgoal of the query in isolation and tries to find which
are the source relations that provide answers to it. These relations are added in the bucket of
the query subgoal.

2. In the second phase, it finds a set of conjunctive query rewritings. Each such rewriting is
a conjunctive query that includes one conjunct from each bucket. Each of these rewritings
represent one way to obtain answers for the query.

The result of the algorithm is the union of the conjunctive query rewritings. For each of this
conjunctive rewritings it must be verified that :

(a) it is contained in @ and

(b) that after adding the comparison predicates in @, it is still contained in Q.

Example Let us illustrate the bucket algorithm by an example. Consider the query illustrated in
Table 2.3, and the source relations in Table 2.4.

Calculating the buckets The buckets and their contents are illustrated in Table 2.5. For
each bucket, we give (i) the views and (ii) the mappings unifying the variables in the view subgoal
and the variables in the query subgoal.

In the first step, the algorithm considers the bucket for the query subgoal Person(P). Vi con-
tributes to this subgoal since (i) it contains the relation (subgoal) Person(p) and (ii) there is a
mapping unifying the variables in the query and view subgoals. This mapping is {P — p}. So, V}
is added in the bucket for the query subgoal Person(P).

In a similar manner, V; is added in the buckets for the query subgoals carried out(P, A), Activity(A),
and has_produced(A, M).

Consider now the query subgoal has_name(P, N). For this subgoal there is a mapping between

its variables and the variables of the subgoal has name(p,n) in Vi : {P — p, N — n}. Moreover,

38 CHAPTER 2. SEMANTIC DATA INTEGRATION

Person(P) : [Vi, {P — p}]
has_title(M,T) Vi, {M — m}]

[V, {M — m}]
has_name(P,N) : [Vi, {P = p,N — n}|
Event(E) : [Va, {E — e}]

[Vs, {E — e}]
Activity(A) : [Vi, {4 — a}]
created_by(M,E) : [Va, {M = m,E — e}|
carried__out(P, A) : [Vi, {P — p,A — a}]
Man_Made_Object(M) : [Vi, {M — m}]

[V2, {M — m}]
took place_in(E,D) : [Va, {F — e,D — d}|

[V3, {E — e,D — d}|
Date(D) : [Va, {D — d}|

[Vs(d), {D — d}]
has_produced(A, M) : Vi, {A = a,M — m}]
year(D,Y) : [Va, {D = d,Y — y}

Table 2.5: Buckets for the subgoals of query ¢

variable N is returned by the query, and V; returns values for N (notice that the head of its definition
contains variable n to which N is mapped to). For the query subgoal Man_Made _Object(M), V3
and V5 are added in its bucket through the mapping {M — m}.

Consider now the subgoal year(D,Y). V, contributes to this subgoal by the mapping {D —
d,Y — y}. After the unification of the variables, the algorithm tests the predicates Y > 1800 and
y > 1950. These are consistent, therefore V5 is considered for this query subgoal. A subtle point
here is that V3 is considered, because variable Y (requested by the query) appears in the head of
the V5. This is not the case for V3. Although there is a mapping between the query variables in the
subgoal and the corresponding subgoal in the view, variable Y (requested by the query) does not
appear in the head of V3 (in other words, the view does not contribute to this variable). So, V3 is
not considered for the bucket of this query subgoal.

Computing conjunctive query rewritings In the second phase the conjunctive query rewrit-
ings are computed where a rewriting includes one conjunct (i.e. view) from each bucket. For exam-
ple, for the buckets shown in Table 2.5, when the first element of each bucket is considered®, then
the rewriting ¢’ is obtained :

ql(Na TaY) : _‘/l(Na T)a V2(T5Y)

Another rewriting is ¢"(N,T,Y) : =Vi(N,T),Va(T,Y),V3(D). But if we consider the conditions
of the views V5 and V3, we see that their conjunction is not satisfiable. When these views were
considered in isolation by the Bucket algorithm their conditions were not found to be unsatisfiable.
Consequently, ¢” is not considered as a rewriting.

The bucket algorithm produces mazimally-contained rewritings as is the case in data integration
scenarios using the LAV approach. The strength of the Bucket algorithm is that during the creation
of the buckets, it prunes significantly the number of sources that need to be considered for the

6 After keeping one appearance for each view in the rewriting.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 39

candidate query rewritings. Checking whether a view can be added to a subgoal can be done
in time polynomial in the size of the query and view definition when the predicates involved are
arithmetic comparisons. Nevertheless, the algorithm has certain drawbacks :

e the number of rewritings to be considered in the second phase (i.e. the Cartesian product
of the views in the buckets) can be rather large. Moreover, for each of these rewritings the
algorithm performs a query containment test. To do that, it replaces the views in the rewriting
by their definitions, and then tests whether the query obtained is contained in the original
query. The testing problem is I12-complete [127], though only in the size of the query and the
view definition.

e since it examines each query subgoal in isolation, it does not examine how the views interact.
In this sense, in the second step, it produces candidate rewritings which will not be considered.

MiniCon Algorithm The MiniCon algorithm [175, 174] addresses the limitations of the Bucket
algorithm.

The Bucket algorithm prunes information sources which are either irrelevant to the query, or
the do not satisfy the query’s conditions. Nevertheless, in the second step of the algorithm, a
large number of view combinations must still be calculated. Each of these combinations forms a
conjunctive rewriting for which it must be proved that it is contained in the initial query. Another
point is that at the last step of combining the views it might be that the conditions expressed in two
distinct views are mutually inconsistent. The MiniCon algorithm addresses the above limitations
by changing its perspective : instead of building rewritings by combining views for each of the
query subgoals, it considers how each of the variables in the query interacts with the available
views. Consequently, in the second phase, the MiniCon algorithm needs to consider drastically
fewer combinations of rules.

Let us consider again the cultural example. Consider a user query which requests “the year of
creation of objects whose title is "Madonna’ ”. This query is illustrated in Table 2.6.

qY) <« Man_Made_ Object(M),has_title(M, Madonna'),
Event(E),created_by(M, E),took _place in(E, D), Date(D),year(D,Y)

Table 2.6: User Query

Consider now the views of the sources, which are illustrated in Table 2.7.

Vi(t)
Va(y)

Man_Made_Object(m), has_title(m,t)
Event(e),
took _place in(e,d), Date(d), year(d,y)

NN

Table 2.7: Source Descriptions

The bucket algorithm would consider view V; in the bucket of subgoals Man_Made Object(m)
and has_title(m,t). View V, will be considered in the bucket of the subgoals Fvent(e), took -
place_in(e,d), Date(d) and year(d,y). The problem is that none of the views is useful for a
rewriting of this query. The reason is that the views do not contain some variable on which one
could join the results of the views (the case of variables M and E).

The MiniCon algorithm starts like the bucket algorithm, considering which are the views that
contain subgoals that correspond to subgoals in the query. However, when the algorithm finds

40 CHAPTER 2. SEMANTIC DATA INTEGRATION

a partial mapping between the variables in the subgoal g in the query and a subgoal ¢’ in the
view, then it changes perspective and it examines the variables in the query. The algorithm then
considers the join predicates in the query, and finds the minimal additional set of subgoals that must
be mapped to subgoals in the set of views, given that g is mapped to ¢’. The join predicates are
determined by the multiple occurrences of the same variable in the query. The set of subgoals given
a mapping plus the mapping is called an MCD (MiniCon description). An MCD can be seen as a
generalized bucket. In the second phase, the MCDs are combined to produce the query rewritings.
For the previous example, the algorithm does not create an MCD for V; since it cannot apply the
join predicates of the query.

The key advantage of the MiniCon algorithm is that it considers in the end fewer combinations
than the Cartesian product of the views in the buckets created by the Bucket algorithm. The algo-
rithm outperforms the bucket algorithm and the inverse rules algorithm [81]. Moreover, experiments
in [174] demonstrate that the algorithm scales up to hundreds of thousands of views.

2.4.2 Xyleme : A Web Scale XML Repository

Xyleme is a dynamic warehouse for the XML data of the Web [222]. The research directions that
have been studied in the Xyleme project are : (i) efficient storage of huge volumes of XML data [117],
(ii) query processing [10, 55, 208] with sophisticated indexes at the XML element level; (iii) data
acquisition [160] strategies to build the XML repository, (iv) change control [153] of XML documents
and (v) semantic data integration [182] to free the user from knowing the individual XML resources
for expressing her queries. We are interested in the query processing aspects of the Xyleme system
and more specifically in the source description language and the rewriting algorithm.

Xyleme Views One of the objectives of Xyleme is to provide a single access to all the XML
documents stored in the Xyleme repository, by hiding their heterogeneities to the end-user’. As
in standard data integration systems, the objective here is to relieve the user from querying each
heterogeneous structure to obtain the answers to her queries.

The novel point of Xyleme’s architecture is the following : XML documents stored in the Xyleme
repository do not only have heterogeneous structures but are also associated with different domains
of interest. For example, in the Xyleme repository documents from the domains of medicine, culture,
mathematics could be stored and queried. XML documents that belong to a specific domain of
interest are organized in a cluster. In Figure 2.7, two clusters are illustrated. The first collects
documents in the art domain and the second collects documents in the domain of cinema.

XML documents within a cluster are instances of different XML DTDs, called concrete DTDs.
There might exist a large number of such DTDs in a single cluster. Concrete DTDs in Xyleme are
tree structures : no distinction is made between elements or attributes and no constraints (i.e. like
occurrence indicators) are considered.

In the rightmost part of Figure 2.8 two concrete DTDs are shown from the “Art” cluster :

e the first (DT D1) describes painters and their paintings. Each painter has a biography and a
name. Each painting has a name, a year of creation, a technique and a location where it is
exposed. Paintings are organized below their respective painter.

"The objective of the initial Xyleme project was to crawl the Web for all the XML documents and store them in the
Xyleme repository. Because of the eventual size of this repository, data integration was a crucial issue. Currently, the
Xyleme repository is used for storing XML documents associated with a single application and hence data integration
is no longer a problem.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 41

e the second (DT D) describes artifacts (works of art), where each artifact is associated with
an artist, a title, a year and a gallery. An artist has a name, and is associated with the period
during which she created the artifacts.

For an XML document conforming to these DTDs, each element can have zero or more children
nodes of the same type, e.g. a painting can be associated with zero or more techniques.

7777777777777777777777777777 1 1
| | ‘ ‘
| DTD DTD DTD ! 1 1
I I
I I
! ! ! ! \ | - - |
2 . g 2
1 g g ! L2 z |
2 2 2 ! E] 3
£ £ £ i 3 3 i
[-1 = = | =3 =3
¥ : ‘ 4 : |
I I
1 1 ! . 1
! Cluster "Cinema" I
N Cluster "Art") i)

XYLEME VIEW

Figure 2.7: Xyleme Clusters

For clusters which are semantically related, a view a la Xyleme is defined :
e the domain of this view is the set of documents that belong to the clusters;

e the view schema, similar to the global schema of a mediator, is an abstract DTD. It is a
tree structure of comcepts rather than elements or attributes. An abstract DTD is defined
for a number of clusters, and hence for a number of concrete DTDs (recall that a cluster
contains numerous concrete DTDs). It is used to represent an abstract structure in a number
of domains of interest for example Culture, Tourism, Medicine and hides the structural
and semantic heterogeneities of the documents in the underlying clusters;

e finally, a view definition is a set of mappings between abstract paths and concrete paths. Paths
in the abstract and concrete DTDs provide the context for the nodes in the tree.

In Figure 2.7, for the two clusters one view is defined, where its schema is the abstract DTD
illustrated in Figure 2.8. Abstract DTDs are not materialized, only the concrete ones are.

In the abstract DTD illustrated in Figure 2.8, all Person concepts correspond to the same notion
of person. But, each appearance of a concept is interpreted in the context of its parent node in the
tree. For example, the Person concept below the Man Made Object concept represents the
creator of the painting, while the Person concept below the Movie concept represents the director
of the movie. In a similar manner, the Place concept found below the Man Made Object
concept corresponds to the location where the object is exposed, while the same concept appearing
below the Event concept corresponds to the place where the event took place.

View Definition Language In contrast to standard data integration approaches where a view
is generally a query, in Xyleme a view is defined in terms mappings between abstract paths and

42

CHAPTER 2. SEMANTIC DATA INTEGRATION

Abstract DTD

Cinema

culture

Man_Made_Object

painter
Concrete DTD1

painting name biography

Movie Place Title Event Person

IS N N

Date Title Person City Name Date Place Name

Name City Name

name year technique location

year

description

Concrete DTD2

WorkOfArt

artist title gallery year

name period

Figure 2.8: An abstract and concrete DTDs for the Cultural Domain

concrete paths. A concrete DTD is described by a set of abstract to concrete path mappings where
abstract/concrete paths are specified in the abstract and concrete DTDs respectively.

Example Consider the abstract DTD and the concrete DT D1 illustrated in Figure 2.8. The

latter is mapped to the former by means of the mappings illustrated in Table 2.8. The concrete
DT D5 illustrated in Figure 2.8 is mapped to the abstract DTD by means of the mappings illustrated
in Table 2.9. From this point and for the examples, abstract paths are represented in this font and
concrete paths in this font.

St
Sy

Sy
Sy

culture/Man Made Object
culture/Man Made Object/Title
culture/Man_Made Object/Person
culture/Man Made Object/Place

culture/Man Made Object/Person/Name

L1l il

painter/painting
painter/painting/name
painter
painter/painting/location
painter/name

Table 2.8: Abstract to Concrete Path Mappings for Concrete DT D,

culture/Man Made Object
culture/Man Made Object/Title
culture/Man Made Object/Person
culture/Man Made Object/Place

culture/Man Made Object/Person/Name

L1l il

WorkOfArt

WorkOfArt /title
WorkOfArt /artist
WorkOfArt/gallery
WorkOfArt/artist/name

Table 2.9: Abstract to Concrete Path Mappings for Concrete DT D,

Mapping P3 in Figure 2.8 states that the abstract concept culture/Man Made Object/-

Person (i.e. the creator of an object) corresponds to the concrete concept painter in DT'D;.

Abstract and concrete paths in a mapping satisfy the following conditions :

e abstract/concrete paths are always specified from the root of the abstract/concrete DTD
respectively. For example, we cannot specify the abstract path Person/Name neither the

concrete path artist for DT Ds;

e abstract/concrete paths use always the child axis;

e finally, if an abstract path is mapped to a concrete path, then there does not exist a prefix
of the abstract path, mapped to two distinct prefixes of the concrete path. In short, there is

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 43

a single mapping between nodes in an abstract path to nodes along some concrete path. For
example, consider the two concrete paths painter and painter/influenced by/author. Then if
the abstract path culture/Man Made Object/Person is mapped to the concrete path
painter, it is not possible to map the same path to the concrete path painter/influenced by/-
author. This restriction is done basically for reducing the complexity of the rewriting algorithm
presented below.

Queries A user can formulate queries in terms of abstract DTDs or in terms of concrete DTDs
published in the Xyleme system. Queries specified in terms of the abstract DTDs are simple tree
queries. On the other hand, queries can be formulated in terms of concrete DTDs using the X-
OQL [9] query language, a full fledged XML query language, consistent with the requirements
published by the W3C XML Query Working group [211] and similar to several languages for semi-
structured data.

In this presentation of the Xyleme system we are concerned with the query language used to for-
mulate queries over the abstract DTDs. Consider for example the query illustrated in Figure 2.9(a)
which requests “the title of the objects exposed in the Orsay museum and their artists”. Variable
binding paths are a restricted case of XPath location paths [52] where only the child axis is used®.
More specifically, the binding paths of the query variables are paths which navigate downwards the
abstract DTD. Conditions can be specified for these paths by using the full text predicate contains.
No joins are allowed, i.e. if variable z is bound to path a/b and y to ¢/d one cannot express the
fact that £ = y. Furthermore, no restructuring, aggregate operations are allowed and the language
has no subqueries.

The structure specified in the query is used as a means to filter documents. For the previous query
the collection named culture contains documents conforming to a large number of heterogeneous
XML DTDs. The previous query concerns only those which have the structural pattern specified
in Figure 2.9(b).

culture
SELECT vy,z ‘
FROM culture/Man_Made_Object x Man_Made_Object
x/Title y, x/Person z, /N
x/Place w

WHERE w contains "Orsay" | Title | |Pers0n | Pla‘ce

"Orsay"

Query in an OQL like syntax (a) Query Tree (b)

Figure 2.9: A user query

Query rewriting Abstract DTDs are not materialized. Only the concrete ones are. In order
to provide answers to a user query formulated in terms of an abstract DTD, the query needs to be
rewritten to concrete queries expressed in terms of the concrete DTDs that belong to the domain of
the former. This is the standard problem of rewriting queries using views presented earlier, where

8No predicates are allowed and no functions are used.

44 CHAPTER 2. SEMANTIC DATA INTEGRATION

a view in Xyleme is a set of abstract-to-concrete path mappings. The answer to a user query is the
union of answers obtained by the concrete queries.

Query rewriting in Xyleme consists essentially of translating the abstract paths occurring in the
user query to the concrete paths of some concrete DTD as follows :

e In the first step the query is decomposed into paths which start from the root and arrive to
a leaf node;

e in the second step, for each abstract query path a, a set of concrete paths {c1,cz,...¢,} is
selected such that for all ¢;, there exist an abstract-to-concrete-mapping a — ¢;. The concrete
paths ¢;,1 < i < n belong to different concrete DTDs. The association of an abstract path
a; to a concrete path ¢; is called a translation. We have to note here that the algorithm
examines at the same time all concrete DTDs, and not one by one. This is an optimization of
the algorithm and is possible due to the presence of adapted index structures for the efficient
exploitation of the mappings. At this step, among the possible ways of combining the concrete
paths the algorithm selects those that :

1. form a subtree of a concrete DTD and

2. preserve the prefix relationship between the paths in the abstract DTD. Take for example
a translation which considers the abstract-to-concrete mapping a; — ¢;. If a; is a prefix
of a; and a; — ¢; is an abstract-to-concrete mapping, this is considered as a translation
of a; only if ¢; is a prefix of ¢;.

The result of this last step is the union of the concrete queries produced by the valid combi-
nations of the concrete paths (which belong to the same concrete DTD).

The rewriting algorithm proceeds as follows : after all abstract paths of the query have been
identified, the leftmost path is considered (an order is assumed for the query paths). The algorithm
finds a concrete path to which this abstract path is mapped to from the set of the abstract-to-
concrete-path mappings. If such a concrete path exists, then it is considered as a translation of the
abstract path. Then, the algorithm examines in turn all the abstract query paths which are prefizes
of the examined abstract path. It examines each prefix in turn and tries to find a concrete path to
which this is mapped to in the set of the mappings. If a concrete path is found, then the algorithm
verifies if this is a valid translation.

A translation is valid, if the prefix relationship between two abstract paths also holds between

their translations (i.e. the concrete paths). In other words, the algorithm does not accept trans-
lations where the prefix relationship between the abstract paths does not hold for their translated
concrete paths.
After all prefixes are considered, then the algorithm examines, as previously, the sibling abstract
leaf path. As far as the prefixes of this path are concerned, the algorithm proceeds as follows :
it examines all of them in turn, but stops when it finds an abstract path which has already been
considered. The algorithm ends, when all abstract paths are considered or when a translation which
is not valid is found.

Example Let us illustrate the algorithm for the query illustrated in Figure 2.9. We present
the rewriting for the concrete DT D, first and then for DT Dy. The result of the first step of the
algorithm is the set of abstract paths illustrated in Table 2.10. The order of the appearance of the
paths in the table is from the leftmost to the rightmost path in the query tree.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 45

Ay | culture/Man Made Object/Title
Ay | culture/Man Made Object

Az | culture/Man Made Object/Person
A4 | culture/Man Made Object/Place/

Table 2.10: Abstract paths for the user query in Figure 2.9

Let us now run the rewriting algorithm for the concrete DT'D;. The algorithm considers first
the leftmost path, and finds a concrete path to which this abstract path is mapped to. The abstract
path A; is translated into the concrete path P, from the mappings of Table 2.8.

Then, the abstract path As is considered, which is a prefix of the abstract path A;. It is translated
to the concrete path P; of Table 2.8. At this point, the algorithm checks whether this translation
is a valid one. More specifically, it checks that the prefix relationships between abstract paths
hold between their translations. This is a valid translation since the P; is a prefix of P, (i.e. path
painter/painting is a prefix of painter/painting/name).

In the third step the abstract path As is considered. From the set of mappings in Table 2.8 this is
mapped to the concrete path P3. This is not a valid translation : the concrete path P; (painter/-
painting) is not a prefix of the concrete path P3 (painter). The algorithm stops here and the remaining
abstract paths are not considered.

Let us now illustrate the rewriting of the same query for the concrete DT Dsy. The mappings are
illustrated in Table 2.9. The algorithm considers first the leftmost path, and finds a concrete path
to which this abstract path is mapped to : the abstract path A is translated into the concrete path
So from the mappings of Table 2.9.

Then, the abstract path As is considered, which is a prefix of A;. It is translated to the concrete
path S; of Table 2.9. This translation is a valid one, since the prefix relationship between the
abstract paths Ay and A; holds also for their translated concrete paths.

In the third step the abstract path Ajs is considered. From the set of mappings in Table 2.9 this is
mapped to the concrete path S3. Again, this translation is a valid one since the prefix relationship
between the abstract paths As and A3 holds also for their translated concrete paths. Last, abstract
path Ay is considered which is translated into the concrete path Sy.

Discussion : The complexity of the algorithm is linear in the number of mappings for an
abstract path. This is mainly due to the restriction that only one translation is considered for an
abstract path : if an abstract path is mapped to more than one concrete paths, only one of the
latter ones is considered for a translation. If the abstract path does not lead to a leaf node, the
“longest” concrete path is considered. This might lead to cases where no further translations can
be found. Moreover, the algorithm looses a number of answers, due to the constraint of preserving
the prefix relationship between the abstract and the concrete paths. Due to this restriction the
Xyleme rewriting algorithm is not complete. In the case where few answers are obtained there is a
relazation phase. There are two choices :

1. first, the constraint on the preservation of the prefix relationship between the abstract and
their corresponding concrete paths is relaxed. In this case, the complexity of the rewriting
algorithm is augmenting : all combination of mappings that have the same concrete root must
be considered.

2. second, all paths leading to conditional nodes are removed, and only the paths that lead to
projection nodes are considered.

46 CHAPTER 2. SEMANTIC DATA INTEGRATION

Conclusions Xyleme is a data warehouse aiming to store the XML data of the Web. The size of
data is an important factor which determined the choices of (i) the global schema (abstract DTD)
(ii) the view definition language, and (iii) the query rewriting algorithm. Let us examine each one
of the previous choices in turn :

Xyleme Global Schema : The Xyleme global schema is an abstract DTD i.e. a tree of concepts
rather than an XML tree (tree of elements and attributes). Each concept is interpreted in
the context of its parent concept. Hence, to capture the different contexts in which a single
concept appears, this must appear several times in the abstract DTD. Consider for exam-
ple the abstract DTD illustrated in Figure 2.8. Notice that the concept Person appears
two times : below the Movie concept to denote the director of the movie and below the
Man Made Object concept to denote the creator of the object.

Notice that the two Person concepts have exactly the same structure (i.e. represent actors)
but they are repeated in the XML DTD to capture the different roles that an actor may play
with respect to the context in which she appears.

In the Web context, where an abstract DTD summarizes a number of different but closely re-
lated structures, the repetition of the same (or similar structures) might lead to a considerable
overload of the DTD.

This problem is related to the absence of generalization/specialization hierarchies which forces
the repetition of structures common to several concepts. For example, if the abstract DTD
contains the concepts Painting and Sculpture which have the same structure, the latter
must be repeated in the XML DTD. There are also the following two issues : (i) precision of
mappings and (ii) formulation of queries.

Consider the abstract DTD illustrated in Figure 2.8. It contains concept Man Made -
Object which collects all cultural artifacts (paintings, sculptures etc.). In this case, one must
map different kinds of artifacts found in a source to a single concept. A solution would be to
add appropriate concepts for the specific kinds of artifacts in the abstract DTD. For example
one might add the abstract paths Man Made Object/Painting and Man Made -
Object/Sculpture for the concepts Painting and Sculpture.

A source can then map paintings to the first path and sculptures to the second path. The
tree of concepts found below Man Made Object must be repeated for the new concepts
added. Hence, generalization/specialization hierarchies can be ’simulated’ in the abstract
DTD. Nevertheless, the semantics of such hierarchies (commonality of structures and set
containment) are not explicit in such representations. Consider now the formulation of queries.
For the previous case, if a user looks for objects in general, then three queries must be specified :
one using the abstract path Man Made Object/Painting, a second using the abstract
path Man Made Object/Sculpture and finally a third one which uses the abstract path
Man Made Object. If the user specifies only the last query, then the rewriting algorithm
will not consider the concrete DTDs that have used the other abstract paths in their mappings.

View Definition and Rewriting Algorithm : Abstract and concrete paths use only the child
axis and are defined from the root of the abstract/concrete DTD. This assumption does not
restrict the sources that can be described?. Consider again the abstract DTD and the concrete
DT D, both illustrated in Figure 2.8. Notice that in the abstract DTD, creators of artifacts
are found below the artifacts that have created. In the concrete DTD, paintings are organized

9Except if elements in the concrete DTD are organized as top level elements and horizontal relationships are used
to connect these elements.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 47

below their painters. Mappings P, and Pj illustrated below, associate abstract with concrete
paths.

P, : culture/Man Made Object — painter/painting
P3 : culture/Man Made Object/Person — painter

Consider the following query which looks for objects.

Q: select m
from culture/Man Made Object m,
m/Person p

The rewriting algorithm will consider mapping Ps for a translation but not mapping P; since
the prefix relationship does not hold for these translations. Recall that translations accepted
are those where the prefix relationship between abstract and concrete paths is retained. Hence,
the algorithm misses answers.

Furthermore, the algorithm considers a single concrete path for the translation of an abstract
query path. This choice makes the complexity of the algorithm linear, nevertheless the al-
gorithm looses again answers. To conclude, we have to note here that the Xyleme rewriting
algorithm considers only full rewritings, i.e. if there is no translation for an abstract path in
a concrete DTD, then the latter is rejected from subsequent translations. We could consider
that some cases of incomplete rewritings are taken care by the query relaxation phase.

2.4.3 Infomaster

Infomaster [81] is an information integration system which provides integrated and uniform access
to multiple distributed, heterogeneous, structured sources, accessible on the Internet.

Global Schema and Source Descriptions Infomaster uses a three-level abstraction hier-
archy for modeling the global schema, and the sources. Users formulate their queries in terms of
interface relations. Data available in a source is also seen as a set of relations called site relations.
Between the former and the latter, Infomaster defines a set of base relations.

Interface and site relations are described in terms of base relations. Site relations are described as
views over the base relations following the local as view approach. Interface relations are described
as views on the base relations following the global as view approach. Both views are described in
Infomaster as Datalog rules.

Whereas in Information Manifold and most of the data integration projects following the LAV
approach, a source contains always part of the information, in Infomaster one is able to specify
whether a source contains part or all of the available information (i.e. whether a source is complete
or incomplete).

User Queries and Query Rewriting User queries are formulated in terms of the interface
relations. Query rewriting is a two-step process. In the first step (called reduction), the user query
is rewritten in terms of the base relations. This rewriting is done by replacing the interface relations
by their definitions. The resulting query is expressed in terms of the base relations only. In the
second phase (called abduction) the query is rewritten using the inverse rules algorithm for queries
expressed in terms of site relations. The resulting query is an executable query plan which only
refers to site relations. This is the traditional problem of answering queries using views.

48 CHAPTER 2. SEMANTIC DATA INTEGRATION

The idea behind the rewriting algorithm is to construct a set of rules that invert the view
definitions of the sources : i.e. these rules show how to compute tuples for the base relations from
tuples in the source relations.

Example Consider the base relations CREATES(NAME TITLE) and STYLE(TITLE, STYLE).
The first associates an artist (attribute NAME) with the artifact (attribute TITLE) she has created.
The second associates an artifact (attribute TITLE) with its style (attribute STYLE). Consider a
source s; which contains the relation ARTIST(NAME,STYLE). The relation stores the name of an
artist and the style of her artifacts. The description of site relation sq is :

ARTIST (name, style) C CREATES (title,name), STY LE(title, style)

The inverse rules algorithm works as follows : for every conjunct in the body of the view (i.e.
base relation), an inverse rule is defined. The inverse rules for the previous source description are
illustrated below.

CREATES(f1(name, X),name) :- ARTIST(name,X)
STY LE(f1(Y, style), style) - ARTIST(Y, style)

Intuitively the inverse rules have the following meaning : a tuple of the form (name, style) in the
extension of relation ARTIST, is a witness of the tuples in the relations CREATES and STYLE :

1. relation CREATES contains a tuple of the form (T, name) for some value of T,
2. the relation STYLE contains a tuple of the form (7, style) for the same value of T

In the example above the value of T is calculated using the functional term fi() (which is a non-
interpreted Skolem function) which takes as input a tuple (name, style) of the site relation ARTIST.
There might be several values of T" in the source that cause the tuple (name, style) to be in the join
of CREATES and STYLE, but at least one such value must exist. In general, for every existential
variable that appears in the view definitions, one functional term is created, which is used in the
heads of the inverse rules.

Consider for example a query) which looks for “the names of artists who have created an artifact
whose style is 'Oil on Canvas’ 7 :

Q(name) : —CREATES(title,name), STY LE(title,’ Oil on Canvas')
Suppose that the tuples contained in the site relation ARTIST(NAME,STYLE) are :
{('Van Gogh', Oil on Canvas’), (' GeorgesBraque', 'Water on Canvas')}

The inverse rules compute the following tuples for the base relations CREATES and STYLE :

CREATES: {(fi('"Van Gogh',' Oil on Canvas'),) Van Gogh')
(f1('Georges Braque', 'Water on Canvas’),! Georges Braque')
STYLE: {(f1('"Van Gogh' Oil on Canvas'), Oil on Canvas'),
(f1(Georges Braque', 'Water on Canvas’),! Water on Canvas')

When the query is evaluated against these tuples, the result is 'Van Gogh’. The rewriting of a
query @ using a set of views V is the Datalog program that includes the inverse rules for V and the

query Q.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 49

[80] demonstrates that the inverse rules algorithm returns the mazimally contained rewritings

of @) using the set of views, in time that is polynomial in the size of the query and the views. This
algorithm is modular in the sense that the inverse rules can be computed independently for any
query (at compile time). The inverse rules algorithm has common points with the bucket algorithm
of Information Manifold described previously : each inverse rule can be seen as a kind of bucket
which is computed independently of the query. The bucket algorithm for each query subgoal (which
is in fact a relation in the global schema) calculates the views that provide answers for it. In a
similar manner, the inverse rules algorithm, at compile time, finds for each global schema relation,
the views that provide answers for it.
The difference is that the bucket algorithm considers the conditions in the query for constructing the
buckets, whereas the inverse rules algorithm does not. On the other hand, the query rewriting ob-
tained by the inverse rules may contain views which are not relevant to the user query. Nevertheless,
inverse rules are computed only once.

But the inverse rules algorithm has a major drawback : the inverse rules compute the extensions
of the mediated schema relations, and then a user query is evaluated over these extensions. In this
case, the query re-computes the joins which have already been computed by the view. Consequently
the advantage of exploiting the materialized view is lost.

2.4.4 PICSEL

PICSEL [97] relies on a formalism combining the expressive power of rules and classes for designing
a rich global schema, thus enabling a fine-grained description of the contents of the sources. The
Description Logic language CARIN [137] is used to model both the domain of application and the
contents of information sources which are available and relevant to the domain of interest.

The CARIN Language In general Description Logic (DL) languages have been especially de-
signed for modeling and reasoning on complex data descriptions, and their expressive power is
well-suited for a natural conceptual modeling of the domain and of the sources. They vary accord-
ing to the constructors they allow for defining complex concepts and roles. They are associated with
inference algorithms that automatically structure the set of concepts, based on the existing sub-
sumption relations between pairs of concepts. When DL’s are viewed as a query language, concept
subsumption corresponds to query containment.

The CARIN language used in PICSEL, deals with concepts (unary relations) that represent sets
of objects, and roles (binary relations) which represent relationships between objects. Statements
in a CARIN knowledge base are definitions of concepts or inclusion statements between concepts
and roles. Relations not appearing in CARIN statements are called ordinary relations and can be
of any arity.

Concept definitions and concept inclusions are formulated using the constructors M (e.g. C; N
Cy, where Cy, Cy are concepts), value restriction (V R.C, where R is a role and C is a concept),
number restrictions ((> n R), (< n R)) and negation (= A, A is an ordinary concept).

The concept inclusions allowed in PICSEL are of the form C £ Concept Expression, where C
is an atomic concept and C7; M Cy C L, where C1,Cy are atomic concepts. A concept is called
atomic if it does not appear in the left hand side of a definition.

CARIN knowledge base includes also rules which are logical implications of the form : V X [p1 (X;)A
. Apn(Xy) = q(Y)], where X; is a tuple of variables or constants included in X. Such expressions
must be safe : a variable that appears in ¥ must also appear in X; U...UX,,. The p;’s are concept
names or expressions, or role names and ¢ must be an ordinary relation. Relations that do not

50 CHAPTER 2. SEMANTIC DATA INTEGRATION

appear in the antecedent of some rule are called base relations.

PICSEL Global Schema Given a vocabulary of concept names, the PICSEL global schema is
a set of complex relations defined using rules or concept expressions as presented earlier.

For example, if the vocabulary contains concepts Artist, Painting, and role Paints, then the new
concept Painter can be defined as follows'? :

Painter := Artist M (> 5 Paints) M (V Paints.Painting)

Rules define new n-ary relations. For example, the rule shown below defines the relation
Cultural _Artifact which contains, the name of the artist, the title of the object and its style.

Artist(A) A Painting(P) A
Name(A,name) A Paints(A, P) A Title(P,title) A
Style(P, style) = Cultural _Artifact(name, title, style)

Modeling the sources Each source is characterized by a set of source relations (or views). These
contain :

e a set of rules of the form u(X) = p(X), where p is a base relation. One such rule is defined
for each source relation, following the local as view approach. This rule states the kind of data
that can be found in the source.

e a set of constraints on the instances of the source relations. These constraints may state
inclusions between source relations and concept expressions, or integrity constraints on source
relations (for example, negation).

For example, suppose that a source s; contains Dutch artists. A second source ss contains
European painters in general. The views written for the sources are illustrated below.

Sources Rules Constraints
51 s1(X) = Artist(X) si C (V Born.Holland)
s2(X,Y) = Born(X,Y)
52 55(X) = Painter(X) s3 C (V Born.Europe)
s2(X,Y) = Born(X,Y)

Source s; returns artists and their place of birth. This is stated in the definitions of the source
relations s} and s?. The constraint involving source relation s} states that all artists in the source
are born in Holland. Source s9 returns painters and their place of birth. This is stated by the source
relations s3 and s2. The constraint on the source relation si states that all painters are born in
Europe. For the concepts the following hold : Holland C Europe and Painter T Artist.

Query Processing User queries are conjunctive queries expressed in terms of base relations (con-
cept expressions or role names). For example the user query Q(X) : —Painter(X) A Born(X,Y) A
Holland(Y") looks for painters born in Holland. PICSEL rewrites queries by finding conjunctions of
source relations (i.e. rewritings) which together with the base relations and the source descriptions
entail the initial query. The result of the rewriting process in PICSEL is a union of conjunctive
queries.

Query Q1 : —s1(X) A s3(X) A s2(X,Y) is a rewriting of @ since :

10This definition states that, a painter is an artist who has painted more that 5 paintings.

2.4. DATA INTEGRATION SYSTEMS FOLLOWING THE LOCAL AS VIEW APPROACH 51

st entails (Artist M V Born.Holland)(X)
s3 entails (Painter M YV Born.Europe)(X)

The conjunction si(X) A s3(X) entails Painter(X) A V Born.Holland(X). Given the semantics

of the V universal quantifier, the conjunction of s}(X) A s3(X) A s3(X,Y) entails that there exists

Y such that Painter(X) A Born(X,Y) A Holland(Y) is true. Hence,)1 is a rewriting of Q.
Query processing in PICSEL is done in the following steps :

e first the query is normalized (for example an expression of the form C(X) A C'(X) is rewritten
to (C N C")(X);

e second satisfiability is tested (of the definition of source relations and the concept expression
in the query);

e third, query unfolding is done by replacing the concept expression in the query by the source
relations that use it.

2.4.5 Agora

The basic purpose of the Agora system [149, 150, 151] is to support the querying and the integration
of heterogeneous relational and XML information sources. The global schema in Agora is an XML
DTD. Relational and XML resources are described as views on this global schema. Users formulate
XQuery queries [44] in terms of the global DTD.

Global Schema : The Agora global schema is an XML DTD. Nevertheless, a virtual, generic,
relational schema is used as an interface between the sources and this schema. It defines for each
XML type (element, attribute, processing instruction, comment etc.), a relational table. For exam-
ple, tables Element, Attribute are defined to represent XML element and attribute constructs.

This schema is generic, since it is constructed as a fully normalized version of the hierarchical
structure of an XML document. It is virtual, since the actual data resides in the sources and it is
never materialized.

The advantage drawn by such a generic schema is that since the generic relational schema is
very close to the structure of the XML document, query translation from XQuery expressions to
SQL queries is straightforward and is independent of the XML-to-relational mapping.

Source Descriptions and Query Rewriting : Relational and XML resources are modeled as
SQL queries over the generic relational schema.

The basic idea behind those local-to-global schema mappings, is the following : each relation
in a relational data source is considered as an XML document. Each attribute of the relation is
modeled as an XML element, child of the root node of the XML document.

Similar to the relational source, an XML resource is also modeled by an SQL query formulated
in terms of the generic relational model. In order to exploit a data source stored as an XML file,
a DOM wrapper exports relational tables, described as views over the virtual generic relational
schema (just like tables from relational data sources).

User Queries and Query Rewriting : The user queries the underlying sources using
XQuery expressions formulated in terms of the XML DTD. These are translated into SQL queries
expressed in terms of the generic relational schema. The steps before query rewriting are the fol-
lowing :

52 CHAPTER 2. SEMANTIC DATA INTEGRATION

1. first the query is normalized [149] and brought to a form which is best suited for query
translation;

2. given this normalized form, the XQuery expression is translated into an SQL query over the
generic relational schema;

3. in the last step, the SQL query over the generic relational schema is rewritten into SQL queries
using the relational views.

The rewritten queries are then forwarded to the LeSelect!! data integration engine which is respon-

sible for the optimization and the distributed execution of the SQL query.

The Agora system does not define new algorithms for the rewriting of SQL queries using re-
lational views. As common in the local as view approach, Agora returns mazimally contained
rewritings. FEven if an XML DTD is used as the global schema, an extended use of the relational
model is done and query rewriting is based on existing methods and algorithms for rewriting queries
using SQL views. The basic contribution is the introduction of rewriting rules for the normalization
of XQuery expressions before their translation to SQL queries.

2.5 Data Integration Systems following the Global as View ap-
proach

In this section we present the Tsimmis system [46], one of the first to follow the global as view
approach to data integration. The MIX [22], Nimble [78] and e-XMLMedia [95] systems are described
in Section 2.6. Another system that follows the global as view approach is the MOMIS [25] system
where a very expressive Description Logic language (ODL-I3) derived from ODMG is used for
describing the schemas of the sources to integrate. In MOMIS the global schema is constructed by
integrating the local sources schemas.

2.5.1 Tsimmis

The Tsimmis [46] system is one of the first data integration system based on the mediator-wrapper
architecture. A simple view of the system architecture is shown in Figure 2.10.

OEM (Object Exchange Model) [225] (a lightweight object model) is used to convey information
between the components of the system. The mediator is specified using MSL (Mediator Specifi-
cation Language) [171]. It is a logic-based, object oriented language that can be seen as a view
definition language, targeted to the OEM data model. Wrappers are specified using WSL (Wrapper
Specification Language). It is an extension of MSL, supporting the description of source contents
and source query capabilities.

End user queries are written in LOREL [5], an extension of OQL [53] targeted to semi-structured
data. LOREL queries are translated to MSL queries, which are forwarded to the mediator. In the
following we present in short the OEM data model, and give an example of MSL specification rules.

OEM : Data represented in OEM is self-describing meaning that it can be parsed without any
reference to an external schema. It is possible to see OEM as “object oriented” in the sense that
the fundamental concept of the model is an object. In contrast to object oriented models, the type
system of OEM is elementary : an OEM object has an object-id, a label, a type and last a value.

111 6Select query execution engine :http://www-caravel.inria.fr/LeSelect

2.5. DATA INTEGRATION SYSTEMS FOLLOWING THE GLOBAL AS VIEW APPROACH53

MSL or Lorel
|
Generator
MSL

¢

Wrapper

Information

Source

Figure 2.10: Tsimmis Components

The object-id may be constructed by the mediators or by the source, to be an expression de-
scribing where the object comes from. Unlike object-oriented identifiers, an object’s id may be
(i) optional, (ii) local to a query, and (iii) not necessarily persistent. Label tells what the object
represents (in a rough way, its 'class’). Nevertheless, objects with the same label may have different
subobjects, or even different types. The type of an object can either be an atomic type such as
integer, string, or set of OEM objects. Last, its value can be an atomic value if the object is atomic,
or a set of OEM objects. An OEM object is a triple < oid label value >. For example the triple

<456 cultural_artifact { <title ’Soleil Levant’>}

is an OEM object whose object identifier is 456, its label is cultural_artifact and its value is the
set { <title ’Soleil Levant’> }. <title ’Soleil Levant’> is an OEM object whose label
is title and value is *Soleil Levant’. This object is not associated with an object identifier.

Mediator Specification : A mediator is specified using MSL (Mediator Specification Lan-
guage) [171]. Let us illustrate by an example the specification of a mediator in Tsimmis. Consider a
mediator that exports information for cultural artifacts. The mediator is specified by the following
two rules :

(R1)<art(ID) cultural_artifact { <title T>}>@m :-
<artifact { <artifact_id ID> <title T>}>@s1

(R2)<art (ID) cultural_artifact { <year Y>}>@m :-
<art_object { <art_object_id ID> <year Y>}>Q@s2

This mediator exports objects with label cultural_artifact. The cultural_artifact objects
fuse the objects exported from sources s1 and s2 and have the same identifier.

The left hand side part of each of the above rules defines a view exported by the mediator. Each
rule consists of a head, followed by a :- and a tail. The head describes the structure of the mediator

54 CHAPTER 2. SEMANTIC DATA INTEGRATION

object, and the tail describes the conditions (patterns) that must be satisfied by the source objects.
The objects exported by the sources and by the mediator are OEM objects.
The first rule states that :

1. if there is a pair of bindings #d and ¢ for variables ID and T such that source s1 contains a
artifact object that has a title sub-object with value ¢ and a artifact_id sub-object with
value id,

2. then the mediator exports a cultural_artifact object with object-id art (¢d), which has a
title sub-object with value t.

For the second rule, the same holds. Notice that none of these rules forbids the addition of new
sub-objects to the cultural_artifact objects specified by other rules.

MSL allows rules to incrementally and independently insert information to already exported objects.
The semi-structured nature of OEM allows this incremental specification, which would not be the
case if there existed some rigid schema (as is the case of Information Manifold and Infomaster
systems).

Query Evaluation : User queries are expressed in Lorel [5] query language. They are transformed
to MSL queries which are then forwarded to the mediator. Let us illustrate by a simple example
how query evaluation is done in Tsimmis. Suppose that a user looks for “cultural artifacts whose ID
s 4567. In this case, the MSL query is illustrated below.

(Q1)<art(’456?) cultural_artifact V> :- <art(’456’) cultural_artifact V>@m

The object pattern that appears in the query tail is matched with the head of the mediator
specification rule. After this matching, the tails of the mediator specification rule are evaluated
against the head of the wrapper specification rules. For query Q1, the tails of queries Q2 and Q3,
illustrated below are sent to the wrappers of sources s1 and s2 respectively.

(Q2)<art(’456°) cultural_artifact { <title T>}> :-
<artifact { <artifact_id ’456°> <title T>}>@s1

(Q3)<art(ID) cultural_artifact { <year Y>}> :-
<art_object { <art_object_id ’456’> <year Y>}>@s2

Wrappers translate these queries to queries evaluated by the sources. When the answers are
obtained, they are transformed using the wrapper specification rules to OEM objects. These are
forwarded to the mediator. Finally, two answer objects obtained from different sources are fused
into a single cultural_artifact object if these share the same identifier.

Semantic keys : An important assumption in the Tsimmis system for performing object fusion
is that sources to be integrated have a common way to identify their objects (for example sources s1
and s9 identify their artifact and art_object objects by means of the sub-object ID). A number
of interesting issues associated with object fusion have been identified in [170] :

Fusion with Canonical Forms : Keys may be represented differently in the sources. This is the
problem of different naming conventions presented earlier, common to all data integration
scenarios. To resolve this problem, data must be normalized using a controlled vocabulary or
a lericon that provides synonyms or equivalences between values. A similar problem concerns

2.6. BIBLIOGRAPHIC NOTES 95

the structure of data. For example one source might represent the name of a person as the pair
(first name, last name) while a second source might return a simple string for the person’s
name. In this case, more complex solutions must be used. For example, one can define a
function that creates a single value for the name of a person out of the two values in the pair
(first name, last name).

Fusion in the absence of keys: In this case, sources might not use keys to identify their objects.
To decide, for example, if two person records represent the same real person, one needs to
apply a complex function that compares their names, addresses, year and place of birth. The
output, is not a canonical key, but mostly a record that combines the available information.
The problem here is that fusion can have an unbounded number of steps. This depends on
the nature of the values to be compared (if they are complex, or simple).

Another case is that sources might also identify differently their objects. For example, a source
might identify a person by her name, and the second by her social security number. This case,
can be considered as more specific than the first one, and therefore a similar solution can be
applied.

2.6 Bibliographic Notes

MIX MIX (Mediation of Information using XML) [22] is a successor of Tsimmis. The difference
with Tsimmis is that XML (instead of OEM) is used as the language to represent (i) the global
schema and (ii) to exchange data between the mediator and the (XML) sources. More specifically,
instance and schema information is represented entirely as XML documents and XML DTDs re-
spectively. The global schema is specified manually by the engineer in charge and describes how
the different sources are integrated to the MIX mediator, following the global as view approach.

The query language of MIX is XMAS (XML Matching And Structuring Language). This lan-
guage uses features from several XML query languages such as XML-QL [71], Yat [49], MSL [225]
and UnQL [33]. XMAS allows object fusion and pattern matching on XML data. Additionally,
XMAS features powerful grouping and order constructs for generating new integrated XML objects
out of the existing ones. XMAS queries are formulated in terms of the mediator schema, and are
rewritten into XMAS queries that refer to the source views exported by the wrappers. The XMAS
queries are then sent to the wrapped sources for evaluation.

Nimble Nimble [78] is a commercial system that follows the global as view approach for the
integration of XML sources. Similar to the MIX system, Nimble is based entirely on XML. In
addition to relational data, data from hierarchical stores and data in structured files can also be
handled by the system using appropriate wrappers. The architecture of the Nimble system is
based on a set of mediated schemas, which are defined as wiews over the schemas of the data
sources. Similar to Tsimmis, the mediated schemas can be built in a hierarchical fashion, that is,
a mediated schema can be defined on another mediated schema or on an exported source (local)
schema. The query language used by the Nimble system is XML-QL [71]. When a query is posed
to the integration engine, it is broken into multiple source queries based on the target data sources.
The compiler, translates each such query into the appropriate query language for the destination
source (for example SQL queries for a relational source).

e-XMLMedia Data Integration Suite [95, 201] is a product which supports (i) the integration
of heterogeneous data sources under an XML schema and (ii) the efficient querying of the integrated

56 CHAPTER 2. SEMANTIC DATA INTEGRATION

information using XQuery [44]. e-XMLMedia supports the integration and querying of sources such
as legacy, virtual semi-structured and finally loosely structured ones. It uses XML as the integration
model and data exchange format between the different system components and processes XQuery
queries in real time by supporting maximum delegation of subqueries to the sources. The two basic
components of the system is the Repository and the Mediator.

The e-XMLMedia Repository stores XML documents in object-relational DBMS and provides
XQuery access to retrieve the XML document fragments. The storage of documents is done by
mapping the XML structure to a collection of relational tables. There are two kinds of mappings :
the generic and the specific schema-based. In the former the tables are automatically generated
whilst in the latter mapping directives should be given by the source administrator. The Repository
is also able to store XML documents which have no schema through the automatic creation of
appropriate metadata, similar to data guides. The querying of the repository is done by means of
XQuery expressions.

The e-XMLMedia Mediator offers a uniform view and query access of heterogeneous informa-
tion sources. The mediator (and the wrappers) handle collections of XML documents, where each
collection is identified by a name. A collection originates from a wrapped data source or from even
a relation in a relational data source in the repository. When such a collection is ’published’ to the
mediator, appropriate metadata are automatically generated. These record the paths in the XML
documents of the collection. The user queries these collections by formulating XQuery expressions
in terms of an XML schema which offers a unique view of the underlying data. The schema is
the union of all the schemas and the paths that exist in the collections. Query processing consists
of decomposing the user query (expressed in terms of the XML schema) into mono-source XQuery
queries. Each of them is expressed in terms of the structure of a single collection. The decomposi-
tion is done using the metadata available for the collections. These are used to verify that a path
present in a user query exists in a collection and to type the query expressions. When each of the
decomposed queries is evaluated against the source, the results are returned in the form of DOM
trees of objects.

The mediator is responsible for (i) the localization of relevant sources, (ii) the amount of sequen-
tial and parallel execution using the binding relationships expressed by the query join predicates,
(iii) the amount of query processing offloaded onto the data source and (iv) the structuring of the
results in an integrated XML document according to the RETURN clause of the initial XQuery.

SIMS SIMS [47] was one of the first data integration systems. SIMS considered the integration
of structured sources and used the LOOM [145] Description Logics system to manage the global
schema, and the source descriptions.

The sources are integrated, by specializing existing global schema classes (LOOM classes) and
queries are defined in terms of the latter. Query rewriting is performed using reformulation oper-
ators of the LOOM system. Given a query, the system uses the source descriptions to first select
the databases that possibly answer the query. This is done by using the LOOM operator select
database(). If there is no database that provides answers to the query, then the query is refor-
mulated into one using more general concepts by the operator generalize concept(). Last, the
attributes requested in the original query are examined. If for example the query requests all ac-
tors (instances of concept Actor) and their paintings (instances of concept Painting), then this is
reformulated into one requesting painters instead of actors. This is due to the fact that the role
paints used in the query is defined in concept Painter and not in concept Actor. Another operator
is partition concept () which considers set coverings for 'breaking’ the query into sets of queries.
Consider for example a query which requests instances of concept Actor. If concepts Painter and

2.6. BIBLIOGRAPHIC NOTES o7

Sculptor are subconcepts of Actor and are disjoint, then a query requesting actors will break down
to a union of two queries, one requesting painters and the other sculptors. Given the generated
queries, the LOOM system considers the evaluation of the queries as a planning problem.

Ontology-Based Data Integration Systems OBSERVER [154] is one of the first systems to
use ontologies for data integration. The basic assumption in OBSERVER is that each resource is
described by an ontology. These ontologies are linked explicitly by the inter-ontology relationships
(synonymy, hypernymy, and hyponymy). By these relationships information in the repositories
is linked as well. These ontologies can be considered as source descriptions. In OBSERVER,
query evaluation is performed as follows : a user selects an ontology and expresses her query in
terms of it. The system then accesses the underlying sources described by the selected ontology
to answer the user query. If the user is not satisfied by the answers, then the system selects a
different ontology. In order to translate the user query into the newly selected ontology, the two
ontologies (user and target ontology) are integrated by taking under consideration the inter-ontology
relationships between them. This integration takes place in a CLASSIC [28] knowledge base. An
apparent problem that arises here is that if ontologies are large, and if they contain overlapping
concepts then integration is not a straightforward process. Authors assume that ontologies and
inter-ontology relationships are small.

Carnot [58] uses the knowledge base CYC [134] for describing source contents. CYC knowledge
base is a formalized representation of a “vast quantity of fundamental human knowledge” and contains
about 10° general concepts and 10° assertions on these concepts. An information source is integrated
in Carnot by providing mapping rules between the source structures and CYC structures in the
form of articulation axioms. User queries are formulated using the CYC structures, which are then
translated into local structures through the established mapping rules.

OntoSeek [106] supports content-based access to the Web, designed for content based information
retrieval from on-line yellow pages and product catalogs. OntoSeek combines an ontology driven
content matching facility with a moderately expressive representation formalism. In OntoSeek the
ontology incorporated is Sensus [126] which is based on WordNet [161]. Resources are encoded as
linguistic conceptual graphs, and OntoSeek allows the use of arbitrary expressions for this process,
resolved using the previously mentioned ontologies. Similarly to resource descriptions, queries are
also encoded as graphs and the problem of query answering is reduced to graph matching. The
bottleneck of this approach is that it permits semantically not valid expressions, although they
are perfectly linguistically valid. Moreover, Sensus contents do not often correspond to real world
relationships between classes of entities in the world making difficult the precise encoding of infor-
mation. OntoSeek also states the difficulty introduced by the absence of defining explicitly that
concepts of the Sensus ontology are disjoint. For this reason, authors state that it is important to
introduce a top level ontology that will have a structuring role over the Sensus ontology.

58

CHAPTER 2. SEMANTIC DATA INTEGRATION

Chapter 3

Generation of Metadata Schemas

In this chapter we demonstrate our approach for the creation of metadata schemas by the integration
of pre-existing ontologies and thesauri.

Section 3.1 gives a formal definition of the notions of thesaurus and ontology and Section 3.2
describes our approach for the construction of metadata schemas by the integration of these struc-
tures.

In Section 3.3 we illustrate two applications for the constructed metadata schemas. The first
is the creation of RDF' [179] schemas (Section 3.3.1). The second is the definition and creation
of source content descriptive metadata (Section 3.3.2). Section 3.4 presents two object oriented
implementations of a metadata repository. Our approach was validated by a National project
between the CNAM (Conservatoire National des Arts et Métiers) and the French Ministry of Culture
and the result of this collaboration is the ELIOT prototype presented in Section 3.5.

3.1 Ontologies and Thesauri

3.1.1 Thesauri

A thesaurus is a set of controlled terms organized with the fixed set of associative, equivalence and
hierarchical relationships. Hierarchical relationships include the generic (btg), whole-part (btp) and
instance (bt) relationships. Most of the thesauri use the btg relationship which is transitive, carries
subset semantics and is the most frequent relationship in monolingual thesauri. In our work we
consider thesauri constructed with the btg relationship which organizes terms related to a specific
subject into directed acyclic graphs, referred to as hierarchies. Two examples of btg-hierarchies are
shown in Figures 3.1 and 3.2. For example, in Figure 3.1, term paintings is a broader term of oil
paintings, with the interpretation that all objects that belong to the extension of the latter, belong
also to the extension of the former. A hierarchy is defined by its root term, a term with no broader
term (e.g. <wisual works> in Figure 3.1). We only assume mono-hierarchical thesauri, i.e. each
term has exactly one broader term.

In the following, a thesaurus is considered as a forest of thesaurus hierarchies. Although the
following definition of thesauri is not complete w.r.t. all possible term relations of existing thesauri,
it is sufficient for creating rich metadata schemas.

Definition 3.1.1 A thesaurus hierarchy H is a rooted tree, H = (D, E) where :

e D = {tg,t1,t9,...t,} is the set of descriptors in H (nodes of the tree); to is a distinguished
descriptor, called the root of H;

59

60

CHAPTER 3. GENERATION OF METADATA SCHEMAS

A

oil paintings

< paintings by material or technique > < paintings by form >

< visual works >

A

I
< visual works by medium or technique >

7N
-7 A N
e 1 N
paintings sculpture drawings
7N

~
~

~

-
-

A

miniatures —=> broader term generic relationship

Figure 3.1: Part of the Art & Architecture Thesaurus hierarchy Visual Works which collects all
artifacts that are used for visual communication (paintings, sculptures, photos).

A

<modern european fine arts styles
= A SN

|
impressionism '

first-impressionism

- =

<modern european styles and movements>

post-impressionism

broader term generic relationship

<styles and periods>

<styles and periods by region>

< international post-1945 styles and movements >

A A
| |

european < post-1945 fine arts styles and movements >
A A

|
<european styles and periods>

|
abstract impressionist

Art Deco <renaissance baroque styles and periods>
A
|
and movements > renaissance
ST\ S
- A N

early renaissance ' high renaissance
late renaissance

Figure 3.2: Part of the Art & Architecture Thesaurus hierarchy Styles €& Periods which collects all

styles, periods and movements of

Art in the western world.

3.1. ONTOLOGIES AND THESAURI 61

e E is a binary relation on D (i.e. EC D x D).

If (¢,t') € E, then (t,t') is an edge of H. Edges denote the btg relation between descriptors. An
edge (t,t') defines that ¢ is related by a btg relationship to ¢'. In this case t is the broader term of
t' in the hierarchy and ' is called the narrower term of ¢.

A sequence of edges (t1,t2), (t2,t3) ... (tn—1,ty) is called a btg-path from t; to t,. For all terms
ti,tj, j > 1, if there exists a btg-path from ¢; to ¢;, then all the instances in the extension of ¢;
are in the extension of ¢;. btg defines a partial order between terms in a hierarchy : it is reflexive,
antisymmetric and transitive.

Definition 3.1.2 A thesaurus is a forest of thesaurus hierarchies. Let {Hi, Ha,... H,} be the set
of hierarchies, where H; = (D;, E;) and ¥ 1,5, @ # j then D;N\ D; = (. Then a thesaurus T, is a
pair T = (D, &) where :

e D is the set of descriptors in T : D = Jy<;<,, Di;

o & is the set of edges in T : € = U1<j<p Bis

3.1.2 Ontologies

Ontologies are defined independently of the actual data [103], reflect a common understanding of
the semantics of the domain of discourse and are used to share and exchange semantic information
between sources and users [102]. They are declarative specifications of the basic concepts and roles
in an application domain. In our work we consider ontologies with inheritance relations (isa) and
typed roles, sufficient to describe a large class of domains [105].

Definition 3.1.3 An ontology is a 5-tuple O = (C,V, R, A,isa) defined as follows :

1. C = {c1,c9,...,c} is a set of concepts, where each concept c; refers to a set of real world
entities (concept instances),

2. V is a set of atomic types (Integer, String, etc.),
3. R={r1,re,...,mm} 15 a set of binary typed roles between concepts,

4. A={a1,a9,...a;} is a set of attributes defined between concepts in C and atomic types in V,
and

5. isa 1is an inheritance relationship defined between concepts. It carries subset semantics and
defines a partial order over concepts.

Ontologies are represented as directed, labeled graphs where nodes correspond to concepts and
atomic types, and arcs correspond to roles, attributes and ¢sa relationships. Figure 3.3 illustrates
an example ontology, inspired from the ICOM/CIDOC Reference Model [112] which is used to
describe cultural information. The ontology describes concepts such as Man Made Object, its
subconcept lconographic Object, Actor and its subconcept Person. The ontology describes actors
(persons, organizations, instances of concept Actor), activities (instances of concept Activity) and
man made objects (instances of concept Man Made Object). The fact that some actor carries out
some activity is represented by the role carried out between concept Actor and concept Activity.
A man made object has a title, represented by the attribute has_title of type String. Role of-
period defined in concept Man_Made Object describes that an object belongs to some period (like

62 CHAPTER 3. GENERATION OF METADATA SCHEMAS

renaissance, moyen age). Concept Iconographic_ Object, subconcept of Man Made Object, inherits
the roles and attributes defined in the latter. The fact that iconographic objects have a style, is
represented by the role style defined between concepts lconographic _Object and Style. For each role
r(c, d) defined between concepts ¢ and d, its inverse denoted by r~ (d, c) is defined. For our example
ontology, the inverse of role carried out is carried_out_ by. Inverse roles are depicted in the figure
within parentheses.

of _period
Period
(period_of)
i roduced
Actor _carried_out_ Activity _produced Man Made Object
f (carried_out_by) (produced_by) A has title
| I String
| |
Person > String ! style
has name Iconographic Object ————= Style
(style_of)

Figure 3.3: A simple cultural ontology.

3.2 Creating Metadata Schemas from Ontologies and Thesauri

In this section, we present our methodology for the construction of metadata schemas by the inte-
gration of eristing ontologies and thesauri.

Recall that ontologies represent the basic notions of the domain of interest by means of concepts,
roles and attributes. Thesauri consist of hierarchies of terms which are constructed using a priori
defined semantic relationships which are restricted to hierarchical, equivalence and associative.

Let us consider the Art & Architecture (AAT) [1] thesaurus which organizes terms in facets,
i.e. general categories of interest in the art and architecture domains. Although this thesaurus
contains extended hierarchies of terms, it does not contain semantic relationships (other than the
related term relationship presented in Section 2.1.2) which allow to navigate from one hierarchy
to another. Consider for example the record for descriptor paintings shown in Figure 3.4. The
descriptor belongs to the hierarchy Visual Works. The scope note gives additional information
about the term. Remark that descriptors paintings and painting (image-making) are connected by
the related term relationship. The latter belongs in the Processes and Techniques Hierarchy of AAT.
The related term relationship is used here to associate artifacts with the processes used for their
creation.

Consider the ULAN (Union List of Artist Names) [203] thesaurus which is an example of a
thesaurus adding semantic information in the form of natural text comments. Figure 3.5 shows the
record which contains information about the painter Dossi Dosso.

The information described in the record cannot be represented using the fixed set of semantic
relationships (i.e. hierarchical, associative and equivalence) encoded in a thesaurus. For example,
consider entry life dates (line 5) in the record which contains information about the dates of
death and birth of the painter (i.e. the dates associated to these events). Moreover, the short
comment next to the painter’s name (line 2) gives additional information about the place where
these events happened. The problem here is that since this data is recorded as full text and not
represented explicitly (for example by means of relationships), precise structured queries cannot be
expressed.

3.2. CREATING METADATA SCHEMAS FROM ONTOLOGIES AND THESAURI

Descriptor: paintings

Term ID: 33618

Hierarchy: Visual Works [VC]

Scope note - Use for unique works in which images are formed
primarily by the direct application of pigments suspended in oil,
water, egg yolk, molten wax, or other liquid, arranged in masses of
color, onto a generally two-dimensional surface.

Synonyms and spelling variants {UF}: pictures

Related concepts {RT} : painting (image-making)

Figure 3.4: The record for descriptor paintings of the AAT

1. Record ID : 9329
Dossi Dosso (Italian Painter;born in Ferrara 1490;died in Ferrara 1541-1542)
3. note : Although early biographies, including Vasari, noted a birth

date of 1475, modern scholars agree that Dosso cannot have

been

N

4. Names :
Dossi Dosso (prefered)
De Lutero, Giovanni,
Dossi di Ferrara

5. 1life dates:
born 1490, active from 1512, died 1542

6. roles:
painter, draftsman

7. geographical locations
Ferrara (Italy)
Venice (italy)

8. related people
student of : Lorenzo Costa di Ottavio, from 1507

Figure 3.5: A record of the ULAN thesaurus

63

64 CHAPTER 3. GENERATION OF METADATA SCHEMAS

Consider now the entry related people (line 8). This information is recorded in the ULAN
thesaurus by the associative relationship (rt). Nevertheless, one can see that the thesaurus devel-
opers have specified that Dosso was the student of Lorenzo Costa di Ottavio and not his teacher for
example. The same relationship is used to describe that a person belongs to a group of people who
worked together to produce an artifact, to record the role of a person, and finally to represent her
membership in the group.

The above examples demonstrate that thesauri record semantic relationships between terms
either using the related term relationship or by introducing natural text comments in term records.
On the other hand, observe the example ontology presented in Figure 3.3. This ontology contains
concepts that describe the basic notions in the domain of interest (e.g. Man_Made_Object and
Style), but does not contain more specific notions (e.g. paintings or impressionism). But, it contains
rich semantic relationships between the concepts.

To conclude, we can make two observations :

e the first is that with thesauri, one can express at a fine granularity level the semantics of the
source contents using precise terms. But the relationships between these terms are fixed, and
richer semantic relationships do not exist.

e the second is that ontologies allow one to create structured source descriptions. But, the level
of detail of the ontology as far as concept hierarchies are concerned, is shallow compared to
that of thesauri.

For thesauri, the user can express queries using very precise terms, but one cannot express structured
queries. For example she can express queries such as “painting and Van Gogh” but not queries such as
“painting created by Van Gogh”. The latter query is more specific than the former since it determines
explicitly the relationship between terms “painting” and “Van Gogh”.

To conclude, the idea is to produce metadata schemas that incorporate the two views of infor-
mation :

e ontologies that specify rich semantic relationships in the domain of discourse and
e thesauri which incorporate precise semantics specified in term hierarchies.
The construction of a metadata schema is done in three steps :

1. In a first step, one specifies for each ontology concept, a set of terms, considered as its sub-
concepts. This step is similar to establishing inter-schema assertions [39, 58| for database
schema integration. The result of this step is a connection relation.

2. In a second intermediate step, for each concept, a concept thesaurus is automatically extracted.
This thesaurus contains only the terms connected to this concept by the connection relation,
along with btg (broader-generic) relationships derived from the initial thesaurus. This process
can be done automatically and does not require the knowledge of the ontology.

3. In the final step these thesauri are integrated with the ontology to produce a metadata schema
consisting of (1) a structural view provided by the ontology, (2) connection relations between
concepts and terms, and (3) thesaurus hierarchies.

Our approach can be applied for the construction of metadata schemas independently of the final
formalism used to represent them.

3.2. CREATING METADATA SCHEMAS FROM ONTOLOGIES AND THESAURI 65

Step 1 : Connecting Terms to Concepts In this step, thesaurus terms are “connected” to
ontology concepts. These connections have inclusion semantics and are represented by a binary
connection relation Con C D x C where D is the set of descriptors in thesaurus 7, and C' is a set
of ontology concepts in ontology O.

An example of a connection relation is presented in Figure 3.6. Terms impressionism, post-
impressionism and abstract impressionism of the Art & Architecture Thesaurus hierarchy Styles
& Periods (Figure 3.2) describe specific styles (ontology concept Style in Figure 3.3). Term first-
impressionism of the same hierarchy describes both a style and a period (concepts Style and Period
respectively). Similarly, term renaissance and its narrower terms in the Styles & Periods hierar-
chy describe different types of styles and periods (ontology concepts Style and Period respectively).
Finally, terms paintings, oil paintings and sculpture of the Art €& Architecture thesaurus hierarchy Vi-
sual Works (Figure 3.1) define different kinds of iconographic objects (ontology concept lconographic
Object).

Term Concept Term Concept
IMpressionism Style paintings Iconographic Object
post-impressionism Style o1l paintings Iconographic Object
abstract impressionism | Style sculpture Iconographic Object
renaissance Style early renaissance Style

TeNaiSsSance Period early renaissance Period

late renaissance Style high renaissance Style

late renaissance Period high renaissance Period
first-impressionism Period first-impressionism | Style

Figure 3.6: A connection relation Con for AAT hierarchies Styles & Periods, Visual Works and
ontology concepts Style, Period and lconographic Object.

In the previous example, we do not connect the whole thesaurus hierarchy Styles & Periods
to concepts Style and Period. This selective approach, i.e. relating thesaurus terms to ontology
concepts explicitly, is chosen for several reasons. An obvious reason is that some terms could be
out of the scope of the application that has to be described by the resulting metadata schema.
For example, if some application is only concerned with paintings, then terms referring to artifacts
other than paintings (e.g. sculpture, drawings) need not be considered in the resulting schema.
Another reason is that some terms (e.g. guide terms in [114, 194|) are used to organize thesaurus
hierarchies (e.g. term <wisual works by medium or technique> in Figure 3.1) and might have no
use in describing information. Finally, another important reason is that thesaurus hierarchies might
contain terms which can be connected to different concepts. For example, terms of the Art &
Architecture thesaurus hierarchy Styles & Periods (Figure 3.2) describe styles (e.g. impressionism),
periods (e.g. art deco), or both styles and periods (e.g. renaissance). Connecting terms to concepts
in a selective manner allows users to clarify between the multiple semantics of a term (e.g. as in
the case of homonyms) and consequently resolve semantic ambiguities at the thesaurus level.

Step 2 : Thesaurus Extraction After having defined the connection relation between terms
and concepts, a thesaurus, called concept thesaurus is extracted for each concept present in this
relation. This is done in two steps :

e First, a labeled thesaurus denoted by 7, is created out of the connection relation Con C DxC
and thesaurus 7. Each term in 7, is labeled with the set of concepts to which it is connected

66 CHAPTER 3. GENERATION OF METADATA SCHEMAS

in relation Con. Observe that a term can be connected to several concepts. For example,
in the connection relation illustrated in Figure 3.6, term first-impressionism is connected to
both Style and Period concepts. In this case, the label of term first-impressionism is the set
of concepts {Style, Period}.

e Second, a selection operation o is defined, which constructs from a labeled thesaurus 7, and
a set of concept names S C C, a new labeled thesaurus which contains (1) the set of terms in
T whose labels contain at least one concept in S and (2) btg relations between these terms,
induced by the btg relations in the initial thesaurus.

Creation of the labeled thesaurus 7,

Definition 3.2.1 Let T = (D,€&) be a thesaurus, and O = (C,V, R, A,isa) be an ontology. Let
Con C D x C be a connection relation between descriptors in T and concepts in O. A labeled
thesaurus Ty is a 4-tuple, Ty = (D,&, \,C) where :

e D is the set of descriptors in T ;
e & is the set of edges in T ;
e C is a set of concepts in O (C C C);

e) is a labeling function X : D — 2€, such thatVt € D and ¢; € C, c; € M) & (t,¢;) € Con.

Definition 3.2.2 Let Ty = (D,&,\,C) be a labeled thesaurus. Let S C C be a set of concepts. The
selection operation o(S,Ty) returns a new labeled thesaurus Ts = (Dgs,Eg, s, S) where :

1. Dg is the set of descriptors, Ds C D where V't € Dg, At)NS £ 0;

2. let t,t' be two descriptors in Dg. FEdge (t,t') is in Es iff there do not exist descriptors
{t1,t2,...ty} in Ds where (t,t1), (t2,t3) ... (tn,t') is a btg-path in Ty;

3. VteDg, Ag(t)=At)NS.

Let us now illustrate the algorithm calculating o (S, 7)) which is shown in Figure 3.7. The input
is (i) a labeled thesaurus 7, and (ii) the set of concepts S. It returns the thesaurus 7g i.e. the
restriction of the labeled thesaurus 7 to the set of terms labeled by at least one concept in S. The
algorithm navigates in the thesaurus starting from the root terms and then navigating downwards
in the hierarchy. To create the thesaurus 7g it uses the procedure create btg which is presented
in Figure 3.8. This procedure (i) keeps the terms that are labeled with some concept in S and (ii)
creates the btg relationships between these terms, out of the ones in 7).

The algorithm illustrated in Figure 3.7, calls for each root term r (line 4) and for each of its
narrower terms ¢ (line 5) the procedure create btg(r,t) (line 6) which updates T7g. Procedure
create_btg is illustrated in Figure 3.8 and proceeds as follows : let (t;,%;) be the terms with which
create_btg is called, for which there exists a btg-path in Ty (i.e. ¢; is the broader term of ¢; in 7). If
t; is not labeled by some concept in S (line 5) then create_btg is called for ¢; and its children (lines
6-7). Otherwise, ¢; is added in Dg (line 11). Then the algorithm examines whether ¢; is labeled
with some concept in S (line 14). If this is the case, then t; is added in Dg and the edge (t;,¢;) is
added in &g (lines 16,18). create_btg is then called for ¢; and its children (line 21). Otherwise, i.e.
t; is not labeled with some concept in S (line 24), then create_btg is called for ¢; and the children
of ¢; (lines 26, 27).

3.2. CREATING METADATA SCHEMAS FROM ONTOLOGIES AND THESAURI

1. Input :
2. Output :

3. Algorithm :

© 0N

. Input:
. Output :

X NSOt W

W WNNNNINIRNINNNDN R R RO
FOSPISTRIRESOPO IS O LD E S

. Algorithm :

a set of concepts S, a labeled thesaurus 7T\ = (D, &, A,C)
a thesaurus Tg = (Dg, s, As, S)
Initialization : Dg =0, Eg =0
for all root terms r in D {
for all terms ¢ such that (r,t) € € {
Ts = create__btg(r,t,Ty)
¥

}

return 7g.

Figure 3.7: Algorithm which calculates (S, 7))

Terms t;, t; (t; broader term of ¢;), labeled thesaurus 7
the thesaurus 7g
/¥ if t; is not labeled by some concept in S, */
/* call the procedure for the children of t; */
ifAt;)NS =01
for all terms ¢ such that (¢;,t) € £
create_btg(t;,t, 7))
/% if t; is labeled by some concept in S */
} else {
/*addt; toTs */
Dg = DsU{ti}, As(ti) = A(t) NS
/* examine t; */
/*if t; is labeled by some concept in S */
ifA(E) NS #0{
/*add tj to Ts */
Ds = Ds U {t;}, As(t;) = A(t;) NS
/* create btg relation between t; and t; */
Es =Es U{(ti, 1))}
/* call the procedure for the children of t; */
for all terms ¢ such that (¢;,t) € £
create_btg(t;,t,Ty)
} else {
/*if t;j is not labeled by some concept in S */
ifA(t)NS =0
/* call the procedure for the children of t; */
for all terms t such that (¢;,t) € £
create_btg(t;,t,Ty)

}
}

return 7g.

Figure 3.8: Procedure create btg

67

68 CHAPTER 3. GENERATION OF METADATA SCHEMAS

Defining the concept thesaurus : Using the selection operation ¢ it is possible to define a
thesaurus 7, for each concept ¢ in the set of ontology concepts C.

Definition 3.2.3 Let T\ = (D,&,\,C) be a labeled thesaurus. Let O = (C,V,R, A,isa) be an
ontology, where C C C. Let ¢ be a concept in C and S; be the set of subconcepts of ¢ in O including
c. The concept thesaurus T, = o(S¢, T») contains all terms t € D such that A\(t) NS, # 0.

For the definition of a concept thesaurus, btg relations between terms and isa relationships at

the ontology level are exploited. Consider the example in Figure 3.9. Term v is labeled by concept
d, term t by ¢ and w by e. The selection operation on concept ¢ constructs the thesaurus 7. that
contains besides term ¢, terms v and w that are labeled by ¢’s sub-concepts.
Observe that a term can appear in multiple concept thesauri, and terms that are not labeled by
any concept have disappeared from the concept thesauri. For example, term w is not connected to
any concept and has disappeared from the concept thesauri in Figure 3.9. Moreover, the selection
operation on concept c created a btg relation between terms ¢ and w which were not directly related
by a btg relationship in the original thesaurus.

Selection Concept Thesauri

Thesaurus T Labeling function Ontology O - C{ \b ” 3

t O S R ¢ o /
R isa?’d_//__%,l !
B CvO O w

isal

e

e | | |

Figure 3.9: Extracted Thesaurus Examples

A concept thesaurus can be induced by those of its superconcepts : if d is a sub-concept of ¢,
and 7, is the concept thesaurus of ¢, then the concept thesaurus of d can be extracted as follows :
Ta = 0(S4,Tc). Concept thesauri generally represent only a small part of the original thesaurus. In
the previous example, only concept thesaurus 7, of concept ¢ has to be extracted from the original
thesaurus 7). Then, the concept thesauri of its subconcepts (i.e. d and e) can be extracted from
T¢, by using the selection operation o.

Figure 3.10 shows the concept thesauri of concepts Iconographic_ Object, Style and Period con-
structed out of the connection relation of Figure 3.6 and the Art & Architecture thesaurus hierarchies
shown in Figures 3.1 and 3.2.

Step 3 : Creation of the metadata schema At this final step, the metadata schema is created
by integrating the ontology with the concept thesauri extracted in the previous step. To create the
metadata schema, the isa relationships between concepts and the btg relationships between terms
are considered. Relationships btg and ¢sa define a partial order on terms and concepts respectively
and have inclusion semantics.

3.2. CREATING METADATA SCHEMAS FROM ONTOLOGIES AND THESAURI 69

renai ssance

pai ntings scul pture first inpressionism / \

early renai ssance hi gh renai ssance

oi | paintings | at e renai ssance

Iconographic Object

Period
i mpressi oni sm
renai ssance
first inpressionism T T~
. o early renai ssance hi gh renai ssance
post i npressioni sm

i o | ate renai ssance

abstract inpressionist T
Style

Figure 3.10: Concept Thesauri for ontology concepts Iconographic_ Object, Style and Period

Let us now give a more formal definition of the metadata schema M resulting from the integra-
tion of the initial ontology O and a set of concept thesauri.

Definition 3.2.4 Let O = (C,V, R, A,isa) be an ontology. Let T = {T¢;,Teyy---Te,} be a set of
concept thesauri where Te, = (De,, E;) is the concept thesaurus of concept ¢;. The metadata schema
M is M = (Cm,V,R, A,isap) where :

o Cu is the set of concepts in O and the terms in all Te, : Cpy =CU{c;:t |t € Dg};
o V is the set of atomic types, R is the set of roles and A is the set of attributes in O;

e isan is obtained by the isa relations between the concepts in ontology O. It is extended by the
following isa relations :

1. for each concept c; create an isa(c; : t,c;) relation to all concepts c; : t where ¢; : t
corresponds to the root term t in thesaurus 7, .

2. for edge (t,t') € &, create an isa relation isa(c; : t',¢; : t) in M.

Example 3.2.1 Figure 3.11 illustrates a part of the metadata schema constructed from the on-
tology in Figure 3.3 and the concept thesauri shown in Figure 3.10. For term renaissance which
belongs to the concept thesauri of both concepts Style and Period, the concepts Style:renaissance and
Period:renaissance are introduced to distinguish between the notion of “renaissance” as a style and
as a period. Concepts Style:renaissance and Period:renaissance become sub-concepts of concepts Style
and Period respectively. Term oil painting is a narrower term of paintings in the concept thesaurus
of Iconographic Object. Concepts lconographic Object:oil painting and lconographic Object:paintings
are created for these terms where the former becomes a subconcept of the latter. The latter is a
subconcept of concept lconographic Object.

Let us now examine in more detail the resulting metadata schema. The concept thesauri of two
concepts ¢, ¢’ where c isa ¢ are overlapping : the concept thesaurus for ¢’ contains the terms that

70 CHAPTER 3. GENERATION OF METADATA SCHEMAS

O composed_of

Physi(ial Object

of _period
! - Period
[(period_of) A
carried_out — produced : . \
tor ————=-—> Activity ———= Man Made Object Peri od: r ennai ssance
f (carried_out_by) (produced_by) A has title
| : tring
I
Person— = String : style
has name Iconographic Object — = Style
* (style_of) A"

I . ~

! Styl e:inpressionism Style:rennai ssance

| conogr aphi ¢ Obj ect: pai ntings

| conogr aphic Object:oil paintings

Figure 3.11: Example of a metadata schema

Thesaurus and Connection Relation Concept Thesauri Reduced Concept Thesauri

2 K Te R
= X f% } VTd* ' \% | s
/ I : B
, -
. t O :zsa o d Reduction : “A d
L A S R N
. .) . | 1sa
/ O [e o
T ~ " isa ‘ w v MO “ ':{.e
w \\\ : SRS R ¢e T
O e N S o
w
a) »

Figure 3.12: Reducing the Number of Terms

3.3. RDF METADATA SCHEMAS AND RESOURCE DESCRIPTIONS 71

are directly connected to ¢’ in the connection relation and the terms that belong to the concept
thesaurus of its subconcept c.

For example, the thesauri extracted for concepts ¢, d and e in Figure 3.12-(a) contain 9 terms.
Based on the fact that btg and isa have inclusion semantics one can consider the set of these relations
as a directed acyclic graph defined over terms and concepts where the existence of a path between
some term or concept a and some other term or concept b signifies that a is included in b. If for
example ¢ is a term in the thesaurus 7, and is the root of a hierarchy in a thesaurus 74 where d is a
sub-concept of ¢, then the same subtree in the first thesaurus can be replaced by the same subtree
in the thesaurus 74. An example for this kind of reduction is shown in Figure 3.12. After reduction,
thesaurus 7, only contains term t. The subtrees below ¢ have been replaced by btg inter-thesaurus
relations from thesaurus 7; and 7,. A similar reduction was possible in thesaurus 7;. Observe that
it is possible to create all original paths connecting terms and concepts in the reduced representation
of the original DAG defined by btg and isa.

3.3 RDF Metadata Schemas and Resource Descriptions

In this section two applications for the metadata schemas produced following our approach, are
presented. The first is the creation of RDF [179] schemas (Section 3.3.1) and the second is the
creation and querying of metadata descriptions (Section 3.3.2).

3.3.1 Controlled Creation of RDF Schemas

This section illustrates how an RDF schema can be constructed out of a set of concept thesauri.
This schema incorporates the set of ontology concepts, roles and attributes, the concept thesauri
defined for each ontology concept and connections between terms and concepts. More precisely :

e ontology concepts and thesaurus terms are modeled as RDF classes;
e ontology roles and attributes are modeled as RDF properties;

e ontology isa relationships and btg relations between terms all carry inclusion semantics and
are modeled with the RDF subclassOf property.

The creation of the RDF schema S for an ontology O = (C,V, R, A,isa), and a set of concept
thesauri T, = (D¢, &) is straightforward :

1. The set of RDF classes in S is obtained as follows:

(a) for each ontology concept ¢ define RDF class c;
(b) for each term ¢ in 7, define RDF class c:t.

2. The set of RDF properties is obtained by defining :

(a) for each typed role r(c,d) in R, where ¢ and d are concepts in C, an RDF property with
domain RDF class ¢ and range RDF class d;

(b) for each typed attribute a(c,v) in A where ¢ is a concept in C' and v is an atomic type
in V, an RDF property with domain RDF class ¢ and range a literal.

3. The set of RDF subclassOf properties is obtained as follows:

72 CHAPTER 3. GENERATION OF METADATA SCHEMAS

(a) for each isa(c,d) relationship between ontology concepts ¢ and d, define an RDF subclas-
sOf property between RDF classes ¢ and d;

(b) for each RDF class c:t, corresponding to a root term in thesaurus 7., add an RDF
subclassOf property between RDF classes c:t and c;

(c) for each btg relation between two terms ¢t and ¢’ (¢ is the broader term of ¢') in a concept
thesaurus 7., define an RDF subclassOf property between RDF classes c:t’ and c:t.

It is interesting to note that only the RDF class corresponding to a root term in the concept
thesaurus of concept ¢ is connected to RDF class c. Due to the transitivity of the RDF subclassOf
property, it can be induced that class c:t is a subclass of class c:t’ or of class c.

The RDF schema illustrated in Figure 3.13 has been constructed from the ontology in Figure 3.3
and the concept thesauri in Figure 3.10.

Ontology concepts Man Made Object, Iconographic Object, Style, Period and terms paintings,
o0il paintings, impressionism and first-impressionism are all represented as RDF classes (lines 5,-
7,9,10,21,23,25,27). For simplification, terms are prefixed with the corresponding concept if they
are contained in different concept thesauri. RDF class paintings is defined as a subclass of class
Iconographic Object (line 22), since term paintings is the root term of the lconographic Object concept
thesaurus. In the same way, classes impressionism and first-impressionism are defined as subclasses of
concepts Style and Period respectively (lines 26,28). Class oil paintings is a subclass of class paintings
(line 24) (defined by the btg-relation between terms paintings and oil paintings). Ontology role
style, is defined as an RDF property, its domain being the class lconographic Object (line 19) and
its range, class Style (line 20). By the definition of the RDF subclassOf property, all subclasses of
class Iconographic Object inherit this property.

RDF Descriptions Using this RDF schema, one can provide RDF descriptions about specific
Web resources. Consider for example the RDF description presented in Figure 2.2. The new RDF
description is shown in Figure 3.14. When comparing this new description with the previous one,
one can observe that the prefix artifact is replaced by a new prefix int which corresponds to the
RDF schema in Figure 3.13. In this RDF description, semantic information that was captured
as a value in the previous description has been added at the schema level. For example, the fact
that resource http://metalab.unc.edu/louvre/paint/monet/first/impression/ described an
impressionist painting was encoded in the value of tag <artifact:style>. This value corresponds
in fact to a term in the Art & Architecture thesaurus and is represented as an instance of class
int:impressionism (line 11) in the new description. The same argument holds for the value first-
impressionism which is now represented as an instance of RDF class int:first-impressionism (line 12).
Observe also that the tag <rdf:Description> (Figure 2.2, line 7) has been replaced by a typed node
tag <int:oil paintings> (line 8) indicating that the resource is about an oil painting.

3.3.2 Metadata Descriptions

In this section we present a simple approach for creating metadata [19] using the metadata schema
produced with the methodology described in Section 3.2.

A source can be either a collection of documents, a single document or even a document fragment.
It is identified by a url and is integrated in the portal by providing a description of its structure,
contents or even of some semantics which is not explicit in the data or in its structure. This
description is created in terms of the metadata schema. At that time, the source is said to be

3.3. RDF METADATA SCHEMAS AND RESOURCE DESCRIPTIONS 73

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0org/TR/1999/PR-rdf-schema-19990303#"
xmlns:int="">

<rdfs:Class rdf:ID="Physical Object"></rdfs:Class>
<rdfs:Class rdf:ID="Man-Made Object">

<rdfs:subclass0f rdf:resource="#Physical Object"/></rdfs:Class>
<rdfs:Class rdf:ID="Iconographic Object">

<rdfs:subclass0f rdf:resource="#Man-Made Object"/></rdfs:Class>
<rdfs:Class rdf:ID="Period"></rdfs:Class>
<rdfs:Class rdf:ID="Style"></rdfs:Class>
<rdf :Property rdf:ID="of-period">

<rdfs:domain rdf:resource="#Man Made Object"/>

<rdfs:range rdf:resource="#Period"/></rdf:Property>
<rdf :Property rdf:ID="has_title">

<rdfs:domain rdf:resource="#Man Made Object"/>

<rdfs:range rdf:resource="http://www.w3.0rg/2000/03/example/classes/#String"/>
</rdf :Property>
<rdf :Property rdf:ID="style">

<rdfs:domain rdf:resource="#Iconographic Object"/>

<rdfs:range rdf:resource="#Style"/></rdf:Property>
<rdfs:Class rdf:ID="paintings">

<rdfs:subclass0f rdf:resource="#Iconographic Object"/></rdfs:Class>
<rdfs:Class rdf:ID="o0il paintings">

<rdfs:subclass0f rdf:resource="#paintings"/></rdfs:Class>
<rdfs:Class rdf:ID="impressionism">

<rdfs:subclass0f rdf:resource="#Style"/></rdfs:Class>
<rdfs:Class rdf:ID="first-impressionism">

<rdfs:subclass0f rdf:resource="#Period"/></rdfs:Class>

. </rdf:RDF>

Figure 3.13: The RDF schema resulting from the integration of the ontology and thesaurus.

74 CHAPTER 3. GENERATION OF METADATA SCHEMAS

1. <rdf:RDF
2. zxmlns:web-page ="http://metalab.unc.edu/louvre/namespaces/web-pages"
3. zxmlns:int ="http://www.connectit.com/icom/aat">
4. <rdf:Description
5. about="http://metalab.unc.edu/louvre/paint/monet/first/highway/">
6. <web-page:title>Web Museum: Monet, Claude :Impression :
soleil levant</web-page:title>
7. <web-page:presents>
8. <int:o0il paintings
9. about="http://metalab.unc.edu/louvre/paintings/monet/impression">
10. <int:title>Impression : soleil levant</int:title>
11. <int:style><int:impressionism/></int:style>
12. <int:of-period><int:first-impressionism/>
13 </int:of-period>
14. </int:o0il paintings>
15. </web-page:presents>
16. <web-page:creator>Nicolas Pioch</web-page:creator>

17. </rdf:Description>
18.</rdf :RDF>

Figure 3.14: RDF description for Claude Monet painting using the integrated schema.

published and can be exploited for querying. The pair (schema, set of source descriptions) is called
the description base (DB).

A user can query the description base by formulating queries in terms of the metadata schema.
The result to these requests is a set of metadata descriptions. In contrast to data integration systems,
a Web portal does not exploit the actual data for answering these queries. The query evaluation
stops at the exploitation of the available source descriptions. In a data integration system, these
descriptions can be used for the resource discovery phase. During this phase the system is based on
the source descriptions to select a number of sources that possibly answer the query.

In this part of the work we restrict our attention to the first issue which is the identification of
the relevant sources for answering a user query using their metadata descriptions.

Our approach views DB as a database queried for source addresses (urls). Once the user has
obtained a set of urls, she is able to access each of them.

In the following, we first define the resource description model. An implementation of this model
is discussed in Section 3.4.

Resource Description Model We illustrate in the following how a metadata description is
defined for a source in terms of the metadata schema constructed in Section 3.2.
A source description is an instance of a concept in the metadata schema. More formally :

Definition 3.3.1 Let s be a Web resource with url u. Let M = (Cpq, V, R, A,isarq) be a metadata
schema. A source description for s is a tuple (u,c,d) where:

1. w is the URL of s;

2. c is a concept in Cpq ;

3.3. RDF METADATA SCHEMAS AND RESOURCE DESCRIPTIONS 75

3. and d is a concept descriptor for concept c.

Definition 3.3.2 A concept descriptor for concept c is a tuple d = (py = d1,...,pn = dy), where
p;i is a role or attribute of concept ¢ and d; is a concept descriptor. Let P(c) denote the set of
role/attributes defined in concept c. The following holds for concept descriptor d* :

e p; € P(c) and p; # pj for all i # j, i.e. each role/attribute can be used at most once in a
concept descriptor;

e if p; is an attribute a, such that a(c,t), where t is an atomic type in V, then d; is a value of
type t;

e if p; is a role v such that r(c,c') then d; = (¢',d') where d' is a concept descriptor for concept
c'. d; is called an unnamed descriptor and is an instance of concept c.

A description base DB is a set of source descriptions. It corresponds to a set of sources published
at a given time instant, each of the sources is classified by one or more concepts of the metadata
schema. Instances of a concept in the DB are either source descriptions, (designated by a url), or
unnamed descriptors. The DB is the union of the source descriptions, instances of all concepts. A
source description, instance of a concept c¢, is related to unnamed descriptors in DB by the set of
roles of concept c. We can make the following remarks :

e if there is no source description associated with concept ¢, then the extension of ¢ is empty;

e if (u,c,d) is in the extension of ¢ and ¢’ is a super-concept of ¢, then (u, ', d) is in the extension
of ¢, i.e. all resources that are described by a source description (u,c,d) are also described
by a source description (u,c’,d) (inclusion semantics of isa).

Example 3.3.1 Let us now give some examples of source descriptions which rely on the metadata
schema of Figure 3.11.
Consider source with urll which is about actors in general. Its description is :

(urll, Actor, [])

It defines no properties on concept Actor (i.e. use of the empty descriptor []).
Consider now source with url2 which contains data concerning Claude Monet. Its source de-
scription is :
(url2,Person, has _name = “Claude Monet")
The value of the attribute has_name is restricted to the value ’Claude Monet’ to state that the source
contains information about this person.

Source with url3 is also about Claude Monet. But, this source contains data associated with
Monet as a painter. The description of the source is :

(url3, Person : painter, has _name = “ClaudeMonet")

Concept Person:painter is defined for term painter which belongs to the concept thesaurus of concept
Person.

'd =[] denotes the empty descriptor.

76 CHAPTER 3. GENERATION OF METADATA SCHEMAS

Source with urld is about activities that are carried out by actors. Its description is :
(url4, Activity, carried_out_by = (Actor, [])

Finally consider the last source urlb which is about impressionistic paintings. Its description is
shown below

(url5, Iconographic_ Object : paintings, of _period = (Period : impressionism, [])

3.4 Object Oriented Implementation of a DB

In this section a prototype implementation of the DB with the object-oriented database system
(ODBMS) O- [91] and its querying with the OQL query language [53] are described.

Two object oriented implementations of our metadata schema as far as the representation of
thesauri is concerned are given. In both implementations, concepts of the metadata schema are
represented as O9 classes. A role (attribute) defined in some concept is represented as an attribute
defined in the concept’s respective class. In the first implementation, thesaurus terms are represented
as Oy classes, while in the second, they are represented as values. We argue later the advantages
and the disadvantages of the two approaches.

3.4.1 Representing Concepts as Classes

The object oriented implementation of the metadata schema M = (Cu, V, R, A, isapr) created in
Section 3.2 is straightforward. More specifically :

e For each concept ¢, an Oy class ¢ is defined?.

e For each role r, such that r is defined between concepts ¢ and d, an attribute r is defined in
class ¢ and takes its values in class d.

e For each attribute a, where a is defined between concept ¢ and an atomic type v, an attribute
a between class ¢ and the corresponding atomic type of v in Os is defined.

e For each isa relationship between concepts ¢ and d, it is specified in the definition of class ¢
that it inherits from class d.

Consider the schema illustrated in Figure 3.11. A part of the Oy schema defined for concepts
Man _Made Object and Iconographic_ Object is illustrated below.

class Man Made Object
type tuple(of period : Period,
has_title : string)
end

class Iconographic_ Object inherit Man_Made Object
type tuple(style : Style)
end

%In all the examples below, the reserved keywords of O, are represented in this font. Class names are represented
in this font, and finally attributes defined in classes are represented in this font.

3.4. OBJECT ORIENTED IMPLEMENTATION OF A DB 77

3.4.2 Representing Thesaurus Terms as Classes

Concepts in the metadata schema corresponding to terms in the thesaurus are represented as Os
classes. For example the O classes for concepts lconographic Object:paintings and Iconographic_ Object:-
oil paintings are defined as follows :

class Iconographic_ Object:paintings inherit lconographic_Object end
class Iconographic_ Object:oil paintings inherit Iconographic_ Object:paintings end

Recall that in the metadata schema concept lconographic _Object: oil paintings is a subconcept
of lconographic_ Object: paintings.

Source Descriptions and Queries For the source descriptions, an Os class called Source -
Description is defined. Each class defined for a concept, inherits from this class. The attribute wurl
is defined in this class which takes its values in string and stores the url of the source. Finally, the
value of an object o, instance of a class ¢ is a tuple whose attributes are (i) a mandatory attribute
with name wrl, and (ii) at most as many attributes defined in class c. The definition of the Og
classes Source Description and Man Made Object are illustrated below.

class Source Description
type tuple(url : string)
end

class Man_Made Object inherit Source Description
type tuple(of period : Period,
has_title : string)
end

For each class ¢ a persistent root ¢S (database entry point) of type set(c) is defined which contains

all objects of class ¢ (all descriptions of concept ¢).

The formulation of queries in this case is straightforward. For example, if one looks for “sources
about paintings whose title is ’Madonna with Child’ ”, one must formulate the query illustrated
below. This query will retrieve all descriptions in the persistent root lconographic Object:paintingsS.

select d.url
from d in Iconographic Object:paintingsS
where d.has_title = ’Madonna with Child’

3.4.3 Representing Thesaurus Terms as Values

In this implementation thesaurus hierarchies are encoded as trees at the instance level. Terms are
represented as objects, instances of class Term. In this class the attributes term_name, bt and nt
are defined. The first stores the name of a term t. The second stores t’s broader term and the last
stores the set of its narrower terms. The Oy specification of the class Term is illustrated below.

class Term
type tuple(term_name : string,
bt : Term
nt : set(Term))
end

78 CHAPTER 3. GENERATION OF METADATA SCHEMAS

The value of each object o, instance of class Term, is a tuple of type [n, b, n'] where n is the name
of the term (of type string), b refers to its broader term and n’ is the set of its narrower terms.

To represent the thesaurus for a concept ¢, the persistent root tc of type set(Term) is defined
which contains all terms in the concept thesaurus of c.

Source Descriptions In this implementation, the definition of class Source Description changes
and the attribute term of type Term is added :

class Source Description
type tuple(url : string,
term : Term)
end

As previously, a class c is a subclass of Source Description whose extension is the set of the extensions
of all classes c. The value of an object o, instance of a class c, is a tuple whose attributes are (i)
a mandatory attribute with name wurl storing the url of the source described by the object, (ii) a
mandatory attribute term which has for value a thesaurus term and (iii) at most as many attributes
defined in class c.

The peculiarity of this representation comes from the semantics associated with the term hi-
erarchies in concept thesauri : if (u,c,d = [term = t,ps = da,...,pp = dy]) is a source de-
scription belonging to the extension of class ¢, then for all broader terms #' in the thesaurus
connected to ¢ (that is all terms that belong to the persistent root tc), the source description
(u,c,d" = [term = t',ps = da,...,pn, = dy]) also belongs to the extension of ¢. In other words, if
(u,c,d) is a source description in DB, then (u,c,d’) also belongs to DB.

For example, (i) term paintings and oil _paintings are terms in the concept thesaurus of lcono-
graphic Object, (ii) term paintings is a broader term of 0il _paintings. If a source u in DB is about
0il _paintings, then the description base describes this source as being also about paintings.

Query Evaluation To evaluate a query over the database, thesaurus traversals are required. For
this, the method specific_terms() :set(Term) is defined in class Term which returns the set of all
narrower terms of the term which calls it. The O5C code for this method is illustrated below.

method body specific_terms:set(Term) in class Term{
/* variables declaration */

02 Term tl1; 02 Term t;

02 list(Term) lterms;

02 set(Term) ret = set(self);

/* calling term (self) is added in the result set */

/* run through the narrower terms of calling term (self) */

for (t1 in (*(self->nt)) where t1!=nil){

/* add in lterms the narrower terms of calling term */
lterms +=list(tl);

}

/* for all terms in lterms call recursively the method specific_terms */
for (t in lterms){
ret += set(t) + t->specific_terms;

3.4. OBJECT ORIENTED IMPLEMENTATION OF A DB 79

/* return the set of all narrower terms */
return ret;

}

The query language used to query the DB is OQL. The user specifies a path in the ontology
using the attributes of some class. A query always returns a set of urls. A few examples of queries
on the schema of Figure 3.11 are illustrated below.

Example 3.4.1

1. Sources about actors?

select d.url
from d in Actors

This query selects source descriptions, instances of class Actor3.

2. Sources about painters ?

select d.url

from d in Actors, t in tActor

where t.term_name = ’painter’ and
d.term in t.specific_terms

This query selects all source descriptions, instances of class Actor for which the term used in

the description is painter or one of its narrower terms®.

3. Sources about activities concerning man-made objects of the renaissance period?

select d.url

from d in Activities, t in TPeriod

where t.term_name = ’renaissance’ and
d.produced.of_period.term in t.specific_terms

This query selects all activities (instances of class Activity) that produced an object (instance
of class Man-Made Object) of the renaissance period (attribute of-period is of type Period).

4. Sources about Picasso as a sculptor?

select d.url

from d in Actors, t in tActor

where d.has_name = ’Picasso’ and t.term_name = ’sculptor’ and
d.term in t.specific_terms

This query selects all objects, instances of class Actor, whose name is “Picasso” and the term
used to describe the actor is sculptor or one of its narrower terms.

3Actors is the persistent root defined in O, for concept Actor. It contains all source descriptions, instances of this
concept.

4tActor is the persistent root defined in O for concept Actor which contains all terms that are in its concept
thesaurus.

80 CHAPTER 3. GENERATION OF METADATA SCHEMAS

5. Sources about painters of sculptures?

select a.carried_out_by.url

from a in Activities, tl1l in tActor, t2 in tMan_Made_0Object

where tl.term_name = ’painter’ and t2.term_name = ’sculpture’ and
a.carried_out_by.term in tl.specific_terms and
a.produced.term in t2.specific_terms

This query selects all sources, instances of class Actor, (note that attribute carried out by of
class Activity is of type Actor). The term associated with the actor is painter or one of its
narrower terms. The term associated with a man-made object (recall that attribute produced
of class Activity is of type Man Made Object) is sculpture or one of its narrower terms.

Conclusions We have described previously two ways of implementing thesaurus terms. In the
first terms are represented as classes while in the second as values. The problem with the first
implementation is that (i) the resulting schema is large (recall that the Art & Architecture Thesaurus
contains 120.000 terms) and (ii) maintaining the instances is a cumbersome task. To be more precise
on this second issue, when a description is added in DB, instance of some class ¢, then it must be
added in the persistent roots of all superclasses of c. We have seen previously that when a description
is added for class lconographic Object:oil paintings, it is considered as a description for lconographic
Object:paintings where the latter is a superconcept of the former. It is evident that the lower a term
is in the thesaurus hierarchy, the number of classes in whose persistent roots the description must be
added, increases. But, querying is straightforward : thesaurus traversals correspond to traversals of
class hierarchies. Moreover, the representation of thesaurus terms as classes is not necessary since
no new roles or attributes are defined on thesaurus terms.

On the other hand, in the second implementation where thesaurus terms are represented as
values, the number of schema classes is restricted to the number of concepts in the ontology (a
relatively small number). Moreover, the problem of maintenance of the persistent roots of classes
in the first implementation is not a problem any more. This is taken care by the method specific_ -
terms() used in the OQL queries. But, the presence of this method makes thesaurus traversals non
optimized. In the following we discuss this problem and propose a solution where labeling schemes
are used for encoding thesaurus hierarchies. In this case, thesaurus traversals requested by queries
are transformed into interval queries.

Linear encoding of Thesauri The above implementation takes advantage of the efficient opti-
mization of OQL except in the presence of method specific_ terms in the query’s where clause. This
method considers all the narrower terms of the term present in the original query and requires, in
the worst case, a complete traversal of term hierarchies. Moreover, user defined methods cannot be
optimized : even if efficient indexes like B-trees or R-trees are used to store the terms, methods do
not take advantage of such structures. Consequently, thesaurus traversal is not only costly but may
also lead to non-optimal query execution plans. This is particularly true for queries that require
the traversal of several large hierarchies of terms. When description bases including thesauri with
thousands of terms are queried, these traversals become a central issue.
Labeling schemes are a solution to this two-fold problem :

e optimization of costly thesaurus traversals using standard optimization techniques and

o efficient computation for a number of operations such as “get all descendants” of a term.

3.4. OBJECT ORIENTED IMPLEMENTATION OF A DB 81

Q : select a.carried_out_by.url
from a in Activities, tl1 in tActor, t2 in tMan_Made_0Object
where tl.term_name = ’painter’ and t2.term_name = ’sculpture’ and
a.carried_out_by.term in tl.specific_terms and
a.produced.term in t2.specific_terms

Q’ : select a.carried_out_by.url
from a in Activities, 1b in LActors, 1m in LManMade(Objects
where 1lb.term = ‘‘painter’’ and lm.term = ‘‘sculture’’ and
a.carried_out_by.label between (1b.label, 1lb.nextlabel) and
a.produced.label between (lm.label, lm.nextlabel)

Figure 3.15: Query @ using the user defined method specific_terms and its equivalent Q" which
uses the Dewey encoding

More specifically, the idea is to find a labeling scheme for terms that takes into account the big
hierarchy, and then to map thesaurus traversal queries into equivalent interval queries on a flat
domain. These queries can then be efficiently answered by standard DBMS query languages without
the presence of user defined methods. There exist a number of labeling schemes for large hierarchies
(see Bibliographic Notes in Section 3.5.3). In the following, we illustrate how thesaurus hierarchies
can be efficiently traversed using the Dewey labeling scheme [43] which has been implemented in
our prototype [129].

Dewey Encoding The Dewey encoding [43] is one of the simplest labeling schemes. A term
hierarchy in this scheme is represented as follows : terms are ranked from left to right with a rank
between [1, maz] where maz is the fan-out of the thesaurus. The fan out specifies the maximum
number of sons that a term can have.
Let n be a node in the tree. We label n with a string over the integers ¢, 1 < ¢ < maz. The string
length is d, if n is at depth d in the tree. The i-th character in the label of n is equal to m if the
i-th node in the path from root to n has for rank m (it is the mth of its siblings from left to right).

Let label(t) denote the label of term ¢. Then the ascending lexical order on term labels is a total
order with the following property : all labels in the sub-tree with root ¢ are larger than label(t) and
smaller than label(t') where t’ is the next sibling of ¢ on the right in the thesaurus. As an example
(assume for simplicity that maz=9), the next sibling of node n with label 22 has for a label 23 and
the descendants of n are labeled by 221, 2221, 2222,..., 2227, 222 and 223. Terms labeled with 221,
222 and 223 are sons of node 22. A thesaurus term is represented by a string label and descriptions
can be indexed (with the system B-tree) on the term label as any regular Os object. Hence, a
typical query such as descendants of term ¢ (obtained by the method specific_terms in the last
implementation), becomes an interval query on node labels : if term 7 is labeled by 222, then the
call of method specific_terms() for n becomes the interval query [222,223[.
More generally, let mext(n) be the label of the next sibling of » on the right. Query “¢ in
n.specific_terms” becomes the interval query “label(t) between [label(n),label(next(n))[”. Con-
sider for example how the OQL query @ is rewritten into @' using the Dewey encoding. Both
queries are illustrated in Figure 3.15.

In the previous presentation we assume that a node label is an integer. The physical represen-

82 CHAPTER 3. GENERATION OF METADATA SCHEMAS

tation of this integer depends on the value of max, i.e. the maximum fan-out of the thesaurus. A
naive implementation would take as many bytes per integer as required by maz (for example the
data type INT of 2 bytes if maz < 25 — 1. Then, not only this representation is memory costly if
the average fan-out is smaller than max, but also a strategy must be designed for the case where
after some updates in the hierarchy, the fan-out exceeds maz. A solution to this problem is to use
the widely spread UNICODE format [218] which adapts the ’character’ physical storage to its value.

Implementation Given the Dewey encoding scheme, the implementation of the thesaurus hier-
archies in an O, database is done as follows : For each class c®, a class Lc is defined containing
the labels of the concept thesaurus for c, i.e. defining for each term ¢, its label and its next sib-
ling label. The definition of class LMan Made Object that contains the thesaurus terms for class
Man_Made Object is illustrated below.

class LMan_Made Object
type tuple(term : string,
label : string,
nextlabel : string)
end

Each class Lc is associated with the entry point Lcs which is a collection of objects of class Lc.
For example, the range of Ib in query @' above, is the collection (labels) LActors. It corresponds to
the term painter in the concept thesaurus of Actor and Ib.nextlabel is the label of the next sibling
of this term in the same thesaurus. Compared to the query @ one can observe that the traversal of
the thesaurus using the method specific_terms is replaced by two interval queries on labels of the
collections LActors and LManMadeObjects.

When encoding schemes for thesaurus terms are used, the descriptions must be preprocessed in
order to replace terms by labels. In summary, the advantage of this solution is two-fold : it allows
to process tree traversals by standard database optimization techniques on interval queries and the
performance gain to be obtained should be significant for queries involving several large thesauri
and a number of criteria on thesaurus terms.

The Dewey encoding scheme was used to encode the 120.000 terms of the Art & Architecture
Thesaurus. The performance of the operation that returns the narrower terms of a term in a
hierarchy using the Dewey encoding, was not significantly better than the thesaurus traversals
using the user-defined method specific_terms(). One of the reasons is that the thesaurus was not
large enough. We have not worked further on this subject. Currently authors in [51] study the
performance of different labeling schemes on huge description bases such as the Open Directory of
Netscape [168].

Multidimensional indexes Last, if the query involves several thesauri traversals, the query can
be transformed into a hyper-rectangle query on a multidimensional space of labels. As an example,
take the query @ in Figure 3.15 which looks for “painters of sculptures”. Any s; description having
for a term a narrower term of 'sculpture’ and any so description having for a term a narrower term
of ’painter’, is a candidate for the answer. Such a pair is a point in the two dimensional space
with coordinates a.carried out by.label and a.produced.label. Then the last two conditions in the
where clause of query @' in Figure 3.15, can be replaced by a window query. This is illustrated by
Figure 3.16: all points contained in the rectangle represent couples of descriptions (urls) on Actor

SRecall that a class c is defined for a concept c in the metadata schema,

3.5. THE ELIOT CULTURAL PORTAL 83

and Man-Made Object, are candidates for the query answer. If queries involving both a thesaurus
traversal on the concept thesaurus of Actor and Man-Made Object are frequent, it is worth creating
a 2-dimensional index on Actor labels and Man-Made Object labels.

]
s2
]
]
]
N n. 'I_________-_I
. . l
' I -
painter | |
I I
| | u | u
| |
T Fommmmm - !
]]
]
i i
| sculpture | sl

Figure 3.16: Two-dimensional Thesaurus Index

2-dimensional (Spatial) indexing methods [93, 183] are not yet fully integrated in the kernel
of off the shelf DBMS. However a current trend of these DBMS is to provide simple and fairly
efficient extensions to handle spatial data. As an example, [188] describes the spatial extension of
the relational DBMS Oracle 8i.

3.5

The ELIOT Cultural Portal

In this section we describe the prototype ELIOT [176], resulting from a collaboration between the
CNAM (Conservatoire National des Arts et Métiers) and the Direction of Heritage and Architecture
(Direction de I’Architecture et de Patrimoine -DAPA-) of the French Ministry of Culture.

A number of existing resources such as thesauri, databases, and indexing tools have been devel-
oped by the French Ministry of Culture :

MERIMEE, which stores approximately 140.000 descriptions of historical monuments,

PATLISSY, stores 200.000 descriptions of mobile objects ranging from religious objects, to
domestic ones, scientific and industrial ones,

ARCHI XX, contains approximately 1000 descriptions and images of furniture of the 20th
century, protected under the law of historical monuments,

ARCHIDOC, a bibliographic database of architectural heritage of the 19th and the 20th
century. It contains about 67.000 bibliographic entries.

84 CHAPTER 3. GENERATION OF METADATA SCHEMAS

Besides these databases, which are highly heterogeneous in structure, the ministry has under-
taken an important work concerning the development of thesauri for the consistent indexing of
documents. The results of these efforts are, among others, the Thesaurus de l’Architecture [65]
and the Thesaurus de Dénomination. These thesauri were constructed following the standard ISO
2788 [114] for the development of monolingual thesauri presented in Section 2.1.2, and in close
collaboration with the developers of the Art & Architecture and the RCHME (Royal Commission
of the Historical Monuments of England) thesauri for the establishment of inter-thesaurus links.

The descriptions stored in the databases are indexed using these thesauri, but, the main problem
is that there is not a unique access (e.g. querying) interface for the databases mentioned previously.
So, if a user requests data from more than one of the above databases, then she has to access
each one of them, and process manually the obtained results. The need of a single entry point to
the underlying data was a basic requirement which led to the development of the CI SGML DTD
whose purpose is to provide a consistent way for describing cultural objects in SGML documents.
It consists of folders that are classified in Content and Filling folders. Content folders are used to
describe architectural artifacts (i.e., monuments, historical sites, etc.), mobile objects (i.e, paintings,
sculptures, furniture, etc.) and thematic topics (i.e, family of buildings, series of objects, etc.).
Filling folders are used to classify the content folders and they are organized on a geographical
area (e.g., communal-departmental-regional). The approach used in the CI DTD is very structural:
filling folders can contain each other based on their topological relationships and content folders can
be constructed recursively.

The problem with the CI DTD is that it (i) contains a large number of elements, (ii) is not
well structured and (iii) is not modular. Hence, it is very difficult to use it for creating descriptions
of cultural objects. The objective of the project undertaken between the CNAM and the French
Ministry of Culture was to create a simple metadata schema which describes the basic notions in
the cultural domain and could be used by the different services of the ministry to create metadata
descriptions in order to indez their cultural artifacts. The idea was to develop a first prototype
whose purpose was at a first time to consistently describe and indez cultural objects.

In order to create the metadata schema, the basic concepts and their relationships to describe
the cultural objects were first identified. In a second step, the approach described in Section 3.2 to
integrate this schema with the available thesauri was followed. The result was a rich in semantics
and structure schema that was subsequently used to create metadata descriptions of cultural objects.

3.5.1 ELIOT Metadata Schema

The ELIOT metadata schema, illustrated in Figure 3.17, was defined from scratch in collaboration
with the persons in charge of the services of Inventaire and Archéologie of the French Ministry of
Culture.

The ontology is rather simple and is comprised of nine concepts associated with twelve roles.
It represents cultural objects (concept Objet d’Etude), which are documented by (role documenté
par) documents (concept Document). Each object is situated (role est située) in a location (concept
Localisation), and is found in some relative position (concept Position Relatif) with respect to an
object of destination and an object of origin (roles objet de destination and objet d’origine respec-
tively). An object consists of (role est constitué de) other objects, and is described by (role décrit
par) a description (concept Description). This ontology describes also events (concept Evénement)
which in their turn are also associated with descriptions (role associé @). An event occurs (role se
passe en) during a period (concept Période). A document refers other documents (role référe) and is
found in a place (concept Lieu). Finally, a location is associated with (role georéférencement) coor-

3.5. THE ELIOT CULTURAL PORTAL

Est situee

Objet d'Origine

Subit

85

!

‘ Positionement relatif ‘

Type : Chaine

Reference : Chaine

‘ Est constitue de
Objet d’Etude

Est decrit par

J

Objet de Destination

Localisation

Documente par

Document

Document

Georeferencement

Region : Thes
Department : Thes
Commune : Thes
Adresse : Chaine

Cadastre : Chaine

Refere

Coordonnees Lambert

Titre : Chaine

Auteur: Chaine

Date : Date

Editeur : Chaine
Annee d’Edition : Date
Format : Chaine
Pages : Chaine

Type : ISBN, ISSN, ...

Materiaux : Thes
Etat : Thes
Denomination : Thes

Categorie : Thes

Associe a

Evenement

X : Entier
Y : Entier
Z : Entier
Zone Lambert : Entier

Lieu

Type : Thes

Auteur : Chaine

Lieu

URL : Chaine
Cote de Conversation :
Chaine
Lieu de Conversation :
Chaine

Se passe en

Periode

periode : Thes
date debut : Date
date fin : Date

Figure 3.17: An Ontology for Cultural Artifacts

86 CHAPTER 3. GENERATION OF METADATA SCHEMAS

dinates (concept Coordonnés Lambert). The thesauri integrated with this schema are the Thesaurus
de Dénomination, which contains terms for immobile objects, the Thesaurus de la Rochelle, which
contains materials, and finally, the Thesaurus de [’Architecture.

3.5.2 System Architecture

User Interface Request Manager Resource Descriptions Repository

RMI o Selection/Data
*——— Extraction

HTTP | e Data Formatting and
——= Transformation
Query Formulation
Schema Navigation o Management of User
Requests

o Data Storage
02 DataBase

Java Servlet

Figure 3.18: Eliot Architecture

The architecture of the ELIOT prototype [176] is shown in Figure 3.18. The prototype is built
using a three level architecture. The basic modules of the system are the User Interface, Request
Manager and the Resource Descriptions Repository.

The user is able to navigate in the ontology and formulate her queries using the Query In-
terface. Queries can be formulated using predefined HTML forms. The requests are then sent to
the Request Manager which transmits them to the Resource Descriptions Repository. The
latter is responsible for the storage of the schema and the source descriptions, and for answering
the user requests. After evaluating the user requests, the answers are returned to the Request
Manager who adds appropriate headers concerning the XSLT stylesheet that will be used for the
transformation of the XML documents to HTML documents that will be presented to the navigator
of the user.

The Request Manager is a Java servlet which runs on a Cocoon-enabled Apache Server. The
communication between the Request Manager and the Resource Descriptions Repository is
done using Java Remote Method Invocation (Java RMI) Objects. The OODBMS O was used as a
persistent data store. The programming language is Java, and the O Java bindings were used to
store Java objects in Oy databases. Oy Java bindings provide portability of Java programs without
redefinitions of Java classes. The Oy classes are created dynamically by importing Java classes.
The ontology, the concept thesauri and source descriptions were represented using XML, and were
loaded in the Resource Descriptions Repository using Xalan.

The choice of this three layer architecture offers a certain flexibility since we are not bound by
the functionalities and implementations of the information providers.

In Figure 3.19 the query interface of ELIOT is presented. The HTML forms are created w.r.t.
the metadata schema. Figure 3.20 shows a screendump of the results obtained for the user query
that looks for the cultural objects (instances of the class Objet d’ étude) which have been classified
using the term architecture religieuse.

3.5.3 Bibliographic Notes on Labeling Schemes

Different labeling schemes have recently been proposed for various applications ranging from network
routing, object programming, knowledge representation systems and latest XML search engines.

3.5. THE ELIOT CULTURAL PORTAL 87

The existing labeling schemes can be classified in three categories. First bit-vector [217] schemes
in which the label of a node is represented by a bit vector where a bit “1” at some position uniquely
identifies the node in a DAG and each node inherits the bit positions of its immediate ancestors in
top-down encoding (or descendants in bottom-up encoding). More compact variations of bit-vector
based algorithms have been proposed in [11, 41, 128, 41].

Prefiz-based encoding schemes, the Dewey scheme being the simplest example, which directly
encode the parent of a node in a tree, as a prefix of its label. Applications of this algorithm to XML
tree data have been proposed in [124, 61, 197]. Several variations have also been studied (see [108]
for a comparative analysis and [96] for a recent survey), in order to provide more compact labels.

Finally, in interval-based encoding schemes [72, 73, 7, 141] the ancestor relationship of a node
in a tree is encoded in this scheme as an inclusion of intervals computed using pre and post-order
numbering of the tree.

88

N Hetscape:

CHAPTER 3. GENERATION OF METADATA SCHEMAS

File Edit Wiew Go Communicator
4 2 3 4 . @ = & B8
Back Farweard Relodd Home Search

Metscape Frint

SR CLry shop

wf' Bookmarks £ Location: Ig:http:ffmﬂgellan.c:nam.fr:80SﬂfeliothnteergnticmfFormu ,o'I &1 What's Related

¢ (3 Demos [Projects ¢ Laboratoire CEDRIC 4 Vertign 4 Google o Bookmarks for Bemd Amann ¢ SemanticWeb.o

ES Sommaire ~Projet - Visite gnidée Interrogation - Indexation %
i1 z
architecture
Objet_d_etude religieuse

e st decrit par

denomination IIDenom'i nation! INY!arc Denominato

materiaux I

& cstsituee

Materiaws

adresse I

Commune I

Cornurnune

departement I

Departement;

region |}

& subit

Region

i

auteur |

se_passe I

Perindel

Insére_rl

Thésaurus d’origine:
Inventaire
s Terme supérieur:
O Denornination
Sous—termes:
0 Edicule religiews
0 Edifice relisieus
© ensemble religieus
O partie d’édifice
religiews
o Terme équivalent;
O architecture
relicievse

% B eP @ 2]

Figure 3.19: Query Interface

3.5. THE ELIOT CULTURAL PORTAL

N Hetscape: Descriptions HE

o e

Shop it

¢« » A 50 ST S &+ &

Bact Forward Reload Home ‘Search Metscape Print Secutity

89

;mgv Bookmarks \&i Location: [ﬂ'lttp:,"’fmugellan.c:nnm.fr:8080feliot}"Inteerguticrn}"FDrmuluirefdurrrny.xmlc:?prmducer= ,f| @-j_l]v What's Related

Il existe 5

select rsO from rs0 in uCbjet d etude—»elementData, rsl in {{Objet d_etude)rs0)—>est decrit par—>elementData, rs2 in
{{Designation Description)rsl)—>denominaton—»elementData where rs0 l=nil and rs1!=nil and rs2!=nil and
{{Denominatonyrs2) —>term->isSpecific{" Denominaton! INV larchitecture religieuse” 0}

Requéte;

Document: kit ey culture frfeulturefinventai/itingJarochelle/T aRochelle Dossiers/ HTML/IA 17000051/ N otce html

Objet o etude ésubit 1 Evenement ‘auteur iLische Juste
: Ballu Albert
Description: . - . e
st_decrit_par: Designation_Description denomination Denormmation! TNV chapelle
rnaterian I ateriauz TNV [brique et pierre
Document:
Odjed d etude [quhit: Evenement iauteur Cabriel Jacques V
i Brossard Aubin—Magloire

Description:

denomination Denomination! [NV cathédrale
materiaus Iateriaws! [NV pierre de taille—ardoise

est_decrit_par: Designation_Description

Document: i

Jgama.cnam fri 8081/ Archeo/CN AN ROCHELL Ehtmi#376

Description:

Objet d efude |est decrit_par: Designation_Description

::denomjnation Denornination! TLA architecture religieuse

Document: h

Jgama.cnam fri 808144 reheo/CN AN ROCHELLEhtml#8885

Description:

Odjed d etude

éest_decrit - par: Designation Description enomination

Denomination! TLA lcouvent

Document: h

Jgama,cnam.fri 8081/ Archeg/CNANM ROCHELLE hinl#11663

Description:

Odjet d etude

Denornination! TLA cathédrale

éest_decrit - par: Designation_Description ‘idenornination

e e |

Figure 3.20: Result

90

CHAPTER 3. GENERATION OF METADATA SCHEMAS

Chapter 4

Integrating XML resources in STy X

In this chapter we present the STyX approach for the integration and querying of heterogeneous
and autonomous XML Web resources, based on the mediator-wrapper architecture proposed by
Wiederhold in [216].

In STyX , sources to be integrated are associated with a specific domain or application of interest.
The STyX mediator offers a unique view of the underlying sources through a global schema which
describes the basic notions in the domain. The schema is not materialized : the actual data resides
in the sources. An XML source is published to the mediator by means of mapping rules specified by
the source administrators. A user accesses the underlying sources by formulating queries in terms
of the global schema and to obtain the answers, the query is translated into queries expressed in
terms of the local sources schemas. This translation (or rewriting) is performed by the mediator
using the established mapping rules. After evaluation, the results are returned to the mediator,
combined and then presented to the user.

As illustrated in Section 2.3, there are two basic approaches for establishing mappings between
the sources and the global schema. In the first approach, known as global as view (GAV), the global
schema is defined as a wiew on the local sources schemas. In the second, known as local as view
(LAV), a source is defined as a view of a predefined global schema.

We have chosen the local as view (LAV) approach as in [136, 149, 81] for mapping sources to the
global schema. But in contrast to most of the systems that follow the LAV approach for integrating
XML sources, the global schema is an ontology which contains concepts, binary symmetric roles and
inheritance (isa) links between concepts. Sources are described by XML DTDs and are published
to the mediator by means of mapping rules. These rules establish correspondences between XPath
location paths defined on the XML structure and ontology paths. User queries are tree queries and
are expressed in terms of the ontology.

To obtain answers for a user query, this must be evaluated against all sources. To obtain the
results from a single source, we first rewrite the query into an XML query that is expressed in terms
of the source’s schema. There might be cases where results from different sources must be combined
to obtain answers to the query. For this, it is necessary to identify that the objects obtained from
different sources correspond to the same real world entity. For this purpose, we introduce the notions
of local and global keys. Local keys are physical keys, used to identify objects obtained from a single
document. On the other hand, global keys are semantic keys used to identify objects that originate
from the same or from different sources.

Section 4.1 illustrates our approach by a motivating example taken from the cultural domain.
Section 4.2 presents the data model of the STyX mediator and the notion of keys. Section 4.3
introduces the mapping language, a simple but powerful language for describing XML resources

91

92 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

by associating XPath location paths [52] with ontology paths. In Section 4.4 we discuss how the
STyX database is obtained from the XML sources via the mapping rules. In Sections 4.5 and 4.6
we describe the STyX query language and the query rewriting, decomposition and ezecution plan
generator algorithms. Section 4.7 gives a discussion justifying our choices for the STyX global
schema and mapping language. Finally, we end the chapter with the description of the STyX
prototype validating our approach (Section 4.8).

4.1 System overview through a cultural example

4.1.1 XML resources

In this section we present the XML resources which we use throughout the presentation of our ap-
proach. Our assumption is that XML resources are described by XML Document Type Descriptions
(DTDs). We use cultural XML resources to demonstrate our approach.

XML resource hitp://www.paintings.com is an XML resource about painters and their paint-
ings. The XML DTD for the source is illustrated in Figure 4.1 and a document conforming to it is
illustrated in Figure 4.2.

<!ELEMENT Collection (Painterx*)>
<!ELEMENT Painter (Painting+, Sculpture+)>
<V'ATTLIST Painter Name CDATA #REQUIRED

Year CDATA #REQUIRED
<!ELEMENT Painting (Image*,Technique?,museumID)>
<!ATTLIST Painting Title CDATA #REQUIRED>
<!ELEMENT Image EMPTY>
<!ATTLIST Image URL #CDATA>
<!ELEMENT Sculpture (Image*,Technique?,museumID)>
<!ATTLIST Sculpture Title CDATA #REQUIRED>
<!ELEMENT Technique #PCDATA>
<!ELEMENT museumID #PCDATA>

© 00 N O W N~

= e
N = O

Figure 4.1: DTD for documents of http://www.paintings.com

Each painter (element Painter, line 2) is associated with one or more (occurrence indicator +)
paintings (element Painting) and sculptures (element Sculpture). A painter has a name (attribute
Name, line 3) and a year of birth (attribute Year, line 4). In turn, a painting and a sculpture (lines
5, 9) have a title (attribute Title, lines 6, 10), zero or more images (element Image, occurrence
indicator *) an optional technique (element Technique, occurrence indicator 7) and an identifier
(element museumID). An element of type Image is empty (line 7) and has a URL (attribute URL, line
8), that describes the location of the image. One can observe from the DTD that element types
Sculpture and Painting, share the same structure.

XML resource http://www.art.com describes museums and the objects exposed in these mu-
seums. Its DTD is illustrated in Figure 4.3. Each museum (element Museum, line 2) has a name
(element MuseumName) and a city (element City). Both elements are textual (lines 7,8). A museum
is associated with one or more artifacts (element Artifact, occurrence indicator +, line 2). Each

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 93

<Collection>
<Painter Name=’Van Gogh’ Year= ’1800°>
<Painting Title=’Vincent’s room at Arles’>
<Technique>0il On Canvas</Technique>
<museumID>P12</museumID>
</Painting>
<Painting Title=’Starry Night’>
<museumID>P13</museumID>
</Painting>
</Painter>
<Painter Name=’Georges Braques’ Year=’1900’>
<Painting Title=’Black Fish’>
<Technique>0il On Canvas</Technique>
<museumID>P17</museumID>
</Painting>
</Painter>
</Collection>

Figure 4.2: An XML document for source http://www.paintings.com

artifact (line 3) has a title (element Title), zero or more images (element Image, occurrence indica-
tor *) and a year of creation (element Year). Element type Image is empty (line 4). It is associated
with a type (attribute type, line 5) (for example jpeg, gif etc.) and a location (attribute location,
line 6). Note that this source does not provide information about the artist who created the object.

<!ELEMENT Museums (Museum)+>
<!ELEMENT Museum (MuseumName, City, Artifact+)>
<!ELEMENT Artifact (Title, Image*, Year)>
<!ELEMENT Image EMPTY>
<V'ATTLIST Image type #CDATA #IMPLIED

location #CDATA #IMPLIED>
<!ELEMENT MuseumName #PCDATA>
<!ELEMENT City #PCDATA>
<!ELEMENT Title #PCDATA>
<!ELEMENT Year #PCDATA>

© 0 NO Ok WN -

e
o

Figure 4.3: DTD for documents of http://www.art.com (art.dtd)

XML resource hitp://www.all-about-art.com is more complete than the previous ones. Its
DTD is shown in Figure 4.4. This resource describes paintings, painters and museums. A painting
(element Painting, line 2) has a title (element Title), and is associated with a painter by the
XML attribute painter of type IDREF (line 3) and a museum by the XML attribute museum of type
IDREF (line 5). Its place of creation is recorded by the attribute place_of_creation (line 4). In this
source a painter (element Painter, line 7) is an empty element, and all information about a painter

94 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

is stored by means of XML attributes. A painter has a name (attribute name, line 8), a date and
place of birth (XML attributes date_of_birth and place_of_birth, lines 9 and 10 respectively).
A painter is identified by the attribute painter_id, of type ID. According to the XML standard,
this identifier is local within the XML document : each painter element within a single document is
associated with such a unique identifier. A museum is represented by the XML element (Museum,
line 12) and has a name (element MuseumName) and a city (element City). Similar to painters, a
museum has a unique identifier, represented using the attribute museum_id of type ID (line 13).
One can observe that the XML elements Painting, Painter and Museum are recorded as top-
level elements in the DTD, and relationships between them are represented using horizontal (the

ID/IDREF XML attribute mechanisms) instead of hierarchical relationships as done in the previous
DTDs.

<!ELEMENT Art (Painting|Painter|Museum)*>

<!ELEMENT Painting (Title)>

<!ATTLIST Painting painter #IDREF #REQUIRED
place_of_creation #CDATA #REQUIRED
museum #IDREF #IMPLIED>

<!ELEMENT Title #PCDATA>

<!ELEMENT Painter EMPTY>

<VATTLIST Painter name #CDATA #REQUIRED
date_of _birth #CDATA #REQUIRED
place_of_birth #CDATA #REQUIRED
painter_id #ID #REQUIRED>

<!ELEMENT Museum (MuseumName,City)>

<VATTLIST Museum museum_id #ID #REQUIRED>

<!ELEMENT MuseumName #PCDATA>

<!ELEMENT City #PCDATA>

© 00 NO O bW N -

e e
g W N = O

Figure 4.4: DTD for documents of http://www.art.com (art.dtd)

4.1.2 STyX Global Schema

The STyX global schema is an ontology, defined independently of the local sources schemas by do-
main specialists after some common agreement and defines the basic notions in the domain. In
STyX we consider ontologies where the domain of interest is modeled by concepts, and binary rela-
tions between them. More specifically, entities in the domain are classified into concepts, semantic
relationships between them are represented as binary roles between concepts, and their properties as
concept attributes. In order to represent similarity of structures and to specify subset relationships
between concepts, the inheritance relationship (isa) between concepts is used.

An example of a STyX ontology Let us give an example of a STyX ontology that we use
throughout this manuscript to demonstrate our approach. The ontology shown in Figure 4.5 as
a directed labeled graph, is an extract of the ICOM/CIDOC [75] Reference Model used for the
documentation of cultural information. Nodes of the graph correspond to concepts and atomic types
of the ontology. Concepts are connected by binary roles. Attributes connect concepts to atomic

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 95

types such as String, Integer, Float! etc. Both roles and attributes are shown as solid arcs in the
schema. Concepts are also connected by inheritance (isa) links, depicted by dashed arcs in the
schema.

Concepts : The ontology describes concepts such as Actor, Person, and Man_Made Object.
Concept Actor represents all actors, like organizations (groups of people, committees) or individuals
(i.e. persons) who perform activities. Concept Person represents persons and is a subconcept of
Actor. This is represented in Figure 4.5 by the isa dashed arc defined between the two concepts.
Concept Event describes all different events, and its sub-concept Activity is there to represent the
specific class of those events that produce some object. Concept Man_Made Object collects all
objects (and not only the ones made by some actor).

Roles: Roles are typed binary relationships between concepts. The fact that an actor (instance
of concept Actor) performs an activity (instance of concept Activity) is represented by the role
carried_ out. This role is defined in concept Actor, which is called the source of the role. Concept
Activity is called its target. The result of an activity is the creation of a man made object (instance
of concept Man_Made Object). This is represented by the role produced. An event happens at
some place (instance of concept Place), defined by the role took place_at. The occurrence of an
event in some date (instance of concept Date) is represented by the role took place_in.

Attributes : A concept can be associated with attributes. The source of an attribute is a
concept, while its target is an atomic type. For example, a person (instance of concept Person)
has a name (represented by the attribute has name) which takes its values in the atomic type
String. Similarly, an object (instance of concept Man _Made Object) has a title represented by the
attribute has_title which also takes its values in String.

Inverse Roles : One can observe that some of the roles in Figure 4.5 are depicted in paren-
theses. In fact, for each role its inverse is also defined. Our ontology is a non-directed graph but
since it is used as a user interface for (i) the formulation of queries and (ii) the construction of the
mapping rules, we give directions to roles to facilitate these tasks. Each role is replaced by two
others : we choose arbitrarily one as the default role and we call the other its inverse. For example,
for role carried_ out, its inverse role is carried_ out_by. The source of this role is concept Activity
and its target is concept Actor.

Remarks : In our ontology, roles and attributes are multi-valued and optional. The isa rela-
tionship carries subset semantics and supports role and attribute inheritance. For example, the role
carried_ out defined in concept Actor is inherited to its subconcept Person.

4.1.3 Publishing XML sources in S7yX

Now that we have introduced the XML resources to be queried and the ontology that describes the
domain of discourse, let us see how these sources can be described in terms of the STyX ontology.
An XML resource is published to the mediator by means of mapping rules that map XPath location
paths [52] to ontology paths. The XPath location paths address fragments in the XML document
structure. Ontology paths are compositions of ontology concepts, roles and attributes.

!The atomic types correspond to those defined in the XML Schema [26] standard.

96 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

day
Integer ﬁ
year date created_by (created) url .
Integer: Date E;rent image ’% String
month ———= Image
Inte er&‘ (image of) type
g : String
Actor M Activity M Man Made Object % String museumName str
. rin
f (carried_out_by) (produced_by) exposed_in ’% g
| Museum
| (exposes) String
Person — = String sechni city
echnique
has name | e Technique — = String
(technique of) name

Figure 4.5: An Ontology for Cultural Artifacts

Let us illustrate the STyX mapping language by considering the XML resources presented in
Section 4.1.1 and the example ontology in Section 4.1.2.

Publishing XML source hitp://www.paintings.com This source, whose DTD is illustrated
in Figure 4.1 provides information about painters and their paintings. If we want to describe the
contents of this source in terms of our ontology, we would like to say that painters are persons,
and paintings are man made objects. To express these two assertions, the following two rules are
written :

A;: http://www.paintings.com/Collection/Painter as up — Person
Asz: http://www.paintings.com/Collection/Painter/Paintingasus — Man_Made Object

Each rule has a left hand side (LHS) and a right hand side (RHS). The right hand side is an
ontology path. The left hand side is composed of (i) an XPath location path evaluated on some URL
(or on some variable) and (ii) a variable declaration. The XPath location path is called the source
path of the rule.

The first rule states that instances of concept Person are obtained by evaluating XPath Collection/-
Painter on the documents in URL http://www.paintings.com. The XPath expression returns
Painter elements which are children of Collection elements. Variable u; binds these elements
and is called the bound variable of the rule. The statement ’as uj’is a variable declaration.

The second rule states that instances of concept Man_Made Object are obtained from the source
by evaluating XPath Collection/Painter/Painting on documents in URL http://www.paintings.-
com. The obtained Painting elements (bound in variable ug) are children of Painter elements,
themselves children of Collection elements. Rules A; and As are called absolute rules : their

source path is evaluated on a URL.
Suppose now that we need to state that the names of persons (values of attribute has name)
are obtained from the attribute Name of Painter elements :

| At ui/OName as up — has_name |

Recall that variable u; binds Painter elements, instances of concept Person. The XPath @Name,
when evaluated on instances of variable ui, returns XML attribute nodes (XPath axis ’@’) which
are bound by the rule to variable uy. In this rule, variable w, is called the root variable of the rule.
Rule As is a relative rule : its source path is evaluated on a variable.

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 97

The reader may observe that we map XML nodes to string values of the ontology. This is
done by casting these XML nodes to their values using the special-purpose functions of the XPath
language [52] like string() which returns the string value of an XML node.

In the previous rule, a pair (z,y) where z is an instance of variable u; and y is an instance of
variable ug becomes an instance of attribute has_name.

Note that to follow from instances of variable u; (obtained from rule A;), the ontology path of
rule Ao, the composition of the ontology paths of rules A; and As must also be a path in the ontology.
This is true in our case since attribute has name is defined in concept Person. By concatenating
the source paths and the ontology paths of those rules, we obtain a new rule A;.As :

| Ai.As: http://www.paintings.com/Collection/Painter/@Name as us — Person.has_name |

Consider again rule As. This rule returns instances of concept Man Made Object, obtained by
evaluating the XPath Collection/Painter/Painting on documents in URL hittp://www.paintings-
.com. Suppose that we know from the source that the paintings organized under their respective
painter are those that have been created by the painter and not those that influenced the painter.
In order to make this information explicit, we write the rule illustrated below :

| As: ui/Paintingasus — carried_out.produced |

The source path of the rule is Painting, evaluated on the instances of variable u; (which are
obtained by rule A;). The Painting elements obtained by the rule are bound in variable us.

Rule A3 returns XML elements of type Painting which are instances of concept Man_Made -
Object (the target of the role produced is concept Man _Made Object). These instances are obtained
from instances of concept Person reached by following the roles in the path carried_ out.produced.
Here the ontology path of the rule is a role path : a path defined by the composition of roles
carried_ out and produced.

This rule not only returns instances of concept Man_Made Object, but defines instances of the
role path carried_ out.produced which is a derived role (i.e. it does not exist in the initial ontology).
These instances are pairs (z, y) where z is an instance of variable u; (i.e. instance of concept Person)
and y an instance of variable ug (i.e. instance of concept Man_Made Object).

Notice here that if rules Ay, A3 are concatenated, we obtain rule A;.A4s :

A;.A3: http://www.paintings.com/Collection/Painter/Painting as uz —
Person.carried _out.produced

Observe the ontology path of the rule : it is composed of a concept (Person) and a role path (car-
ried_ out.produced). This ontology path is called concept path, and returns instances of concept
Man Made Object that have been created by some instance of concept Person. It defines a de-
riwed concept which is a subconcept of Man _Made Object. Observe that the XPath Collection/-
Painter/Painting is evaluated on URL http://www.paintings.com and not on a variable which
binds instances of concept Person. For this concept path, we know that there exists some instance
of concept Person who created the man made object, but this instance is not considered by the rule.

The set of mapping rules by which source http://www.paintings.com is published are shown in
Figure 4.6.

98 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Ai: http://www.paintings.com/Collection/Painter asu; — Person

As: wup/@Name as us — has_name

Asz: wy/Painting as us — carried out.produced
Ay wu3/Q@Title as uy — has_title

As: us/Image as us — image

Ag: us/QURL - url

A7t up/@Year — born.took place_in.year
Ag: wi/Sculpture as ug — carried out.produced
Ag: ugz/museumID as ug — museumldentifier

Figure 4.6: Set of Mapping Rules for source http://www.paintings.com

Publishing XML source http://www.all-about-art.com Elements in this source are orga-
nized as top level elements, and are referenced using XML attributes of type ID/IDREF. The mapping
rules for this source are shown in Figure 4.7.

Consider mapping rule C;. This rule states that instances of concept Man_Made Object are
obtained when evaluating XPath Art/Painting on documents of URL http://www.all-about-art.-
com. XML fragments obtained by this rule are bound in variable w;.

Observe now rule C5. This rule states that instances of concept Museum (the target of role ez-
posed_in), are obtained by evaluating XPath id(@museum) on instances of variable w;. In the
source path of the rule, the function id() from the core library of XPath is used [52]. This func-
tion takes as a parameter a string s, and returns the XML element in the document which has an
attribute of type ID with value s. In rule (5, the parameter passed is the value of attribute museum
of the Painting elements.

Rule Cg states that the painters who have created the paintings are obtained by evaluating XPath
id(@painter) on instances of variable w;. Recall that the ontology path of the rule is pro-
duced_by.carried_out_ by which uses the inverse roles of the ontology.

Ci: http://www.all-about-art.com/Art/Painting as w;
Cy: w1 /Title

C3: w;/@date_of_creation

Cy: wi/@place_of_creation

Man_Made_ Object

has_title

created.took _place_in.year
created.took place at.placeName

Cs: w;/id(@museum) as wo exposed in

Cs: wi/id(@painter) as ws produced by.carried _out_ by
Cr: http://www.all-about-art.com/Art/Painter as ws Person

Cs: ws3/@name has_name

Cy: ws3/@date_of_birth
Cio: ws/@place_of_birth

born.took place in.year
born.took place at.placeName

N A A

Ci1: http://www.all-about-art.com/Art/Museum as wo Museum
Ci2: wa/MuseumName museumName
Cis: U)Q/City city

Figure 4.7: Set of Mapping Rules for source http://www.all-about-art.com

Summary An XML source is published in the S7yX mediator by mapping rules.
A mapping rule consists of an XPath location path (called source path) which is evaluated on
a variable or on a URL, and an ontology path. The variable on which the XPath location path is

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 99

evaluated is called the root variable of the rule. The XML nodes (elements or attributes) obtained
are bound to a variable which is called the bound variable of the rule. The ontology path of the rule
is defined in terms of the STyX ontology.

We distinguish between absolute and relative rules. A rule is called absolute if its source path is
evaluated on a URL, and relative if it is evaluated on some variable.

A set of mapping rules by which a source is published in the STyX mediator is called a mapping.
A source can be published by more than one mappings in STyX.

A rule returns instances of a concept, an attribute, a role or an ontology path. More
specifically, an absolute mapping rule whose ontology path is a concept ¢ or a concept path p,
returns instances of ¢ or of the concept reached by p.

A relative mapping rule whose ontology path is a role or an attribute path returns (i) instances
(values) of the concept (atomic type) reached by the path and (ii) instances of the role/attribute
path.

Two rules R; and Ry can be concatenated when the root variable of Ry is the bound variable of
R; and the composition of their ontology paths is a path in the ontology.

Use of variables in mapping rules The use of variables in the mapping rules is a tool that
serves different purposes :

e First, it allows us to reduce the number of mapping rules, sometimes quite drastically. In
general, a set of ky rules that bind variable u, and a set of kg rules that use it can be extended
by a set of k1 * ko rules by applying concatenation. That is, the resulting set of mapping rules
after expansion may be exponentially larger than the set of rules with variables.

e Second, the use of variables enables one (i) to map different XPaths to the same variable and
(ii) to separate contexts in which different mapping rules can apply.

1. Let us consider the case where different XPaths are mapped to the same variable. Con-
sider for example XML source http://www.paintings.com illustrated in Figure 4.1, and
the mapping rules by which it is published, shown in Figure 4.6. Notice that elements of
type Painting and Sculpture have exactly the same structure : they have an attribute
Title, one or more sub-elements of type Image, an optional Technique subelement and
a museumID subelement. Notice that rules A3 and Ag, which return elements of type
Painting and Sculpture respectively, are both assigned the same variable uz. By this
multiple assignment, rules A4, As and Ag can be applied to all fragments obtained by
rules Az and Ag.

2. Consider the case where we separate contexts in which different mapping rules can be
applied. There are two issues here :

(a) to distinguish between XML fragments which are mapped to the same ontology path
but have different structures, and

(b) to distinguish between the different ontology paths to which the same XML fragment
is mapped to.

For the first case, consider the example of a source which provides information about
painters and sculptors. Elements Painter and Sculptor have different structures : the
former is associated with the person’s year of birth and the latter with her place of birth.
The mapping rules are illustrated below.

100 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Rq1: URL/Painter as — Person
Ro: URL/Sculptor as zo — Person
R3: x1/Qyear — born.took_place_in.year

Ry x9/Qplace — born.took place at.placeName

Notice that Painter and Sculptor elements are mapped to the same concept (Person).
Nevertheless, different variables (z1, z2) are used in the mapping rules to bound these
XML elements to depict their different structures.

For the second case, consider a source that describes museums, where each museum is
located in a city, and has a name. A museum also produces some objects, and in this
case is considered as an actor. The mapping rules for this source are illustrated below.

S1: URL/Museum as x;1 — Museum

Sy: URL/Museum as o —> Actor

S3: z1/0name — museumName

Sy zo/Artifact — carried out.produced

The use of different variables in the mapping rules above separate the context in which
a Museum element is considered as a museum and the context in which it is considered as
an actor.

4.1.4 Query Evaluation

In this section we present query evaluation in S7yX. The user exploits the set of sources by
formulating her queries in terms of the global schema concepts, roles and attributes. More specifically,
the user views the STyX mediator as a single database of objects, where an object is represented
by an XML fragment, without being aware of where these objects originate from.

User queries In STyX user queries are tree queries expressed in an OQL-like syntax, and for-
mulated in terms of the ontology. An example of a user query is query)1 illustrated in Table 4.1.
This query asks for “the titles of the objects created by 'Van Gogh”’. Query variables are defined in
the query from clause. Variable z; is the root variable of the query and ranges over instances of
concept Person. Variable z, binds the values obtained from instances of variable z; when following
attribute has_name. The values reached from instances of variable z; by following the path car-
ried_ out.produced are bound in variable x3. Finally, variable x4 ranges over the values obtained by
following attribute has_ title from instances of variable 3.

Q1: select x4
from Person z1, x1.has_name z9,
z1.carried out.produced z3,
zs.has title z4
where 5 = “Van Gogh”

Table 4.1: Query Q1

The ontology paths in the query from clause are called binding paths of the variables. Only the
root variable of the query ranges over instances of a concept or a concept path. All other variables
range over atomic values or objects (i.e. concept instances) obtained by following role or attribute

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 101

paths. Variables appearing in the from clause are ezistentially quantified. The query where clause
is a conjunction of simple comparison predicates.

The answer to a query is a set of tuples of the form (z1 : v1,22 : vo,... %y, : v,) Where z; is a
variable that appears in the query select clause, and v; is an atomic value or an object.

Evaluating Queries Query evaluation in S7yX is done as follows : given a user query ¢ and a
set of sources published using mapping rules, we must get all answers that satisfy ¢. A source s
returns only a subset of the answers for q. To get additional answers, ¢ must be evaluated over all
sources.

Let us consider query evaluation for a specific source s. The query is expressed in terms of the
ontology. To evaluate it on the source, the query has to be rewritten into an XML query expressed
in terms of the source’s schema, and in the query language supported by the source.

There are two cases when performing this rewriting (translation) :

e the translation is full, i.e. the source is able to provide answers for the whole query;
e the translation is partial, i.e. the source answers only a part of the query.

In the last case, to get answers for the whole query we must decompose the query into (i) the
subquery that the source can answer, and (ii) the subqueries that the source cannot answer, which
can be possibly answered by other sources.

Rewriting Queries The rewriting algorithm, presented in detail in Section 4.6.1, is a two phases
algorithm :

e In the first phase, mapping rules that provide answers for the query variables are found. For
this, the query variables binding paths are matched with the ontology paths of the mapping
rules. The result of this phase is a (set of) query variables to rules binding(s). We distinguish
between two kinds of bindings :

1. A full binding is one that binds all query variables.
2. A partial binding binds a proper subset of the query variables.

e In the second phase, given the bindings calculated in the first phase, the query is rewritten
into one or more XML queries to be sent to the source for evaluation. For this rewriting, first
the binding path of each variable is substituted by the source path of its corresponding rule in
the binding. Second, a simple syntactical transformation of this query into the query language
supported by the source is performed.

Example 4.1.1 Consider query Q1 illustrated in Table 4.1 and the mapping rules for source http://-
www.paintings.com shown in Figure 4.6. First of all, we want to obtain instances for variable xq
which is bound to concept Person. We look for an absolute rule, whose right hand side is concept
Person or a subconcept thereof. Such a rule is A1, hence variable x1 is bound to Ai. Instances
of variable zo (reached by instances of x1 by following attribute has_name) are found by rule As.
Notice that the ontology path of the rule s has _name and is equal to the binding path of variable
To. Moreover, rule As can be applied on instances of variable x1 since its root variable is the same
as the bound variable of Ay (A1 returns instances of variable).

Similarly, instances for variable 3 are found by rules As and Ag and instances for variable x4
(reached from instances of x3 by traversing attribute has _title) are found by rule Ay. The steps of
the process are illustrated in Figure 4.8.

102

CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

X

i has_title
x4

[xt— Al]

\\/ 1 \\ . P
has_nam)e\/ \"c:lrried_out.produced has_nam)e/
x2 x3 \\x@, S

X

l has_title
x4

[x1 — Al, x2 —= A2]

l has_title

x4
[x1 —=Al, x2 —= A2, x3 —= A3]
[x1 —=Al, x2—= A2, x3— AS8]

Al: http://www.paintings.com/Collection/Painter asul —= Person
A2: ul/@Name asu2 — has_name
A3 : ul/Painting asul — carried_out.produced
Ad: u3/@Title asud — has_title
A8 : ul/Sculpture asu3 — carried_out.produced
,l Person l Person l Person i Person

\"Xi\‘\ x1
],r carried_out.produced has_nam,e/(\L‘:i(ﬁed_out.produced has_nam;y \czrried_out.pmduced
X3 X2 .x3 x2 X3

/ l has_title
xd

[x1 — Al, x2—= A2, x3—= A3, x4 —Ad]

[x]1—= Al, xX2—= A2, x3—= A8, x4 —=Ad]

Figure 4.8: Calculating Bindings for query @y and source http://wwww.paintings.com

Finally, the following two bindings are obtained :

[.1‘1 = Al,xg = AQ,.’E3 — A3,II24 — A4] (4.1)

[.1‘1 = Al,xg = AQ, T3 — Ag,$4 — A4] (4.2)

To rewrite the previous query into an XML query, in a first step the query variables binding
paths are substituted by the source paths of the rules with which these variables are associated in the
binding. The resulting query for binding 4.1 is shown below.

Q1(a):

select x4

from http://www.paintings.com/Collection/Painter x,
x1./QName x9, x1./Painting z3,
r3./QTitle x4

where x5 = “Van Gogh”

The query in this intermediate form can be rewritten in a more or less straightforward manner to
an XOQL [9], XML-QL [71], XQuery [44] query or to an XPath [52] expression. For example, the
XQuery expression for query Q1(a) is illustrated below.

FOR $r1 IN
document(“hitp://www.paintings.com”) /Collection/Painter,
$xo IN $z1/@Name, $r3 IN $z1 /Painting,
$z4 IN $z3/@Title,
WHERE $zo = “Van Gogh”
RETURN
< RESULT >
< Person >
< carried_ out.produced >
< has_title >3z4< [has_title >
< /[carried_out.produced >
< /Person >

< RESULT >

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 103

Remark that in the RETURN clause of the XQuery expression the result is typed using the
binding path of the variable in the from clause of the initial query. The result of this XQuery
expression when evaluated on the XML document illustrated in Figure 4.2 is the XML document
shown below.

<RESULT>
<Person>
<carried_out.produced>
<has_title>Starry Night</has_title>
</carried_out.produced>
</Person>
<Person>
<carried_out.produced>
<has_title>Vincent’s room at Arles</has_title>
</carried_out.produced>
</Person>
</RESULT>

From the obtained XML document, one can define two labeled directed trees of objects and val-
ues. In such trees, objects are created for elements (XML fragments) and are labeled with concepts.
Edges between objects are labeled with roles, role paths, attributes or attribute paths. Edges labeled
with attributes or attribute paths connect objects in the tree to values. The trees defined for the XML
document illustrated above are shown in Figure 4.9.

ol (Person) 03 (Person)
(carried_out.produced) l (carried_out.produced)
02 (Man Made Object) 04 (Man Made Object)
(has_title) l (has_title) l
’Starry Night’ *Vincent’s Room at Arles’

Figure 4.9: Two labeled trees of objects

In Figure 4.9 the concepts, with which objects are labeled, and role/attribute (paths), with
which edges are labeled, are shown within parentheses. Object 01 created for the first element
Person in the resulting XML document is labeled with concept Person. Object oo is created for
element carried_out.produced and is labeled with concept Man_Made Object (the target of the
path carried out.produced in the ontology). The edge between objects o1 and oo is labeled with
the role path carried out.produced. FEdge has title is created for element has_title which con-
nects object oy to the value ’Starry Night’. Finally, the result of the query is the set of tuples :
{(z4 " Starry Night'), (x4 ' Vincent's room at Arles')}.

Example 4.1.2 Query Q9 is an extension of query Q1 illustrated in Table 4.1 which asks for “the
title of the objects created by Van Gogh and the names and cities of the museums where the objects
are exposed.”.

104 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

QQ.‘ select T4, Te, T7
from Person x1, x1.has_name 2,
z1.carried_ out.produced zs,
x3.has_title x4,
T3.erposed _in xs,
5. museumName xg, T5.city Ty
where x5 = “Van Gogh”

Take again source http://www.paintings.com. The source can only answer subquery Q1 of Q.
We see that no answers can be found for variable x5 : there does not exist a rule whose ontology
path is equal to x5’s binding path. The same holds for variables ¢ and x7.

Query Decomposition Source hitp://www.paintings.com provides partial answers for query Qs :
for an instance of variable z3 (instance of concept Man Made Object) obtained by the source, we
cannot obtain the museum (and consequently its name and city) where it is exposed. In this case,
the query to be sent to the other sources for evaluation is the one looking for “the name and city of
the museum of man made objects”.

Given a partial binding, the process of identifying (i) the subquery for which the source gives full
answers (called prefiz query), and (ii) the subquery which the source cannot answer (called suffiz
query)?, is called query decomposition. The results obtained from the two queries must then be
joined at the mediator site.

Example 4.1.3 In Ezample 4.1.2, the prefix query to be evaluated by the source http://www.-
paintings.com is Qa(a) illustrated in Table 4.2. The suffiz query sent to the other sources for
evaluation is Q2(b) illustrated in Table 4.3. Notice that in Q2(b) variable x3 (the root variable of
the query) ranges over instances of concept Man_Made Object which is the target concept of the
binding path of x3 (carried out.produced) in query Q2.

Q2(a): select x4
from Person zq,
z1.has_name z9,
z1.carried out.produced zj,
x3.has_title x4
where 15 = 'Van Gogh’

Table 4.2: Query Q2(a)

Q2(b): select x¢, x7
from Man_ Made Object z3, x3.exposed in zs,
zs.museumName zg,
x5.city a7

Table 4.3: Query Q2(b)

“There might exist more than one subqueries that the source cannot answer.

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 105

Identifying and Joining Objects : In the previous example, whereas @2(a) returns titles of
objects and Q2(b) returns museums and cities, it is possible to display for each instance of variable
x3 the title and the museum name and city, only if a join is performed between the result of both
queries. To perform this join, objects must be identified.

Identifying Objects In our context, objects are identified by keys. Keys is a standard way
to identify information entities in terms of their properties (e.g. attributes in a relational table). In
our context we distinguish between two kinds of keys for objects : local and global keys.

The XML attribute of type ID and the position of an XML fragment in a document are local keys.
These identify objects (represented by XML fragments) that originate from the same document.
These local keys can only be considered as internal pointers within a single XML document and
cannot be used to identify objects that originate from different documents.

In contrast to local keys, a global key is defined at the ontology level, independently of the XML
sources. Global keys are semantic keys defined in concepts. A key for a concept is a set of attribute
paths originating from it. For example, an instance of concept Man__Made Object is identified by its
museum identifier 3. In this case the key for the concept consists of the attribute museumlIdentifier.
Finally, a concept can be associated with more than one global keys.

To be able to obtain the key values for an instance of variable z, we ’extend’ the initial user
query with attribute paths defined in keys. In Example 4.1.3, the key value of an instance of
variable z3 (instance of concept Man _Made Object) is obtained by requesting the value of the
attribute museumlIdentifier. For example, the prefix query Q2(a) becomes Q2(c) when requesting
the values for attribute museumldentifier for variable 3.

Q2(c): select t, x4
from Person x1,
z1.has_name x3,
z1.carried_out.produced 3,
x3.has_title x4,
r3.museumldentifier t
where x5 = "Van Gogh’

The XQuery that is sent to the source for evaluation is illustrated below.

31dentifiers of artifacts provided by museums can be used as global keys. For example, cultural artifacts in the
museum of Louvre are associated with such identifiers. Other sources can use this information to refer to these
objects. The Object-ID [199] initiative of the Getty Institute aims at developing a standard methodology for creating
identifiers of cultural objects.

106 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

X02(c) FOR $7, IN
document (“‘http://www.paintings.com’’)/Collection/Painter,
$z9 IN $z,/0Name, $z3 IN $z;/Painting,
$z4 IN $z3/0Title,
$t IN $z3/museumID,
WHERE $z, = 'Van Gogh’
RETURN
< RESULT >
< Man Made Object >
< has_title > $z4 < /has_title >
< museumlIdentifier > $t < /museumlIdentifier >
< /Man_Made Object >
< /RESULT >

The result of a query extended with keys is a set of XML documents. For example, the XML
document obtained from the evaluation of XQuery X @Q2(c) against the document in Figure 4.2 is
illustrated in Figure 4.10.

<RESULT>
<Man_Made_0Object>
<has_title>Starry Night</has_title>
<museumIdentifier>P12</museumIdentifier>
</Man_Made_0Object>
<Man_Made_0Object>
<has_title>Vincent’s room at Arles</has_title>
<museumIdentifier>P13</museumIdentifier>
</Man_Made_0Object>
</RESULT>

Figure 4.10: Intermediate XML query results

Joining Objects Given that objects obtained from the evaluation of the prefix and suffix
queries are associated with their keys, it is possible to join them. In the relational model the join
requires that the relations whose tuples are joined, agree on some common attributes. If these
attributes constitute the key for the relations then this join is an identity-based join, called also
object fusion. The result of the join between two objects 0; and 09 is a new object whose structure is
obtained by 'merging’ the structures of 0; and 0. Join is more formally discussed in Section 4.2.5.

Equivalent Queries As mentioned earlier, the ontology is a graph, and therefore the user can
formulate a query using any of the roles in the ontology. For example query ()2 which requested
“the titles, the names and cities of the museum where objects created by Van Gogh are exposed” can
be also formulated as query @), illustrated below. Recall that the root variable of query Qs is bound
in concept Person whereas in query @, the root variable is bound in concept Museum. The binding
paths of certain variables in Q9 are inversed in Q5.

4.1. SYSTEM OVERVIEW THROUGH A CULTURAL EXAMPLE 107

Q' select 4,26, 7

from Museum zj,
I5.€Xposes I3,
r5.museumName zg,
Ts.city x7,
x3.has_title x4,
zg.produced by.carried out by xq,
x1.has name xy

where 1z = “Van Gogh”

If we try to rewrite this query for source hitp://www.all-about-art.com, we see that instances of
concept Museum (to which variable x5 is bound) are obtained by rule Cj;, but no instances are
obtained for the remaining variables. Although the source provides the necessary information (de-
scribes persons that create man made objects and the museums where these objects are exposed)
we cannot obtain it by applying the rewriting algorithm illustrated previously since the user query
is expressed using the inverse roles of those used in the mapping rules.

To resolve this problem there exist two choices : either to inverse the roles in the query, or to inverse
the direction of the mapping rules statically, before rewriting.

Let us look at the second solution. In this case we must inverse not only the ontology paths of
the mapping rules, but also the XPath location paths. As far as location paths are concerned, there
are cases where we can simply use the parent/ancestor axis (if child/descendant axis are used) or
vice versa. For example, consider the two rules A1 and Ag of source s; illustrated below.

Ai: http://www.paintings.com/Collection/Painter as u; — Person
Asz: wi/Painting as ug — carried out.produced

To find from the instances of man made objects their creators, we must write the following mapping
rule :

‘ A3: wug/parent::Painter as u; — produced_by.carried_out_ by ‘

Given the set of mapping rules, one calculates only the ’inverse’ of the relative mapping rules.
More precisely, one can inverse the mapping rules whose ontology paths are role paths. Absolute
mapping rules (i.e. those whose source paths are evaluated on the URL of the rule) are not inversed.
Authors in [167] demonstrate how an XPath location path using child (descendant) axes can be
rewritten into an equivalent path using the parent (ancestor) axes and vice versa. In our context,
the inverse rule of a mapping rule of the form R : a/qasb — pisrule R~ : b/q as a = p~
where ¢’ is the equivalent XPath location path of ¢ defined using the inverse axis of the ones used
in ¢ and p~ is the inverse path of p.

In the first solution, out of the initial query, a set of equivalent queries is computed. This
rewriting is performed using the inverse roles of the ones present in the user query. To achieve this,
each query variable (except those bound in the initial query to an atomic type), are considered as
a root of an equivalent query. Consequently, if the initial query contains n variables that are not
bound to an atomic type, then n such tree queries are specified where each of those variables is
considered as root. For example for query Q) illustrated previously, the set of equivalent queries is

108 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

illustrated below.

5 select x4,x6, T7 QY select x4, xg, T7

from Person z, from Man_ Made Object 3,
z1.carried out.produced z3, zg.produced by.carried out by z1,
z1.has_name zs, z1.has name zs,
z3.has_title x4, z3.has_title x4,
z3.exposed in s, z3.exposed in x5,
zs.museumName zg, zs.museumName zg,
Ty.City x7, Ty.City x7,

where x5 = “Van Gogh” where z» = “Van Gogh”

Let us give a short discussion on the presence of inverse roles in the ontology :

e First they allow the user to formulate queries in a more natural way. The user can use
any concept to start her query and follow roles and attributes appropriately to express the
necessary constraints or to request the information that she looks for. For example, suppose
that a user looks for “the names of museums that expose the creations of Picasso”. The user
can start by concept Museum, and then follow the paths that lead her to the artifacts, and
then the persons that created the latter. Without inverse roles, she might have to formulate
the previous query by starting from concept Person, follow the path that leads to objects, and
from there find the museums and the names thereof.

e Second, inverse rules allow us to use only child/descendant axes in the source paths of the
mapping rules. In this case, the XML source is seen as a tree with a designated root, and
the person in charge of specifying the mapping rules, is able to navigate downwards in order
to map the XML structure to the ontology. If inverse roles were not present in the ontology,
one should navigate in the XML tree until she finds an element to which she could map to a
concept, and then move in any direction in the XML source to map the remaining elements.

Conclusions To conclude the discussion on query evaluation, a query g must be evaluated over
each of the sources published in STyX . If the source does not provide answers for all variables in
the query, then the part of the query that the source can answer is evaluated, and we look further for
the missing parts of the answer from the other sources. This is a recursive process and stops when
all sources have been examined. The partial results are then joined at the mediator site. When the
query is evaluated against all sources and answers are found, fusion is performed on these results.
Fusion is applied to the results to 'put together’ information associated with an information entity
which is found in different objects. The operations of join and fusion are formally presented in
Section 4.2.3.

In the following we present the STyX data model (Section 4.2) and the mapping language (Sec-
tion 4.3). Section 4.5 discusses the STyX query language. The query rewriting and decomposition
algorithms are presented in Sections 4.6.1 and 4.6.2 and the query execution plans generator algo-
rithm in Section 4.6.3.

4.2 STyX Ontology

A STyX ontology can be seen as an object-oriented schema. We define in this section our ontology
model.

4.2. STy X ONTOLOGY 109

4.2.1 Ontology Data Model

We distinguish between walues and objects. Let us now define the symbols to which we refer to
during the presentation of our data model.
Let Integer, String, Float, Real denote the atomic type names*. Next we define the following
sets whose domains are pairwise disjoint :

e The set V of atomic values is the union of the domains of the four atomic types Integer,
String, Real, Float.

e The set C of concept symbols.
e The set A of attribute symbols.
e The set R of role symbols.

As in traditional object oriented models, inheritance allows us to model commonality of struc-
tures between concepts. We define a concept hierarchy that consists of the following two components :
a finite set of concept names, and a subclass relationship.

Definition 4.2.1 (Concept Hierarchy) A concept hierarchy is a pair H = (C,isa) where C is a
finite set of concept names in C, and isa defines a partial order on C.

Definition 4.2.2 Let C be a set of concepts, C C C. C is upwards closed w.r.t. isa, if Ve € C all
its superconcepts are in C.

Definition 4.2.3 (Ontology) An ontology O is a 7-tuple O = (C,V, R, A, source,target,isa)
where :

e C={c1,c9,...ch} is a set of concepts, subset of C;
e V is a set of atomic types {Integer, Real, Float, String};
o R={ri,ro,...m} is a set of roles, subset of R;

o A={a1,a9,...a,} is a set of attributes, subset of A;

source is a function that maps a role r € R or an attribute a € A to its domain in C
(source: RUA — C);

target is a function that maps a role r € R to its target in C and an attribute a € A to its
domain in'V (target : RUA - CUV).

e the pair (isa,C) defines a concept hierarchy.

The semantics of an ontology is defined by the databases that conform to it. A database contains
a set of objects (instances) for each concept in C. These objects are related by instances of roles in
R, which satisfy the typing constraints implied by source and target. Objects are also related to
values by instances of attributes in A, which also satisfy the typing constraints implied by source
and target.

As mentioned previously our ontology is a symmetric one : for each role r € R, we define its
inverse, denoted by r~ € R where source(r™) = target(r) and target(r~) = source(r). Roles and

4The atomic types are those defined in [26].

110 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

attributes are multi-valued and optional, i.e. any instance of concept source(r) can be related to
zero or more instances of concept (atomic type) target(r) by role (attribute) r (a).

1sa defines a hierarchy in O, it carries subset semantics and supports role and attribute inheri-
tance. Namely, if ¢ isa ¢, then the set of objects of ¢ is a subset of the set of objects of ¢’ and all
roles (attributes) defined on concept ¢ are also defined in ¢. Note that two concepts that are not
1sa related are mot necessarily disjoint.

In the following we define what is a database for an ontology O.

Definition 4.2.4 (Ontology Database) Given an ontology O = (C,V, R, A, source, target,isa),
a database D is a labeled directed graph, D = (N,V, E, AN, Ag, %) where :

e N is the set of objects (nodes in the graph);

V is the set of values (values in V', nodes in the graph);

E is the set of edges;

v is a labeling function that labels each object n € N with a set of concepts, Ay : N — 2¢
(if ¢ belongs in An(0), then o is called an instance of c);

AE s a labeling function that labels each edge in the graph with a role r € R or an attribute
a€ A, A\g: E— RUA.

e 1 is an incidence function that associates each edge to its domain in N and target in N UV,
P:E— Nx(NUV);

The constraints that must be satisfied by a database D of O are the following :

e Yo € N, An(0) is upwards closed with respect to isa : if an object o is an instance of concept
c then it is an instance of all superconcepts of c;

e Ve € E, let y(e) = (0,0') where 0,0 are objects in N and Ag(e) = r where r is a role in R.
Then, there must exist concepts c, ¢ where o is an instance of ¢ and o' is an instance of c,
such that source(r) = ¢ and target(r) = .

e Ve € E, let y(e) = (0,v) where o is an object in N and v is a value in V. Let Ag(e) = a where
a is an attribute in A. Then, there must exist a concept ¢, where o is an instance of ¢, and an
atomic type d € V', where v is in the domain of d, such that source(a) = ¢ and target(a) = d.

4.2.2 Ontology Paths

In the local as view approach we assume a hypothetical global database that contains all the infor-
mation of interest to the user in a given domain of interest. Each of the data sources is described
as a materialized view of the global database and contains only part of the data. For example, a
source might contain information about some entity types (concepts) but not about others. For a
given entity type, it might contain only some instances of this type. And for a given instance it
might contain only a subset of the roles/attributes defined on its entity type.

As illustrated by the examples in Section 4.1.3, a source is described by a set of mapping rules.
Consider source http://www.paintings.com whose DTD is illustrated in Figure 4.1 and the set of
mapping rules by which it is published in the S7TyX mediator, shown in Figure 4.6. This source
returns a subset of the instances of concept Person. It returns their names (attribute has name) and

4.2. STy X ONTOLOGY 111

their year of birth (path born.took place_at.year). The source does not contain any information
about the day and month of a person’s birth date, neither her place of birth : it contains only part of
the relevant data for a person. Moreover, the source describes objects that are created by persons.
But, the source does not describe the activities (instances of concept Activity) which are carried out
by persons, and by which these objects are produced : the structure of the source is different from
the structure of the global schema.

In order to describe the source structure in terms of the ontology, we introduce a simple path-
based ontology language. This language allows one to create new concepts and roles to describe
source structures which cannot be directly mapped to the ontology. This need arises from the
nature of the ontology which is defined independently of the structure of the sources and contains
concepts that are essential in the domain of discourse but are not necessarily represented in a source.

In the following, we define our path-based ontology language. It is based on the notions of role,
attribute and concept paths which allow one to define new structures at the mediator level. We also
show in detail how the global schema is extended with the notion of keys.

Role/Attribute Paths and Derived Roles/Attributes

Definition 4.2.5 (Role Paths) A role path of lengthn (n > 1) is a sequence p =11 ... ry, where
Vi € [1,n], r; are roles such that either target(r;) isa source(ri+1) or target(r;) = source(r;y1) for
1 < i < n. The source and target of p are defined by the source and target of its extremities :
source(p) = source(r1) and target(p) = target(ry,).

Definition 4.2.6 (Inverse Paths) Let p = r1.ra... 1, be a role path. Its inverse denoted by p~ is

defined as p~ =1, .1,y ...17 wherer; is the inverse role of r;.

Definition 4.2.7 (Attribute Paths) An attribute path of length n (n > 1) is a sequence p =
71 ... Tn, where Vi € [1,n — 1], r; are roles such that either target(r;) isa source(riy1) or
target(r;) = source(riy1) and v, is an attribute. The source and target of p are defined by the
source and target of its extremities : source(p) = source(r1) and target(p) = target(ry).

Each role of R is a role path of length one; each attribute of A is an attribute path of length
one. We also define composition of role paths and attribute paths as follows.

Definition 4.2.8 (Composition of Paths) Let p1 = aj.as....a, be a role path and ps =
B1.B2.... 0k be a role path or an attribute path. The composition p = pi o pa is a role path
(or attribute path if po is an attribute path) p = oy.ag...an.01.02.... Bk of length n + k, if ei-
ther target(p1) isa source(py) or target(p1) = source(py). For p, source(p) = source(pi) and
target(p) = target(pz).

Definition 4.2.9 (Derived Roles/Attributes) A role/attribute path p = ri.re.... 7, of length
> 1 defines a derived role/attribute denoted by role(p)/att(p). Instances of a derived role/attribute
connect instances of source(ry) and instances of target(ry,).

For example, role path r = carried_ out.produced defines a derived role, role(carried_ out.-
produced), between concept Actor (source(r)) and concept Man_Made Object (target(r)). In-
stances of this role connect instances of concept Actor and instances of concept Man _Made Object.

We denote by RPp (or simply RP if O is known), the set of all role paths in O and by APo
(or simply AP if O is known) the set of all attribute paths of O. RPp and APy are infinite if O
is cyclic.

112 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Concept Paths and Derived Concepts

Definition 4.2.10 (Concept paths) A concept path p is either of the form c, or a sequence c.r,
where ¢ is a concept and r is a role path, such that either ¢ = source(r) or ¢ isa source(r).

The length of a concept path p is 0 if p = ¢ and the length of the role path rif p=c.r. If p=c¢
then source(p) = c¢ and target(p) = c. If p = c.r then source(p) = ¢ and target(p) = target(r).

Definition 4.2.11 (Composition of Concept Paths and Role Paths) Let p;1 = c.r be a
concept path and py = r1.79 ... 75 be a role path. The composition of p1 and ps denoted by p = p1 © po
is a concept path p = c.r.ri.ro. ..y, if either target(r) isa source(r1) or target(r) = source(r1).

Definition 4.2.12 (Derived Concepts) A concept path p = c.r where ¢ is a concept and r is is
a role path of length > 1 defines a derived concept denoted by conc(p). Instances of this concept are
“the instances of target(p) that can be reached from instances of source(p) by following the roles
in 7 in order of their appearance in r.”

Consider concept path p = Person.carried_ out.produced. It defines the derived concept conc(-
Person.carried_out.produced) that stands for the instances of concept Man_Made _Object (target(p))
reached by instances of concept Person following the roles in path carried_ out.produced.

In the following CPo (or simply CP if O is known) denotes the set of concept paths of ontology
O. If O is c¢yclic then CP is infinite.

Definition 4.2.13 (Suffixes of Concept Paths) Let p = c.ri.re....7, be a concept path. A
concept path p' is a suffiz of p iff :

e p' = where ' = target(ry) or target(ry,) isa c';
o p'=Ccrprpi1...r (1 <k <n) and target(ry_1) isa ¢ or ¢ = target(ry_1);
e o' =c.ri.ro.... T, where c isa c'.

Concept path p = Person.carried_ out.produced has three suffixes: (i) Actor.carried_ out.produced,
(ii) Activity.produced and (iii) Man_Made Object. The first suffix is obtained by replacing Person
by its superconcept Actor. The second suffix is obtained by removing role carried_ out from the path
and adding the concept Activity in the beginning (Activity=target(carried_out)). Concept path p’
= Activity.produced defines a derived concept that stands for the instances of Man_Made Object
(target(p')) that can be reached from instances of concept Activity by following role produced. If we
remove the last role (i.e. produced) and replace it by its target i.e. Man_Made Object, then we
obtain the third suffix.

Concepts, derived concepts and their suffixes are related by derived isa. If p’' is a suffix of
concept path p, then the derived concept conc(p) is a subconcept of the derived concept conc(p').
That is for a given database, the extent of conc(p) is a subset of the extent of conc(p’). We define
in the following more formally the notion of derived isa between derived concepts.

4.2.3 Keys

As illustrated by the examples in Section 4.1.4, keys are essential in our context for identifying
objects (i.e. XML fragments) in order to perform identity-based join and fusion.

The Tsimmis [170] and YAT [49] projects concerning semi-structured data integration, deal with
the problem of object fusion. In their context, object fusion is similar to our identity-based join. To

4.2. STy X ONTOLOGY 113

perform fusion, objects in these approaches, are identified by semantic keys. For example, in the
Tsimmis [170] project, the identity of an object is determined by the value of one of its subobjects.
A similar approach is followed in [54| where Skolem functions are applied to the value of a specific
attribute of an object to obtain the object’s identifier. The Agora system [149] considers persistent
object identifiers to perform fusion. Nevertheless, persistent object identifiers are not a solution in
the Web context where each source handles independently of the others its identifiers and is not
willing or able to have some common agreement on how these identifiers are managed.
In our context, we introduce two types of keys to identify objects :

e local keys are provided locally by the XML sources without taking into consideration the
other sources. In this category fall the XML attribute of type ID and the position of an XML
fragment in an XML document. Fragments in an XML document can be identified by the
value of an attribute of type ID (if such an attribute is defined), or by its unique position
in the original document. It is evident that local keys cannot be used to identify fragments
coming from different documents.

o global keys are semantic keys which are defined in concepts at the ontology level and are used
to identify objects that originate from different or the same source.

Local Keys XML fragments are not associated always with an attribute of type ID. The position
of fragments, when the document is considered as an ordered tree, can always be used to identify
them.

For convenience, an object represented by an XML fragment, is labeled with its position in the
XML document and the value of the ID attribute using functions #° and 7° respectively. The source
might also generate local identifiers (e.g. using the function generate-id () provided by XSLT [82]).
An object can have more than one values for 8, 7.

To obtain the value for an attribute of type ID of an XML fragment we must be aware of the
XML DTD of the source (i.e. the name of the attribute). Obtaining the position of the XML
fragment is more complex though since currently there is no way to obtain this information by some
function of XPath. Nevertheless, these features are included in our model and if the source returns
this information it can be used for query answering.

Global Keys Even for XML fragments originating from the same document, local keys cannot
always be used to identify them. Let us illustrate this by an example. Consider the XML DTD
illustrated below which describes artists (element Artist). Each artist is associated with only one
artifact (element Artifact). This means that an artist with more than one artifacts appears more
than once in the XML document. An artist is associated with a name (attribute Name) and an
artifact is associated with its title (attribute Title).

<!1ELEMENT Artist (Artifact)>

<VATTLIST Artist Name #CDATA #REQUIRED>
<!ELEMENT Artifact EMPTY>

<VATTLIST Artifact Title #CDATA #REQUIRED>

Consider the valid document for this XML DTD illustrated below.

59 is the initial of the Greek word féon which means position in Greek.
57 is the initial of the Greek word TawTérnTa which means identity in Greek.

114 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

<Artist Name=’Van Gogh’ Year = ’1800°>
<Artifact Title=’Starry Night’/>

</Artist>

<Artist Name=’Van Gogh’ Year=’1800’>
<Artifact=’Vincent’s Room at Arles’/>

</Artist>

We see from the example document that two different XML fragments correspond to the same real
world entity (i.e. the same person). These fragments do not come with ID attributes, and have
different positions in the document. Moreover, we cannot define the attribute Name as an attribute
of type ID since the XML standard [60] does not allow two different fragments to have the same
value for such an attribute.

A global key is defined at the ontology level and can be used to identify objects independently of
their origin. A global key for a concept is a set of attribute paths originating from it. A concept can be
associated with zero, one or more keys. These keys are defined at the mediator level, independently
of the sources.

Definition 4.2.14 (Global Key) Let AP be the set of attribute paths for an ontology O. A global
key k for a concept ¢ € C is a set of attribute paths, k = {ai,az,...an}, k C AP such that
Y a;, source(a;) = c.

Definition 4.2.15 (Ontology with Global Keys) An ontology extended with global keys is a
pair (O, K) where O is as defined previously and K is a function which associates with each concept
in C, a possibly empty collection of finite sets of keys (K : C — 22{,47:})'

From this point on, the term ontology denotes an ontology with keys.

Example 4.2.1 Consider concept Person. A person is identified by her name (value of attribute
has name) and her year of birth (value of attribute path born.took place in.year) :

K (Person) = {{has_name, born.took _place_in.year}}
An instance of concept Place, is identified by its name.

K (Place) = {{placeName}}

An instance of concept Man_Made Object is identified by its title and by its year of creation,
or by its museum identifier :

K(Man_Made Object) = {{has_ title, created.took place in.year},

{museumIdentifier}}

When a key is defined for a concept, then it is inherited by all its subconcepts. Moreover, we
can define more keys for the latter, but it is not possible to refine the keys defined in the former.
For example, consider concept Person and its subconcept Painter. The key ki = {has_name} is
defined for the former, and is inherited to the latter. It is useless to define in concept Painter key
ko = {has_name,born.took place in.year} since there is no point in testing object identity using
ko if the objects agree on their values for k;.

Definition 4.2.16 Let c,c’ be concepts in O, where ¢ isa c¢. Then K(c) C K(c') where V ki, k;
such that k; € K(c), ki € K(¢') —K(c), then k;Nk; =0.

4.2. STy X ONTOLOGY 115

We must note here that an object can have multiple values for a global key. For example, in a
source, a person can have one or more names. This is a realistic assumption based on (i) the semi-
structured nature of XML and (ii) on the fact that XML DTDs do not come with keys! (except
for the XML ID attribute which is a local key). This approach is also undertaken in [32, 84] for
defining keys for XML.

Definition 4.2.17 Let ¢ be a concept in the ontology, and k be a key for ¢, where k = {a1,aq,...ap}
and the a;’s are attribute paths. Let o be an object in D, and ¢ € An(0). Let {e1,e2,...e,} be edges
in E such that Ve;,1(e;) = (o,u;) and Ag(e;) = a;. Then, a value for key k and for object o is
denoted by the record [ay : u1,a2 : Uz, ... Gy : Up).

Function k associates each triple (o,c, k), where o is an object, ¢ is a concept where ¢ € Ay (0)
and k € K(c), with a possibly empty set of records of the form [a1 : u1,...ap : up]. £ : (NXCxK) —
Qlarur,anzun] yunere K s the set of global keys in the ontology.

Object identity Given the previous definitions for global and local keys we define when two
objects in a database D are identical. We distinguish between identity based on local and global
keys : two objects that have the same value for at least one of their local keys are called locally
identical (they correspond to the same XML fragment). Two objects that have the same value for
at least one of their global keys are called globally identical.

Definition 4.2.18 (Local Identity) Let o, o' be two objects. We say that o and o' are locally

identical if either 7(0) N7(0') # 0 or 8(0) NO(d') # 0. In the first case o =; o', and in the second
/

0=90.

In the case of global keys, in order to decide whether two objects are globally identical we require
that (i) are instances of the same concept and (ii) they have at least one common value for a key
for this concept.

Definition 4.2.19 (Global Identity) Let (O, K) be an ontology with keys. Let D be a database
that conforms to O. Two objects o, o' are globally identical (0 =4 0') if : Ic € An(0) N An(0') and
3 ke K(c) and ko, k,c) Nk(d',k,c) # 0.

From this point on, we refer to two objects as identical (o = o') if they are either locally or
globally identical.

Definition 4.2.20 (Legal Database) Let (O, K) be an ontology with keys and D be a database
that conforms to O. D is a legal database for O if there do not exist two identical objects o and o'.

4.2.4 Derived Ontology

The augmentation of a given ontology with the derived roles, attributes and concepts gives a derived
ontology. It is significant for the integration, since it provides an interpretation for the mapping rules
by which sources are published in the STyX mediator, hence for query processing as we illustrate
later.

Given the simple path-based ontology language described earlier, we define the notion of derived
ontology. First, the notion of derived concept hierarchy is formally defined.

116 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Definition 4.2.21 (Derived Concept Hierarchy) Let O be an ontology as previously defined.
A derived concept hierarchy HY = (C¥*,isa”™) where C¥ is the set of derived concepts defined by the
set of concept paths CP, and isa” is a partial order on C* (transitive, antisymmetric and reflezive).
isa® is defined as follows :
e for all concepts ¢, ¢ in O such that c is a subconcept of ¢ (c isa ') then c is a subconcept of
d in OF :Ve,d € C if cisa c, then c isa® ;

e the derived concept defined by some concept path p in CP is a subconcept in OF of the derived
concepts defined by its suffives : ¥p € CP, and for all suffizes p' of p, then conc(p) isa” conc(p').

The derived ontology O contains (i) the derived concepts defined by concept paths in CP, (ii)
the derived roles defined by the role paths in RP and (iii) the derived roles defined by the attribute
paths in AP.

Definition 4.2.22 (Derived Ontology) Let O = (C,V, R, A, source, target,isa) be an ontology.
Let RP be the set of role paths, AP be the set of attribute paths, and CP be the set of concept paths
in O. The derived ontology OF = (C¥,V, R*, A¥ source”® ,target®,isa”) is defined as follows :

o C% is the set of derived concepts defined by the concept paths in CP ;
e RY is the set of derived roles defined by the role paths in RP;
o A% is the set of derived attributes defined by the attribute paths in AP";

o V is the set of atomic type names;

e source” is a function that maps a role 1 € R or an attribute a € A* to its domain in C

(source™ : R¥ U AY — C)3;

e target® is a function that maps a role r € R* to its target in C and an attribute a € A% to
its target in V (target® : R* UAY - CUV)%;

e the pair (C*,isa®) defines a derived concept hierarchy;

The keys defined for concepts in O are defined for concepts in O%. A key defined for a concept

¢ is also defined for all its subconcepts ¢ where ¢ isat c.

Definition 4.2.23 (Derived Database) Given an ontology O and a database D = (N,V, E, \x,-
Mg,) of O, the derived database DY = (N, V, EXY A A%,), derived from D, instance of OF,
is constructed as follows :

o the set of objects in DV is the same as the set of objects in D : N* = N;

e the set of edges in DY is initialized by the set of edges E in D. E¥ is extended by creating
edge paths as follows : for all edges e1,es,...e, € EX, with \%(e;) = r; (where r; is a role
fori < n or an attribute for i = n) if

"By the previous definitions C C CP, R C RP, A C AP.

8Here we note that source?” is restricted to map a role/attribute to C. We could map it to C? but this information
is not used during query processing.

9Here we note that target” is restricted to map a role/attribute to C' U V. We could map it to C¥* UV but this
information is not used during query processing.

4.2. STy X ONTOLOGY 117

1. 301,09,...0n11 such that Vi, (e;) = (0;,0i41) i.e. e1,ea,...e, define a path in E* and
2. Vi € [1,n — 1], either target® (r;) isa® source®(ri;1) or target® (r;) = source® (r;y1)
and in particular source® (r;) € A%:(0;) fori € [1,n];

then 3 € € EY such that (') = (01,0n+1) and AE(€') = ri.ro....1.

o the labels of objects in DY are extended as follows : if there exist an object in DY reached
by a concept path, then the derived concept defined by the latter is added in the set of labels
of the object. For each o € N* and for each e € EY where A\f(e) = p (p is a derived role)
and p(e) = (0',0) such that o' is an object in N¥ and ¢ € A% (0'), ¢ = source™(p), then
conc(c.p) € Ax(0). A% (o) is then closed upwards.

Notice that in the definition of D and D* (databases for O and OF respectively) we introduce
two different functions Ay and A7, to label objects. Ay is a labeling function that associates with
each object in N, a set of concepts in O.)\f\(] is a function that associates with each object in N*, a
set of derived concepts (defined by concept paths) in O%. The same holds for functions Ag and A%.
A labels an edge in D with a role or an attribute of O. A% labels an edge in D% with a derived
role or a derived attribute (defined by some role, attribute path) of O%.

An example of a database and its derived is illustrated in Figure 4.11. Notice that in the
derived database, no new objects are created. Nevertheless, derived concepts are added in the
object labels. For example, object oy is labeled with concepts'® conc(Cy) and conc(Cy) (as in the
original ontology) and the derived concept conc(C;.r1). Object o3 is labeled with concept conc(Cs)
and with the derived concepts conc(Cy.r1.72), conc(Cs.r9) and conc(Cy.rg). The latter is defined
by the suffiz Cy.ro of concept path Cy.ro. Edge es is created. It connects objects 01 and o3 and its
label is role(ry.re).

We have to note here that the key value of an object o in D¥ is defined by the database itself.
For example, consider that o is an instance of concept c. Let k& = {ai,aq9,...a,} be a key for
concept ¢, where the a;’s are attribute paths. Let {e1,e2,...e,} be a set of outgoing edges of o,
where V e;, A% (e;) = a;, and V 4,9(e;) = (0,v;). Then, the record [ay : vi,as : vo,...an : vy] is
added in the set of key values (o, ¢, k).

4.2.5 Identity-based Join and Fusion

In this section we define the operations of identity-based join and fusion. The former is a binary
operation and is applied on two objects. It returns a new object whose structure is the merge of the
structure of the two objects. Fusion is a unary operation which is applied on a database of objects
and returns a new database where all objects sharing some key value have been replaced by a single
new object.

Join We define first the operations of local and global join. The former is applied to objects
that are locally identical and the latter to objects which are globally identical. Then we define the
operation of LG-join in terms of the above.

Definition 4.2.24 (Local Join) Let o1, 0o be two objects. 01 and oo can be locally joined if they
are locally identical. We distinguish between the local join based on the ID XML attribute and the
one based on the position of the XML fragments (representing the objects) in the XML document.
The first is denoted by o1 ><; 02 and the second by 01 >y 02.

10Tn Figure 4.11 the concept paths and role paths are shown.

118 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

CA“ Objects Edges
: rn | ro 7"N(01) ={Cl})"E(el) ={I'1}
G G G
Z Ane2) =G Gl) —{ra}
«
- T Ag©3) ={G}
«
e y e ®
01 1 02 2 03
)
« A
= r | r
< G ! G 2 () Objects Edges
N
« X X
O oo e ={C} rpler) ={rp}
X
e r©2) ={C,Crry, G4} %)E((ez) ={r3}

X
7\.N(03) ={C3,C1.r1.r2,C2.r2,C4.r2} K‘g(e3) ={rq .l‘z}

Derived
Se
o
(=]
[%)
[%)
(=]
W

Figure 4.11: A database D and the derived database D*.

Definition 4.2.25 (Global Join) Let o1, oo be two objects. o1 and os can be globally joined if
they are globally identical. Global join is denoted by o1 X<, 09.

Definition 4.2.26 (LG-Join) The LG — Join between objects 01 and oy is defined as follows :

01 ™ 02 if 01 =; 02
01XGoy = 01 g 02 if 01 =g 02
01 X, 02 1f 01 =g 02

Definition 4.2.27 Let o1 and oy be two identical objects in a database DY, instance of OF. The
result of the LG — join between o1 and oo is a new object o (0 = 01><pgo2) such that :

1. o is an instance of the concepts whose instances are 01 and oy : A5 (0) = A (01) U A% (02);

2. all outgoing edges of o1 and 0y become outgoing edges of o : Ve € E* such that (e) = (o', z)
where o' is one of 01, 02 and z is a value or an object, then 1(e) = (0,x);

3. all incoming edges of o, and oy become incoming edges of o : Ve € EX where 1(e) = (z,0)
such that o' is one of the o1, 02 and x is an object, then 1(e) = (z,0);

4. for all edges ey, ea,...e, between object o and some object o' such for all pairs e;,ej i #
4y 1,7 € [1,n], AE(e;) = Af(e;) then merge ey, eq, ... ey into one edge;

In the case of local and global joins, 8(0o) = 6(01) U 8(02), T7(0) = 7(01) U 7(02). Global keys for
o are derived from the new database. Let ¢ € A% (0) and k € K(c) where k = {ai,as,...a,}.
Let ey,es,...e, € EY where Ve;, A& (e;) = a;,v(e;) = (0,u;), u; is a value. Then r(o,c, k) =
k(o,c, k) U{[ay : ug,az : ug,...a, : u,}t

11t might be the case, that adding edges originating from the objects o1, 02 to o, we get values for a key for o.

4.3. MAPPING LANGUAGE 119

1. Input: The database DY

2. Output: The database Déf ;

3. Algorithm: initialization : Df = DY ;

4 loop : for all objects o in N¥ {

5. S = partition(o, N* — {o}) ;

6. /* 8 contains the objects in N* which are identical to o */
7 if S#0{

8 o' = join(o, S)

9. /%0 is the result of the LG — join between o and the objects in S */
10. N*Y=NY¥ -5 —{o}U {0}

11. /* update N* : remove the objects in S and o */

12. /* and add new object o' */

13. }

14. }

15. return database ’Dg ;

Figure 4.12: Fusion Algorithm

Fusion Let DY be a database, instance of O*. The result of applying fusion on this database is
a new database. It is obtained from the initial one by applying recursively LG — join between all
pairs of identical objects. If two objects are joined then they are replaced by the resulting object.

The fusion operator is denoted by ® and the result database is Dy = ®(D¥). The algorithm is
illustrated in Figure 4.12.

The above algorithm makes use of the functions partition and join. The first accepts as input
an object o and a set of objects A, and returns the set of objects in A which are identical to o.
The second accepts as input an object and the set S of its identical objects and returns the object
produced by applying recursively LG — join between o and the objects in S.

Example 4.2.2 Consider the database DY illustrated in the right part of Figure 4.13. The result
of the fusion between objects 02, 03 is object 023 and the result of the fusion of o5, 0g is object 0s6.
The incoming edges of object oa3 are labeled with roles 1,79 and r3 (the incoming edges of objects
02 and o03). Notice that there is only one edge labeled with r3 from object 01 : the edges labeled with
r3 originating from object o1 and arriving in objects oo and o3 are merged into a single edge since
they have the same label. Objects 0o, 03 and o5, 0g disappear and are replaced by objects 093 and

056 .

4.3 Mapping Language

In this section we define the STyX mapping language. It is based on establishing mappings between
XPath location paths and ontology paths.

Definition 4.3.1 (Mapping Rule) Let V be a set of variables, and U be a set of URLs. A
mapping rule is an expression of the form R :u/q as v — p, where

o R is the rule’s label,

120 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

o4 12 \

o4 2 r4
Fusion & ° /1\ :23/\
T

Figure 4.13: Object Fusion

operation partition

Input : object o and a set of objects S;
Output : a set of objects S’ C S which are identical to o;
Algorithm : initialization S" = §);

loop : for all objects o' € S {
/*if o is identical to o, add o' in S" */
ifo'=0,8=5U{d}

}

return S’;

operation join

Input : object o and a set S of identical objects of o;
Output : object o;
Algorithm : loop : for all objects o' € S {
/* apply LG — join between o and o' */
0 = oo’

}

return o;

Figure 4.14: Operations partition and join

4.3. MAPPING LANGUAGE 121

u € VUU, the rule’s root, is either a variable or a URL,

q is an XPath location path, called source path of the rule and denoted by sp(R),
e as v is a variable declaration (v is called the bound variable of R) and

e p is an ontology path, denoted by op(R) : more precisely, p is a role/attribute path if u is a
variable and a concept path otherwise.

Rule R is a relative mapping rule if its root is a variable v, and an absolute mapping rule
otherwise.

Definition 4.3.2 (Reachability for Rules and Variables) Given a set of mapping rules defined
for a source s, and an ontology O, we define reachability for rules and variables, as follows :

e cach rule whose root is a URL is reachable;
e cach variable bound in a reachable rule is reachable;

e cach rule whose root variable is a reachable variable is reachable.

Definition 4.3.3 (Mapping) A mapping M for a source s and an ontology O is a set of mapping
rules where the following hold :

ontology paths of rules in M occur in OF;

two rules cannot share the same label;

all rules and all variables are reachable;

for each pair of rules R, R' such that the bound variable of R is the root variable of R', then
the composition of the ontology paths of R, R' (op(R) o op(R')) is a path in OF.

Definition 4.3.4 (Rule Concatenation) Let Ry : a/q1 as vi — p1, Ry : v1/q2 as va — po
be two rules in a mapping M. The result of the concatenation of the two rules is a new rule
R1.Ry : a/q1/q2 as v2 — p1opa.

For the concatenation of rules we do not define any restriction on the concatenation of the source
paths of the rules. This is commensurate with the mediator-based architecture, where the mediator
has no control on the local sources’ schemas and is not in charge of verifying the correctness of
the source descriptions (as far as the source structures are concerned). In the case of erroneous
mappings, no answers will be obtained by the source!?.

Definition 4.3.5 (Closure and Expansion of Mapping) Given a mapping M, its closure,
denoted by M*, is the set of all rules that can be obtained from M by repeated concatenation. Its
expansion, denoted M, is the set of absolute rules in M* (M C M*).

The expansion of a mapping M can be obtained by a bottom-up fixed point computation.

12Nevertheless, if the mediator is aware of the XML DTD of the source, then it is possible to verify the correctness
of source paths in the mapping rules.

122 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Interpretation of mapping rules Intuitively, mapping rules return instances of derived con-
cepts, roles and attributes. More specifically, absolute mapping rules return instances of derived
concepts and relative mapping rules return instances of concepts and role (attribute) paths.

Let 7 be an absolute mapping rule of the form r : URL/q as b — p where p is a concept c, or a
concept path. The XML fragments obtained by evaluating the source path g of R on URL become
instances of ¢ or of the concept reached by p.

Let r be a relative rule r : a/q as b — p where p is a role/attribute path. The set of pairs of
XML fragments (z,y) where z are instances of variable a, and y are instances of variable b become
instances of p. Given an XML fragment z, instance of variable a, XML fragment y is obtained
by evaluating XPath ¢ on z. This rule returns also instances of the concept reached by p. These
instances are the XML fragments bound in variable b.

4.4 Integrated Database

In the previous sections we have presented formally the $73:X ontology O and the derived ontology
O%. Both databases D and D¥ of © and O respectively, are virtual (non-materialized). The actual
data resides in the sources. In this section we present how the integrated database D7, instance of
O%, is obtained by the data that resides in the XML sources. Intuitively, each source, described by
a set of mapping rules, defines a database instance of OF via these rules. The integrated database
DT is obtained from these partial databases by first taking their union and second applying fusion
as described in Section 4.2.5'3.

4.4.1 Obtaining a partial database

A source may be published by more than one mappings. From this point on we assume w.l.g. that
a source is a pair (u, M) where u is the URL of the source and M is a mapping for the source.
Intuitively, a source s defines a partial database denoted by D(s) as follows : by evaluating the
mapping rules of M*, we obtain XML fragments of the source which are represented as objects of
D(s). These are labeled with derived concepts and are related by derived roles.

Let us now present more formally how the database D(s) is defined for a source s.

Absolute Rules : Let R: URL/q as u — p be an absolute mapping rule in M. Let Xg denote
the set of XML fragments obtained by rule R by evaluating the source path ¢ on URL. If p
is a concept path, for each XML fragment in Xg, an object o is created in D(s) for which the
following holds :

1. A% (0) = {conc(p)} U{c | conc(p) isa*c } (cis a derived concept in O and A% (o) is
upwards closed);

2. (o) = v, where v is the position of the XML fragment representing o in the XML
document. If the position of the XML fragment is unknown, then (o) is undefined.

3. 7(0) = v, where v is the value of the attribute of type ID of the XML fragment repre-
senting o. If the fragment does not have such an attribute, then 7(0) is undefined;

Relative Rules : Let R’ : u/q' as b — p' be a relative rule in M* such that the concatenation
R.R' is a rule in M. Xpg g is the set of XML fragments obtained by evaluating the source
path g on the fragments in Xp. We distinguish between two cases here :

13The integrated database D7 is not really constructed : the global schema is not materialized and the actual data
resides in the sources.

4.4. INTEGRATED DATABASE 123

1. if p’ is a role path, then for each of the fragments in X g an object o in D(s) is created
where A% (0) = {conc(p o p')} U {c | conc(p o p') isa¥c} (c is a derived concept in OF).
0(0) and 7(0) are defined as previously.

2. if p' is an attribute path, then for each XML fragment in Xz r a value is added in V.
This value is obtained by casting the XML fragment to a value using one of the core
functions of XPath string(), number () and boolean(). The function used depends on
the target® (p') in OF.

Then, for all pairs of objects (0,0') where o is an object represented by an XML fragment in
Xpr and o is an object/value created for some XML fragment in X g/, an edge e is created
where :

1. A (e) = role(p');
2. ¢(e) = (0,0);

These two steps are executed recursively until no new objects and edges are created. The result of
this process is database D(s). The population of a derived concept ¢ is the set of objects in D(s)
labeled by c. The population of a derived role r is the set of edges in D(s) labeled by r. Finally,
the population of a derived attribute a is the set of edges in D(s) labeled by a.

Example 4.4.1 Consider source hitp://www.paintings.com and the set of mapping rules by which
it is published, illustrated in Figure 4.6.

Let us first consider the absolute mapping rules in the source. Set X4, contains the XML
fragments obtained by evaluating the source path of the rule Ay on URL http://www.paintings.com.
For each XML fragment in X 4,, an object o is created as described above. The objects are instances
of the derived concept conc(Person).

Aj: http://www.paintings.com/Collection/Painter as u; — Person
Asz: wui/Painting as ug — carried_out.produced

Consider now relative rule Az which can be concatenated with rule A1. The set of XML fragments
X A,.4, 15 obtained by evaluating the source path of Az on fragments in X 4,. For each fragment in
X A,.45, an object o is created in D(s) as before. The label of each object is A% (0) = {conc(Person.-
carried_out.produced), conc(Actor.carried_ out.produced), conc(Activity.produced), conc(Man_ Made_ -
Object)}. The last three derived concepts are defined by the suffizes of the path Person.carried out.-
produced and hence are superconcepts of the derived concept defined by the latter. For all pairs
of objects (0,0") where o is an object created by some XML fragment in X4, and o' is an object
created by some XML fragment in X4, a5, an edge e is created between o and o' whose label is
A% (e) = role(carried_ out.produced).

4.4.2 Obtaining the Integrated Database

In this section we present how the integrated database is obtained. Intuitively, the integrated
database (denoted by D) is obtained by first taking the disjoint union of the partial databases
D(s) and then by applying fusion.

It is necessary to apply fusion for the following reasons :

1. In a source there might exist distinct objects which correspond to the same XML fragment.
Consider for example source http://www.paintings.com and the mapping rules illustrated in
Figure 4.6. Suppose that mapping rule Ag is added in the set of mapping rules.

124

CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

‘ Ag: http://www.paintings.com//Painting as u3 — Man_Made Object ‘

This rule states that by evaluating the source path descendant:Painting of the rule on the
documents of source hittp://www.paintings.com, we obtain instances of concept conc(Man _ -
Made Object). This expression returns all XML fragments of type Painting, descendants
of the root element of a document in the source.

Consider now the rule A; o A3 produced by concatenating rules A;, As.

A3 http://www.paintings.com/Collection/Painter/Painting as us
— Person.carried _out.produced

Absolute rule A; 3 = A;0Aj3 returns instances of the derived concept conc(Person.carried_out.

produced). XML fragments that are obtained by both these rules are instances of concept
conc(Man_Made_Object). Rule A3 returns a subset of the XML fragments obtained by
rule Ag. During the creation of the partial database, for the same XML fragment that is
obtained by the two rules, two different objects are generated. To fuse the two objects there
exist two choices : using the attribute of type ID, if the source records this information, or
the position of the corresponding XML fragments in the document. If none of the above
information is available, fusion using global keys must be applied.

. Partial databases are not necessarily disjoint when these are associated with the same U RL™.

As in the previous case, two objects are created for the same XML fragment when the latter
is obtained by two different mapping rules.

3. Last, in two partial databases, there might exist objects o and o’ which are globally identical.

4.5 Query Language

Users view the mediator as a single integrated database of objects. In STyX we use a tree query
language with an OQL-like syntax to query this database as an intermediary solution that is easier
to use, yet sufficiently powerful for most needs. Tree queries are based on select-from-where
clauses on ontology paths.

Definition 4.5.1 (Tree Query) Given an ontology O%, a tree query Q is of the form :

Q: select x;, z;, ...
from p; zq,
Zjy-P2 L2, ---
Zj;-Pi Ljy -
where ¢j and ¢; and ...

where :

e the x;’s are variables;
e cach p; in the from clause is an ontology path, called the binding path of z; and denoted bp(x;);

e wvariable x1 is the root variable of the query, and its binding path p1 defines a derived concept

in OF i.e. it is of the form ¢ or c.r;

YRecall that a source in our context is associated with a URL and a mapping M.

4.5. QUERY LANGUAGE 125

o for each i > 1, there is a single clause xj,.p; x;, and p; defines a derived role/attribute in 0¥,

xj; 15 called the parent of x;;

e for all variables x;, except the root, the composition of the binding paths of x; and z; where

x; is the parent of z;, is well defined;

the variables with the parenthood relation form a tree, with x1 as its root.

The intuition of the from clause is that z; ranges over the extent of the derived concept conc(p1),
and z; ranges over the instances obtained by traversing the derived role (attribute) role(p;) (att(p;))
from the instances of ;.

Restrictions of the query language The ST3yX query language has the following restrictions :

The query language does not allow joins between query variables (in general graph queries).
This restricts the expressive power of the query language but simplifies query rewriting. Nev-
ertheless, a query that considers a join between the variables can be rewritten in two tree
queries, where each one is evaluated separately against the sources, and then the join between
the variables is performed at the mediator site.

Restructuring is not allowed in the select clause. Restructuring may add expressive power
to our language but it can be performed at the integration site. Hence it is orthogonal to the
issue of retrieving data from the sources.

The where clause is a conjunction of simple comparison predicates, where a simple predicate
is of the form ¢; = z;6d in which 6 € {=,<,>,<,>} and d is an atomic value.

The language has no quantifiers. But, a variable x; present in the from clause is implicitly
existentially quantified;

The last restriction is that ontology paths appear only in the from clause of the query and
not in the select or where clauses. It is straightforward to rewrite such a query to one
where dummy variables are added in the from clause. For example, query @ that requests
the “names and the titles of the objects created by persons born after 1900” can be rewritten
to query Q'. Both queries are illustrated below.

Q: select zj.carried out.produced.has_title, z;.has name
from Person z1
where z;.born.took place in.year > 1900

Q’: select 1x9, x3
from Person z1,
zq.carried out.produced.has title o,
z1.has_name z3,
z1.born.took place in.year x4
where z4 > 1900

Definition 4.5.2 (Query Tree) A query Q is represented as a labeled tree T'(Q) = (X, par, bp, ops)
where:

126 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

X s the set of nodes of the tree, where each node corresponds to a variable in Q;

par is the parent relation between variables (nodes);

bp(x) is a function returning for each variable (node) its binding path and

ops is the set of operations associated with a variable x. More precisely,

— for a variable x in the from clause, 3 € ops(z);
— for a variable x in the select clause, m € ops(x),

— and for each condition x0d in the where clause, o.9q € ops(x).

An answer to a tree query @ in some database D% can be represented as a strict type homo-
morphism from Q to D¥.

Definition 4.5.3 (Strict type homomorphism) Let O% be an ontology and D* = (N*,V, E¥ -
MY, AL) be a database of OF. Let T = (X, par, ops,bp) be the query tree for a query Q. A strict
type homomorphism from T to D¥ is a function h from nodes(variables) in T to nodes(objects) in
DY such that :

e cach node (variable) in T is mapped to some node (object) in D*;
e if 71 is the root variable of T then conc(bp(z1)) € A% (h(z1));

o h strictly preserves the structure and the labels : for each pair of variables (z;,x;) where
par(z;) = x; in T then there must exist an edge e € E* such that y(e) = (h(z;), h(z;)) and
Az (e) = role(bp(z;)) (or Az (e) = att(bp(s;)));

Definition 4.5.4 (Valuation of a Tree Query) A strict type homomorphism h from a query Q
to a database DY is a valuation v iff Vz; € X and condition x;0d € ops(x;), h(x;)0d is true.

Finally, the result of a query is a set of tuples.

Definition 4.5.5 (Query Answer) Let O be an ontology and D* be a database of OF. Let
T = (X, par,ops,bp) be a query tree on OF. Let S = {x1,T2,...x,} be the set of nodes (variables)
where T € ops(z;). Let v be a valuation of T to D¥. An answer tuple t for T is defined as :

t=[z1:v(x1), 22 : V(T2),..., Ty : v(Ty)]

4.6 Query Evaluation

As illustrated in Section 4.1 in order to answer a query ¢ over a set of sources S published in the
STyX mediator, we would like to get all answers that satisfy ¢. A source s € S gives only a subset of
the answers for q. To get additional answers, query q is evaluated against all sources s € S. When
all results are obtained, fusion is applied at the mediator site.

To evaluate a query g on a source s, ¢ is rewritten into a query that s can answer (i.e. an XML
query expressed in the source’s schema). In Section 4.6.1 two algorithms are presented. The result
of both algorithms is a set of variable to rule bindings or simply bindings where a binding is a vector
of associations of variables to rules. Algorithm By returns only the full bindings (i.e. bindings that
associate all query variables with some rule). Algorithm B, returns mazimal bindings (i.e. bindings

4.6. QUERY EVALUATION 127

that associate a subset of the query variables with some rule). A maximal binding which associates
only a proper subset of the query variables with some rule, is called partial binding.

To complete the partial answers obtained by a partial binding, the subqueries that the source
cannot answer are identified and each of them in turn is evaluated against the other sources. This
process is called query decomposition. The decomposition algorithm presented in Section 4.6.2
accepts a partial binding and decomposes the query into a prefix and one or more suffiz queries.
The prefix query is the one for which the source provides full answers. The suffix queries are those
that the source cannot answer. Section 4.6.3 presents the algorithm that calculates a query execution
plan for query ¢ and a set of sources S.

4.6.1 Binding variables to Rules Algorithms

In this section we illustrate two rewriting algorithms that accept as input a query ¢ and a source s
defined by a URL u and a mapping M, and return possibly empty sets of variable to rule bindings.
The first, denoted by By, discovers full bindings for the user query; the second, denoted by By,
discovers mazimal bindings.

Let us first define the notion of the prefix of a tree.

Definition 4.6.1 (Tree Prefix) A tree T' is a prefix of a tree T if its set of nodes is a subset of
the set of nodes of T, its set of edges is the restriction of T'’s set of edges to that subset, and its root
is the same as that of T. It follows from the definition that if T' contains a non-root node of T,
then it contains the nodes and edges up to T ’s root.

Definition 4.6.2 (Variable Binding) A variable to rule binding 3, or shortly variable binding,
for a tree query @ and a source s, is a mapping from a set denoted by dom(B) to a set denoted by
rng(B) where :

o dom(f) is either empty or is the set of variables of Q or of a prefix of Q,
e and rng(B) is a subset of M* (the closure of M).

The empty binding is denoted by B4. A binding is represented as a wector of associations of
variables to rules, namely [z — Ry, ...z, — R,] where z; is the root of the query and each variable
appears after its parent in Q.

Definition 4.6.3 (Variable Binding Properties) The properties of a binding B for a query Q
and a mapping M are the following : if dom(B) is not empty, then B associates each variable in
dom(B) with a rule of M*, such that the following hold:

1. if x is the root of query Q, then B(x) is an absolute mapping rule such that either conc(op(B(x)))
= conc(bp(x)) or conc(op(B(z))) isa® conc(bp(x)), i.e., the derived concept defined by op(B(z))
is either the same or a subconcept in OF of the derived concept defined by the binding path
bp(z) *°,

2. else, let par(z) = x', then

(a) role(op(B(z))) (att(op(B(x)))) = role(bp(z)) (att(bp(x))), i.-e. the derived role (attribute)
defined by op(B(x)), is the derived role (attribute) defined by bp(z) (Condition A) 16;

5 Another way to formulate this condition is to say that the binding path of z (bp(z)) is equal to or a suffix of the
ontology path of R (op(R)).

16 Another way to formulate this condition is to say that the ontology path of R (op(R)) is the same as the binding
path of z (bp(x)).

128 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

(b) the root variable of rule B(z) is bound in rule B(z') (Condition B).

Regarding the first case, if z is the root of @), then it is bound to some derived concept by its binding
path bp(z), that has the form ¢ or ¢.r. An absolute rule R can provide instances for this concept if
the derived concept defined by R’s ontology path (op(R)), is a sub-concept of the derived concept
defined by bp(z) in OF.

The second case, states that if 3 is defined on z then it is defined on the parent of z (i.e. z')
follows from the requirement that dom(f8) is @ or a prefix of). Let the declaration of z in @
be of the form z'.I z. This means that instances of variable z are obtained by evaluating the role
(attribute) role(l) (att(l)) on instances of z’. Let z’ be associated in 8 with rule R : u/q as v — p.
To get instances for z, we need to find a rule R’ :

1. whose ontology path defines role (attribute) role(l) (att(l)) (condition A above);

2. and evaluates role (attribute) role(l) (att(l)) on instances of v : the root variable of R’ must
be v (condition B above).

Definition 4.6.4 (Full Binding) A binding S8 for a query Q and a source s is a full binding if
dom(f) is the set of variables of Q i.e. all variables in Q are associated in 8 with some rule in M*.

Definition 4.6.5 (Partial Binding) A binding B is a partial binding if dom(B) is a proper subset
of the set of variables of Q : dom(pB) C X.

Definition 4.6.6 (Maximal Binding) A binding B is called maximal if there does not erist a
binding 1 such that dom(B) C dom(B1) and Vz € dom(p), B(z) = Pi(x).

Computing Bindings for Acyclic Mappings We assume acyclic mappings and we expect M*
to be of tractable size in most practical cases, although it can be very large in some rare cases.

Two versions of the binding variables to rules algorithm are given. Both algorithms consider
that the query variables are arranged in some order z1,...,z, in which the root is first, and every
other node occurs after its parent, i.e., in preorder. Recall that a binding is represented as a vector
of associations of variables to rules, in that order, namely [z1 — Ri,...z, — Ry]. The extension
of a partial binding 8 by z — R is denoted S x [z — R].

Computing Full Bindings Algorithm By accepts as input the variables of a query () arranged
in preorder and the closure M™* of a mapping M. It returns a set of full bindings.

The algorithm is illustrated in Figure 4.15. Bj; is the set of bindings calculated for up to and
including z;. In line 4 all B;’s are initialized to ¢.

The algorithm considers first the root variable z; of the query and runs through the set of
absolute rules in M (line 5). For each absolute rule R whose ontology path defines a derived
concept, which is either the same or a subconcept of the derived concept defined by the binding
path of z1 (i.e. conc(op(R)) = conc(bp(x1)) or conc(op(R)) isa™ conc(bp(z1))), [z1 — R] (line 6)
is added to the set of bindings for z; (i.e. set Bj).

The algorithm then iterates through the sequence of variables, from the left (line 8). Assume that
a set of partial bindings (B;_1), all defined on all variables up to and including z; 1, i > 1, is
constructed.

Consider variable z; whose parent is variable y. Necessarily, all bindings in B; 1 are defined on y.
This is true since the domain of a binding is a prefix of). The algorithm runs through the set

4.6. QUERY EVALUATION 129

1. Input: the sequence of variables of query @, in pre-order: x1,...,Zp;
2. the set of mapping rules M*;

3. Output: a set of full variable bindings;

4. Algorithm: initialization: let B; = ¢,2 =1,...,n.
5 loop: for each absolute rule R of M {
6 if conc(op(R)) isa”® conc(bp(x1)) or conc(op(R)) = conc(bp(z1))
then By := B1 U {[5(21 — R]}

7. }

8. loop: for i =2,...,n {

9. loop: for each binding f; from B;_; {

10. let z;’s parent be bound by R’ in S;

11. loop : for each rule R in M* {

12. if role(bp(x;)) (att(bp(x;))) = role(op(R)) (att(op(R))) and
13. the root variable of R is the bound variable of R',
14. then B; := B; U {,3] X [z; — R]}

15. }

16. }

17. now B;_1 can be discarded

18. }

19. return the set B,

Figure 4.15: Variable binding algorithm : By

of bindings in set B;_; (line 9). For each binding j;, assume it associates rule R’ with the parent
of z;. For this binding, the set of all relative rules in M* (line 11) are examined. Let R be such a
rule. §; is extended by [z; — R] (line 14) if :

1. role(op(R)) (att(op(R))) = role(bp(x;)) (att(bp(x;))) (line 12) (condition A, Definition 4.6.3)
and

2. if the root variable of R is the bound variable of R’ (line 13) (condition B, Definition 4.6.3).

Note that the edge from the parent of z; to x; is ‘traversed in this step, and only in this step’.
After all bindings that are defined up to and including z; are computed, all previous partial bindings
can be dropped.

Lemma 4.6.1 Algorithm By returns all full bindings for Q.

Proof Suppose that S is a full binding and not in B,,. Then, there exists k such that the restriction
of B to the variables {z1,z2,...z_ 1} belongs in By 1. Suppose that By 1 is extended for variable
xk. Suppose that the restriction of 8 to variables {zi,z9,... 2} is not in Bg. This means that
binding 8 does not map zj to some rule R. This is a contradiction (/3 is a full binding).

Example 4.6.1 In this ezample we run algorithm By for query Q1 shown in Table 4.1, Page 100
and source http://www.paintings.com. The mapping rules considered are shown in Figure 4.6. Q
looks for the “title of the objects created by Van Gogh”.

130 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Query variables are arranged in preorder {x1, T2, T3, T4} where x1 is the root variable of the query
and each variable appears after its parent. We denote by By, the set that contains the bindings for
up to and including x;, initialized in 0.

First, By considers variable x1. The absolute rule that provides answers for this variable is Ay
(i.e conc(op(A1)) = conc(bp(z1)) = conc(Person)). In this case set By, is By, = [z1 — A4].

Then, By considers variable xo, and binding [x1 — A1] € By,. By looks for a rule R that satisfies
conditions (A) and (B) of definition 4.6.3. This rule is Ay :

1. att(op(Aa)) = att(bp(z2)) (condition A);
2. the root variable of Ag is the bound variable of Ay (i.e. uy) (condition B);

Binding [z, — Ai] is extended with [zo — As]. The set By, is By, = {[z1 — A1,z2 — Ao]}. All
bindings in By, have been considered, and By, is discarded.

The algorithm then examines variable x3, and binding [z1 — A1, 29 — Ao]. It finds two rules :
As and Ag which satisfy conditions (A) and (B) of definition 4.6.3. Set By, is By, = {[z1 —
A1, z9 > Ag, 3 — Asl, [11 — A1,x9 — Ag,x3 > Agl|}. The set By, is discarded.

Last, the algorithm considers variable x4. The algorithm considers both bindings in By, and each
of the bindings is extended by rule (x4 — Aa]. The result is set By, = {[z1 — Ai1,z2 — Ag,x3 —
As, x4 — A4l [z1 — A1,z0 — Ag,x3 > Ag,z4 > A4l}. Set By, is discarded and the algorithm
returns set By, .

Example 4.6.2 Consider now query @ illustrated below. This query requests “the title of the ob-
jects”. Consider also source http://www.paintings.com and its mapping rules, illustrated in F'ig-
ure 4.6.

Q: select b
from Man_ Made Object a,
a.has_title b

The algorithm starts with variable a (the root variable of the query) and looks in the erpansion of
the mapping rules of Figure 4.6 for a rule such that the derived concept defined by its ontology path
is (i) either the same or (ii) a subconcept of the derived concept defined by the binding path of a. In
the closure there is no absolute rule such that (i) holds. Nevertheless, rules Ay 3 and Ay g illustrated
below return instances of concept Man_Made Object reached by some instance of concept Person

by traversing the path carried out.produced. In OF, conc(Person.carried_out.produced) isa®-

conc(Man_Made_Object).

Aq13: http://www.paintings.com/Collection/Painter/Painting as us
— Person.carried out.produced

A1g: http://www.paintings.com/Collection/Painter/Sculpture as ug
— Person.carried out.produced

The algorithm creates two bindings : B, = {[a — A1 3],[a — A1g]}. After ezamining variable b
the set of bindings returned by the algorithm is By = {[a — A13,b — A4, [a — A18,b+— A4]}.

Example 4.6.3 Consider last query Q' illustrated below. This query requests “the title of the
objects produced by some activity”. Consider also source http://www.paintings.com published by
the mapping rules illustrated in Figure 4.6 to the STyX mediator.

4.6. QUERY EVALUATION 131

Q: select b
from Activity.produced a,
a.has_title b

The algorithm starts with variable a (the root variable of the query) and looks in the closure
of the mapping rules of Figure 4.6, for a rule such that the derived concept defined by its ontology
path is (i) either the same or (ii) a subconcept of the derived concept defined by the binding path
of a. The ontology path of rules A3 and Aig illustrated in the previous ezample, is Person.-
carried _out.produced. The derived concept conc(Activity.produced) defined by the binding path of
a is a superconcept of conc(Person.carried_ out.produced) in OF,

The algorithm creates two bindings : B, = {[a — A1 3],[a — A1g]}. After ezamining variable b
the set of bindings returned by the algorithm is By = {[a — A13,b— A4],[a — A1g,b+— A4l}.

Computing Partial Bindings Algorithm By, given a query @ and a source s, computes the
set of full bindings. As illustrated by examples in Section 4.1, it might be the case that a source
does not provide full answers for the query. We present in this section the rewriting algorithm B,
which calculates the set of mazimal bindings for a user query @ and a source s. The algorithm is
illustrated in more detail in Figure 4.16.

For the algorithm, query variables are arranged as for By, in preorder. Similar to By, a binding
B is represented as a vector of associations of variables to rules. The output of the algorithm is the
set B of maximal bindings for query @ and source s.

In the first step, the algorithm considers the root variable z; (lines 5-8) and runs through the
set of absolute rules in M. If R is a rule such that the derived concept defined by its ontology path
(conc(op(R))) is a subconcept of or the same as the derived concept defined by the binding path of
z1 (conc(bp(z1))) in OF, then binding [z; + R] is added in B (line 8).

B, iterates through the sequence of variables (line 9) for ¢ > 1. Temp is initialized to be the
set of bindings calculated so far (T'emp = B, line 11). Let the current variable be z;, and y be its
parent (line 12). The algorithm then iterates through the bindings in T'emp (line 13) and examines
whether variable y belongs to dom(8). Let y be associated with R by . B, examines all relative
rules in M* (line 14). Let R be a relative rule for which conditions A and B of the Definition 4.6.3
hold. Then, binding f is extended by [z; — R] (i.e. 8 X [z; — R]) and added in set B (line 19-20).
If 8 was extended in B with z;, then 8 is removed from B (lines 21-22). When all query variables
are examined, then set B is returned.

Note that the edge from y to z; is ‘traversed in this step, and only in this step’. Notice here
that partial bindings are not dropped as was the case for By.

Example 4.6.4 Consider query Q illustrated below and source http://www.paintings.com. @ looks
for “the title of the objects created by Van Gogh along with the name and city of the museum where
they are exposed, and the type and location of their images”.

Q: select d, f,g,14,7]
from Person a, a.name b,

a.carried out.produced c, c.has_title d,
c.exposed_in e, e.museumName f, e.city g,
c.image h, h.type i, h.url j

where b = “Van Gogh”

132 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

1. Input : the sequence of variables of query @, in preorder: z1,...,Ty;

2. the closure of mapping rules M* of some mapping M for source s;
3. Output : the set B of maximal bindings for @) and M

4. Algorithm : B := {);

5. for each absolute rule R € M

6 if conc(bp(x1)) = conc(op(R)) or conc(op(R)) isa” conc(bp(z1))
7 /* conc(op(R)) is a subconcept of or the same as conc(bp(z1)) */
8 add [z1 — R] to B;

9. fori=2,...,n{

10. /* Temp contains all mazimal bindings up to ;1 */

11. Temp := B;

12. y := parent of x;;

13. for each binding 8 € T'emp where y € dom(f) {

14. for each rule R in M* {

15. /*if condition A, Definition 4.6.3 holds */

16. if role(op(R)) (att(op(R))) = role(bp(x;)) (att(bp(x;))) and
17. /*if condition B, Definition 4.6.3 holds */

18. the root variable of R is the bound variable of 5(y)
19. /* B is extended to z; and added in B */

20. add 8 x [z; — R] to B;

21. if 8 was extended to z;

22. remove (3 from B;

23. }

24. }

25. return B;

Figure 4.16: Variable binding algorithm B,(Q, s)

4.6. QUERY EVALUATION 133

For the subquery that requests “the title of the objects created by Van Gogh” the source returns
two full bindings as illustrated in Example 4.6.1 : B = {[a — A1,b+— Ag,c+— As,d — A4, [a —
Al, b AQ,C — Ag,d — A4]}

B, considers variable e and binding f1 = [a — A1,b — Ag,c — Asz,d — A4]. The parent
variable of e (i.e. c) belongs to dom(B1). The algorithm runs through all the relative rules in M*
to look for a rule R such that :

1. the ontology path of R is exposed in (i.e. the binding path of e) and
2. its root variable is the bound variable of As (notice that dom(B1) binds ¢ to As).

There is no such rule in M*. Hence, binding (1 is left in B. For binding B2 = [a — A1,b+— Ag,c—
Ag,d v+ Ay], the same holds, so binding Bo is left in B.

Then variables f and g are considered. Their parent (i.e. e) does not belong to the set of
variables mapped by any of the two bindings in B and hence, B does not change.

The algorithm considers variable h and runs through the bindings in Temp = B. It considers
first binding p1 = [a — A1,b— Ag,c— Az, d— A4]. Variable ¢ is mapped to As. The relative rule
of M* whose (i) ontology path is image (i.e. the binding path of h) and (i) root variable is the bound
variable of As is rule As. The same holds for binding fo = [a — A1,b+— Ag,c— Ag,d— A4]. In
this case, B = {[a — A1,b— Ag,c+> A3,d — As,h — As),[a— A1,b— Ag,c— Ag,d > Ay, h —
As|}. Notice that the partial bindings which have been extended are removed from B.

For variable i, there is no rule such that its ontology path is type (i.e. the binding path of i in
the query). In this case, B does not change.

Last, the algorithm considers variable j. FEach of the bindings in Temp = B is extended by
[7 — Ag]. Rule Ag is a relative rule whose ontology path is url (i.e. the binding path of j in the
query). The set of bindings returned by the algorithm is B = {[a — A1,b — Ag,c — Az, d —
As,h — As,5 — Agl,la — A1,b — Ag,c — Ag,d — Ay, h — As,j — Agl}. Again, the partial
bindings which have been extended have been removed from B.

Optimization Both algorithms make an extended use of the closure of a mapping M. They
examine all relative rules of M™* in order to discover those that can provide answers for the query
variables. Observe that part of the condition for extending a binding 8 with [z; — R], where z;
is not the root variable, and where R is a relative rule of M*, is that role(bp(z;)) = role(op(R)).
Thus, all we need to do for this case is to consider all relative rules of M* for which the length of
the ontology path is limited by | bp(x;) |. Recall that each rule in M* is a concatenable sequence of
rules of M, and that relative rules of M* have ontology paths longer than zero. It follows that in
the algorithm above, it suffices to use only the relative rules of M* whose ontology path length is
limited by | bp(z;) |, where | bp(z;) | is the maximum length of bp(z;).

4.6.2 Query Decomposition

Algorithm B, presented previously returns a set of mazimal bindings. In the case of a partial binding
we do not obtain full answers from the source.

Intuitively, if § is a partial binding and 8 € B,(Q, s), and z is a variable that belongs to dom(f)
and has a child y in @ which does not belong to dom(fB), then for an instance of z an instance
for y is missing. To find the missing answers for £ we consider for evaluation the query that for
an instance of x looks for instances of y. When the two queries are evaluated the results are then
joined.

134 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

More generally, for a partial binding 8, query @ is decomposed into a prefiz query (which corre-
sponds to) and to one or more suffiz queries.

Definition 4.6.7 (Query Decomposition) Let Q be a query, and s a source. Let partial binding
B € By(Q,s). The operator decompose, denoted by d, accepts as inputs B and Q and returns a prefiz
query Qp(B) and a set of suffiz queries QS(B) : [Qp(B), QS(B)] = 6(Q, B) where :

o Qp(B) is a prefix of Q such that variables of Q,(B) are variables in dom(f);

e Let x be a variable that belongs to dom(p), and let S = {y1,y2,-..yn} be its children in Q
that are not in dom(B). Then a suffix query Qs(B) with root is defined as follows :

1. Qs(B) contains the set of variables {x,y1,vy2,...yn}, and all descendants of each y; in Q;

2. the set of edges of Qs(f) is the set of edges of Q restricted to that set of variables;
3. the binding path of x in Qs(B) is the target concept of its binding path in Q.

Example 4.6.5 Consider binding B, result of the rewriting algorithm B, in Ezxample 4.6.4 :
B=lar A1,b— Ag,c> A3, d — Ag,h — As,j — Ag)

Giiven this binding and the initial query, variables e and j do not belong to B, but their parents
(c and h respectively) are in dom(f). The prefiz query Qu(8) and the two suffir queries Qs, (B) and
Qs,(B) are illustrated below.

Qp(B) : select d,j
from Person a, a.has _name b,

a.carried out.has produced ¢, c.has_title d
, c.image h, h.url j
where b = "Van Gogh’

Qs,(B) : select f, g Qs,(B) : select i
from Man_Made Object ¢, from Image h,
clocated_at e, h.type %
e.museumName f,
e.city g

The root of query Qs,(B) is variable ¢, and its binding path is Man_Made Object. Concept
Man _Made Object is the target of the binding path of ¢ (carried _out.produced) in query Q. Sim-
ilarly, for query Qs,(B), its root is variable h whose binding path is concept Image, the target of the
binding path of h (image) in Q.

Extending Queries with Global Keys Recall from the examples in Section 4.1.4 that in order
to complete the partial answers obtained from the prefix query, these must be joined with the
answers obtained from the suffix queries. To perform these joins, we need to extend all queries
(prefix and suffix) with keys.

Let Qp(f) be the prefix query and let Q; be a suffix query in QS(8). Let z be the root variable
of Q; and the binding path of z in Q; be concept ¢ in OF. Then, for a global key k of ¢ the prefix
and the suffix queries are extended as follows :

4.6. QUERY EVALUATION 135

e for all attribute paths a; in k, add in the queries from clause, the statement z.a; t;, where
1g, 1s a new distinct variable which binds the values obtained by following attribute path a;
from instances of x;

e add in the query select clause variables ¢7 defined previously.

Remarks We have to note here that if the root variable of the query is bound to a concept
which has more than one keys, for each such key a new ’extended’ prefix and suffix query must be
created. When the results are obtained for each such pair of queries, a join and then a union must
be performed. From this point we assume that each concept is associated with only one global key.

Example 4.6.6 Consider the prefix and the suffix queries in Example 4.6.5. The root variable of
the suffiz query Qs,(B) is variable ¢ bound in concept Man _Made Object. The key for concept
Man_Made Object is K(Man_Made Object) = {{museumIdentifier}}. In this case for key k =
{museumIdentifier}, the prefix and the suffiz query Qs,(B) extended with k, are shown below.

Qp(B) : select d, j, t
from Person a, a.has_name b,

a.carried out.has produced c, c.has title d
, c.image h, h.url j,
c.museumldentifier i,
where b = 'Van Gogh’

Qs1(/8) : select f: g, t
from Man_ Made Object c,

c.located at e,
e.museumName f,
c.museumldentifier t,
e.city g

4.6.3 Generation of Query Execution Plans

This section shows how to generate a query execution plan for a query @ and for a set of sources
S. Intuitively, given a query @@ and a set of sources S, @ is evaluated against each source in S.
When the results are obtained from all the sources, they are unioned at the mediator. During this
union, duplicates i.e. objects which are either locally or globally identical, are not eliminated. On
this collection of objects, the fusion operator, defined in Section 4.2.5, Page 119, is applied.

We have shown previously that when a query @ is rewritten for a source s, it might be the case
that a partial binding is obtained. In this case, the query is decomposed into a prefiz query and
one or more suffiz queries. Each one of the latter is considered again for rewriting, for each of the
sources in S. Before showing how a query execution plan is defined for a query) and a set of
sources S, let us define what is a rewriting for a query) and a source s.

Let @ be a query and s a source. Let 8 be a partial binding produced when rewriting @ for s
using algorithm B, (8 € B,(Q, s)). Let §(Q, B) = [@p(B), QS(B)] be the result of the decomposition
of @ for B where Q,(f) is the prefix query and QS(f) is the set of suffix queries. Query Q,(5) can
be translated into an XML query using binding S. For each suffix query in QS(8), when this is
considered for rewriting, either a full binding is found, or the suffix query has still to be decomposed.

We call a B-query rewriting LR(Q,), for a decomposition §(Q, 8), the join between the prefix
query Qp(8) and all suffix queries Q; € QS(B). It is evident that if § is a full binding LR(Q,) = Q.

136 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Definition 4.6.8 (fS-query rewriting) Let 6(Q,) = [Qp(B), QS(B)] be a decomposition for Q
and binding B. The [-query rewriting denoted by LR(Q,B) is defined as :

LR(Q, B) = Qp(B)=LcGR(Q1, S)<LG - - - XLcGR(Qn, S)
where GR(Q;, S) is an S-query rewriting.

Definition 4.6.9 (S-query rewriting) Let Q be a query and S a set of sources. An S-query
rewriting for Q@ and S, denoted by GR(Q;,S), is the union of the B-query rewritings for all
sources in S :

GRQ,9 = U £LR@B)

s€ES BeBL(Q,s)

A query ezecution plan QEP is defined as follows : (1) a query ¢ that can be answered by a single
source (that is a query for which there exists a full binding) is a(n atomic) QEP; (2) the union of
two QEP’s is a QEP (3) the join of two QEP’s is a QEP'”. Basically, sources answer atomic queries
in a QEP and the mediator performs joins and unions. A QEP can involve several atomic queries
sent to a given source. It might be interesting to combine such queries in a single query. This
implies the reorganization using classical properties such as distributivity of union w.r.t. join.

1. Input: a query () and a set of sources S
2. Output: a query execution plan for @;
3. Algorithm: GQEP(Q,S) = 0;

4. for all sources s € S {

5 if 5,(Q,5) £ {

6. /* there exists at least one mazimal binding for Q in s */

7. for all bindings 8 € B,(Q, s) {

8. if 8 is a full binding P(f8) := Q;

9. else { P(B) = Qp(B);

10. for all suffix queries Q' € QS(B)

11. if P(8) # 0

12. /* there erists a non-empty query plan */
13. /* for all subqueries up to Q" */

14. if GQEP(Q',S) # 0

15. /* there ezists a query plan of Q" */
16. P(B) := P(B)~xcGQEP(Q', S);

17. else P(B) = 0;

18. }

19. GQEP(Q,S) = GQEP(Q, S) U P(8)

20. }

21. }

22, }

23. return GQEP(Q, S);

Figure 4.17: Query Execution Plans Generation

17Join is non commutative : the root variable of the second QEP should be one of the variables in the first QEP.

4.7. COMPARING STyX AND XYLEME 137

Given a set of sources S and a query @, the algorithm P(Q) shown in Fig. 4.17 computes a
query execution plan for (). The algorithm runs through the set of sources in S. For each source s
and binding S € By(Q,s), a QEP P(p) of the prefix rewriting LR(Q, 8) is computed: if £ is a full
binding (i.e. complete answers are obtained), the result is query @ (line 8). Else, if 8 is a partial
binding, then @ is decomposed into a prefix query Q,(8) and a set of suffix queries QS(3) (these
queries are also extended by adding appropriately the keys as shown in Section 4.6.2). The query
execution plan of () against source s is obtained by joining Q,(8) with the query execution plan for
each suffix query Q' € QS(B) (line 16). To calculate the query execution plan of a suffix query @’
the algorithm is called recursively. Finally the obtained plan is added to the existing plan by union
(line 19).

It is easy to see that a source s cannot provide answers for a query @) in the following cases :

e if the binding variables to rules algorithm B,(Q, s) returns an empty set of bindings;

e if there exist some suffix query @; € QS(f5) that cannot be answered by the set of sources in
S. This knowledge can be used for pruning the recursive evaluation of the above algorithm.

Another issue that can be considered here for pruning the recursive evaluation of the suffix
queries in the query execution plan is the presence of keys. For example, consider a source s and
a query Q. Let Q,(8) be the prefix query resulting from applying the decomposition §(Q, 5). To
be able to complete the missing answers for the prefix query we must add the keys on the variables
on which we will perform the joins. If source s returns values neither for the local keys nor for the
global keys, then there is no point in considering the recursive evaluation of the suffix queries.

4.7 Comparing S7yX and Xyleme

In this section we discuss the choices made for the Xyleme [55] and ST3X systems. The purpose of
the Xyleme system is to build a datawarehouse for the XML data in the Web. The XML documents
are crawled from the Web and stored in the Xyleme repository. One of the objectives of the system,
presented in detail in Section 2.4.2, was to provide a single access to all the XML documents in the
Xyleme repository, by hiding their heterogeneities to the end-user. XML documents are described
by DTDs called concrete DTDs. As in standard data integration systems, the objective here is to
relieve the user from querying each concrete DTD to obtain the answers to her queries. The user
queries the XML documents stored in the repository by formulating simple tree queries defined in
terms of a set of abstract DTDs. These DTDs, which are simple tree structures, constitute a view
on top of the concrete XML DTDs.

In STyX the objective was to support the querying and integration of heterogeneous and au-
tonomous Web XML resources. In contrast to Xyleme where XML resources are crawled and stored
in Xyleme’s repository, in STyX XML resources remain accessible on the Web. Users formulate
queries in terms of the STyX global schema which is an ontology. The ontology is a symmetric
schema, where concepts are related with roles and inheritance relationships, and are associated with
attributes.

In the discussion that follows, Xyleme’s abstract DTDs and the S7T3X ontology are refereed
to as global schema. A common point in Xyleme and STyX is that a source is described to the
global schema by means of a set of mapping rules which map source paths to global schema paths.
In contrast, in a number of data integration systems following the local as view approach [135] a
source is described to the mediator by a description which is a conjunctive query defined in terms
of the global schema relations.

138 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

In this section two issues are addressed: (i) the choice of the global schema and (ii) the choice
of the mapping language in STyX and Xyleme.

4.7.1 Global Schema

A number of data integration projects [136, 81, 175, 149] and the relevant theory were presented
in the framework of the relational model. When the sources are relational, using the relational
model for integration has some advantages; in particular the same language can be used as a query
language as well as the language to define the source to global schema mappings. The advantages
of the relational model are well known and in particular relational query languages can be used for
the (i) the source descriptions, (ii) user queries and (iii) query rewritings. We have to note that
even in this framework, it is often desirable to use additional mechanisms to specify constraints on
mappings, or to describe source capabilities. However, we are concerned with sources that are XML
and not relational. The decision which model to use for the STyX global schema data model in
such a context is not easy to make. An obvious question is “Why not XML?".

Indeed Xyleme [55] uses XML for the global schema data model. Abstract DTDs provide a
hierarchical view on a collection of heterogeneous concrete DTDs and are simple tree structures.
There is no notion of element or attribute, and the horizontal relationships found in XML DTDs,
which are modeled using the XML IDREF attribute mechanism, are not permitted. We discuss here
the shortcomings of using an XML DTD as a global schema!® in general.

A STyX ontology distinguishes between concepts, roles and attributes. Concepts represent real
world entities (objects), related to each other by symmetric roles. Concepts are also associated
with wvalues by atiributes. Finally, concepts are related by the isa relationship which describes
commonality of structures and has subset semantics. Finally, instances of a concept can be identified
by using global or semantic keys defined at the ontology level and local keys, defined at the XML
document level.

The basic constructs in XML DTDs are elements and attributes. Element nesting is a hierarchical
parent/child relationship. XML DTDs also record horizontal relationships using the ID/IDREF
attribute mechanism. But, these relationships are untyped : there is no way to specify that an
attribute of type IDREF is of type a, where a is an XML element. Finally, XML DTDs do not
support zsa relationships.

The important issues in our context are the symmetric and isa relationships. Let us discuss
each in turn.

With XML, a symmetric binary relationship is modeled by an asymmetric parent-child relation-
ship between two elements. A source can choose either of the two element types as being the parent
of the other. For example, Painting is a child of Painter in the source http://www.paintings.com.
Another source might choose to invert this relationship, so Painting becomes a parent of Painter.
Of course, binary relationships may as well be represented by the XML ID/IDREF attribute mech-
anism. But again these are asymmetric and there is no way to specify that one relationship is the
inverse of another. If XML was chosen as the global schema data model, and element nesting as
the representation of relationships, this problem of inverse hierarchies between a global schema and
a source would force the use of the ancestor axis of XPath in the global schema side. This would
not only render the source description complex but also significantly complicate query processing.
The presence of symmetric relationships, where each one has an inverse, and either direction can
be used, simplifies the formulation of queries and mapping rules.

18Al‘chough in the XML Schema proposal [198], some shortcomings of XML DTDs discussed here are partially
solved, we believe that the following arguments merit attention.

4.7. COMPARING STyX AND XYLEME 139

1sa hierarchies are another feature of our ontology, useful for data modeling of the domain as
well as for integration scenarios. For data modeling, the isa hierarchies represent commonality of
structures, and help in the resolution of the terminological differences between sources. For example,
the Information Manifold project [136] uses class hierarchies from Description Logic languages to
describe differences between the contents of information sources. To illustrate its querying power,
it allows users to request information about persons, or about special kinds of persons, such as
painters. This would not be possible had we used only one kind, say person, in the global schema,
and mapped all kinds of persons from sources to it. Note also that when a user query requests
information about persons, information about painters will be returned, since the set of painters is
a subset of the set of persons. On the other hand, if a user requests information about painters,
information about sculptors will not be returned.

4.7.2 Mapping Language

As mentioned earlier, the principle of the mapping language for STyX and Xyleme is the same : an
XML resource is described to the global schema by means of mapping rules which associate source
paths to global schema paths.

Nevertheless, the problematic of Xyleme and ours are different. As presented in Section 2.3.2, the
purpose of the Xyleme system is to build a Web scale data warehouse where all data is materialized.
In this case, the capabilities of sources with respect to the query language supported is not a concern
of the system. The Xyleme system is in charge for the complete evaluation of the user query.

In contrast to Xyleme, in our context the actual data resides in the sources. A user query must
be rewritten into one or more XML queries, which are sent for evaluation to the XML resources.
When this work started, there existed a limited number of XML resources available on the Web.
These resources were basically XML documents stored in some Web server and the only way to
access them was by their URL. Hence, these sources were not able to evaluate any XML queries.
Nevertheless, software such as Fragserver'®, a Java servlet installed very easily on top of Web
servers are able to evaluate simple XPath expressions. Moreover, XPath is already part of other
XML-related languages [4] for the transformation (XSLT [82]), linkage (XLink [69]) and querying
(XQL [184], XQuery [44] and Quilt [45]) of XML documents.

Concerning the mapping language, in Xyleme source (concrete) and global schema (abstract)
paths are absolute paths (i.e. specified only from the root of the abstract/concrete DTD) and use
only the child axis. In STyX source paths are XPath location paths which are evaluated on a variable
or on a URL.

The difference between STyX source paths and Xyleme concrete paths is that for the former
the XPath language is used. Hence, one can specify source paths using (i) any of the XPath axis
(i.e. parent, ancestor, descendant, sibling, attribute etc.), and (ii) functions from the core library
of XPath (i.e. id()). One can navigate in any direction in the XML document. Moreover, more
complex expressions considering the order of the XML document can also be specified. For example,
if one knows that the first element = in a document is an instance of concept ¢ and the second an
instance of concept ¢’ then one can write the following rules :

R: URL/z[1] as uy - C
R': wp/following-sibling::xasus — ¢

The use of the function id() of XPath allows one to navigate using the horizontal relationships
specified using the attributes of type IDREF. Consequently, the use of XPath in the STyX mapping

19h‘l:tp ://wuw.xml.com/pub/r/676.

140 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

rules allow one to describe any kind of XML structure. This is not the case in Xyleme : for
example one cannot express concrete paths which consider the order of elements in XML documents.
Moreover, XML DTDs which use the ID/IDREF attribute mechanism cannot be described.

Finally, consider global schema paths. In Xyleme abstract paths, similar to concrete paths, are
defined from the root of the abstract DTD and use only the child axis. In STyX the ontology path
language is much more expressive. Since the STyX ontology is a graph, one can enter at any point
of the graph and navigate in any direction using the roles defined in concepts. The presence of a
symmetric schema supports a more natural formulation of the mapping rules and queries.

4.8 The STyvX Prototype

In this section we present the architecture of the STyX prototype implemented to demonstrate
our approach for the querying and integration of XML Web resources. A three level architecture
was used for our prototype. The user is able to navigate in the schema in order to formulate her
queries. The client sends specific requests to a Java servlet which runs on a Cocoon-enabled Apache
Server. This servlet is responsible for sending the requests (navigation or queries) to the STyX
mediator which evaluates the query. The latter returns to the servlet the answers in the form of
XML documents. The STyX mediator is responsible for the loading of the global schema. It is
responsible for the analysis and parsing of the query, the generation of the query erecution plans
and their evaluation against the published XML resources. When the final results are obtained,
they are sent to the Cocoon servlet which processes and transforms the documents to HTML pages
which are then presented to the navigator of the user. The communication between the navigator of
the client and the servlet is done by HT'TP and the servlet communicates with the STyX mediator
using RMI (remote method invocation) Java objects.

The choice of this three layer architecture offers a certain flexibility since we are not bound by
the functionalities and implementations of the information providers. The programming language is
Java. We followed a main memory implementation where (i) global schema contents and mapping
rules are stored as Java objects, and (ii) query processing is done in main memory. Java objects
are communicated between the different modules of the STyX mediator. One of our objectives in
the development of STyX was to follow and exploit as much as possible standard XML technologies
and recommendations such as XQuery, XPath and XSLT. It shows once more that XML is not only
a flexible format for data exchange but has become a mature technology for building Web portals.

4.8.1 STyX System Architecture

The architecture of the system is presented in Figure 4.18. The various functionalities implemented
by this architecture are the following:

XML Resource Publishing : XML resources are published in the STyX mediator by mapping
manually XML source fragments (specified by XPath location paths) to paths of the STyX
ontology using the Source Publication Interface which interacts with the STyX ontology
(portal schema) through the Schema Manager. The functionalities offered by the Source
Publication Interface are (i) the modification of exristing mappings and (ii) the on-line creation
of new mappings for an existing source and (iii) the publication of a new source. In the two
first cases the user is able to insert new mapping rules, and modify or delete existing ones.
The inserted or modified rules are sent to the Rules Manager which is responsible for the
validation and the storage of the mapping. When a XML resource is published it also provides
a XML Stylesheet (XSLT) [82] that specifies how source data can be displayed.

4.8. THE STyX PROTOTYPE 141

P

Query Interface

Source Publication Interface : E

L

Formatted result User query Mapping rules
Query Parser
Schema
XSLT Processor Query Execution Plans Manager

T Generator

Integration Module Portal Mapping rules
¢ ¢ Schema XSL stylesheets

Kweelt Query Engine
A
XML Fragments ' XPath Location Paths

Web Server

Figure 4.18: STyX System Architecture

The storage and validation of the mappings is done by the Rules Manager. This module is
responsible to verify whether the mappings satisfy the conditions specified in Definition 4.3.3
(Page 121).

Query Processing : is done in several steps. Figure 4.19 illustrates in detail the query processing
steps in the S7TyX mediator :

1. User queries are formulated using the Query Interface or are simply stored in form of
a hypertext link (URL). The user formulates her queries in an OQL-like syntax based on
select-from-where clauses. The Query Interface is a Web service that forwards the
query to Query Parser. The Query Parser accepts the query and :

(a) first, performs a syntactical analysis of the query;

(b) second, verifies if it is well typed : (i) if it is a tree query, (ii) if the binding paths of
the variables are paths in the ontology and (iii) for all pairs of variables (z,y) where
z is parent of y, the composition of their binding paths is a path in the ontology.

(¢) third, produces a language neutral intermediate representation of the user query,
which is then forwarded to the Query Execution Plans Generator.

2. The generation of query plans is done by the Query Execution Plans Generator
module. It accepts the internal representation of the user query and constructs a query
execution plan using the algorithm P(Q). The resulting plan is a union of the plans for the
query and each of the sources published in the STyX mediator. Each plan for the query
and for a source considers either joins between the prefiz query and the suffix queries
resulting from the decomposition of the query given a partial binding or simply a prefix
query given a full binding. To calculate the execution plan, the Query Execution Plans
Generator module interacts with the Rules Manager and the Schema Manager.

142 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

[1 |

! Query Parser Lo . !

i Query Q : : XML2HTML Transformation :
1 |

Cocoon |
A

,,,,,,,,,,,,,,,,,,,,,,,,,,

Tagging and Transformation of
Relational Results to XML

Language Neutral
Query Representation

/f\ ($a, ...), (8, ...)
1 ($a, ...), ($b,..) Final Result
: ($a, ...), ($b, ..)

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
mrmm e U)
| v L |
1 . o . . . !
1 Generation of Query Plan | Relational Join and Union of)
} (Algorithm GQEP(Q,S)) - Temporary Results 1
; T o ‘
‘ ! | ($a, ...), ($b, ...) ‘
| Plan(Q,S) = U P(Q;s) ! | : l?\ ($: .., (8D, ...) Tuples :
| P(@s) = QP < Plan(@S,S) | | (Sa,..), (8b,.) ‘
l | | 1 |
! 1 | .]
w ‘ XMIL2Relational
| 43 | | |
l [2XQuery Rewriting (@P) ’ 1 : [Transformation] :
[} T :
i FOR$aIN ... ! b /?\ <RESULT> |
i : 1 | 1 <result><variable vn=$a>...</variable></result> |
: WHERE $a ... | : | I <result><variable vn=$a>...</variable></result> |
; RETURN $a | L : </RESULT> !
i | Lo |
'Query Execution Plans ; i ntegration Module
Q E tion PI : } ' Integration Modul ;
i Generator | B

Figure 4.19: Query Processing in STyX

4.8. THE STyX PROTOTYPE 143

The Query Execution Plans Generator runs through this expression, and translates
each query using the calculated binding, to an XQuery expression. This is sent to the
Kweelt Query Engine which is responsible for the evaluation of the query on the
source. The result of the evaluation is an XML document. This is forwarded to the
Integration Module which is responsible for the transformation of this intermediate
result to a set of tuples and its storage.

When all the queries in a plan for the initial user query and a source are evaluated the
integration module performs the necessary joins. When the query is evaluated against
all sources, then the temporary results are unioned by the Integration Module.

This module uses the initial query, and transforms the set of tuples to an XML document.

Result Display : The results obtained by the source queries are reformatted before being returned
to the user: first the XML tagger inserts schema specific tags using the mapping rules and
the XSLT processor finally transforms the result into an HTML document (or any other
format defined by the XSLT stylesheet) which can be displayed to the browser of the user.

BY - letscape: STV : Connecting the XML World to the World of Semantics <2> SIS

File Edit View Go Communicatar Help

STYX : Connecting the XML World to the World of Semantics

Schema Sources Queties

_______________________________] List of Coneepts 4
| ® Man_Made_Object
| year b
| Integer £
day i, tonk plare at ¢ Place
: Integer ‘ —
monify
25 i
| Integer {—1 nted .
| Event E - ud o Siring * Date
| took_place_in A {ereaies) image - » Person
e | [Image | o
, . — 3 | Imag
|] | (i e . ® String
' g af) String
| - . . | ; ® Event
carried_out "‘__E - has_produced == =
I PersorLF » Activity | » Man Made Object E—) * Activity
| (carried_out by) — {prodced_by) fas sitle
String
: ——>» String Iocated ot —y diy Man_Made_Object
has name g
| {lacation of) PlzeN e Rotes
I = String hus,dide String.
I = used_technigire String
| —» nk
1 | created by Event
=] = £
(=l L 2 0P @ |

&

SEBGGe AT T (= oA [fm= a0 458 ooace|»

Figure 4.20: STyX Global Schema

144 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

_ﬁg-';\ Hetscape: STYX : Connecting the XML Worid to the World of Semantics <2> |[=1(al[x]|
File Edit View Go Communicatar Help

STYX : Connecting the XML World to the World of Semantics

M: Schema Sources Queries

View STYX Ontwlogy and Source OTD

Rule Editor
Sowrce Efile:ﬂhomalfundulak}‘]avafoﬂsowces.’dataf’artchive_schoaUartchive_schaol.dtd
Location Path Schema Path Action :
e i i § ‘ View Ontology
I+ with|//Painter binds| 1l tof Person | Modity Rule | Delete Rule
- o " e [Person
ul with| /@Nane binds |2 to|has_name | Modity Rule | Delete Rule
| s
- carried_outhas_produced
Wl with| [/ /Painting binds| 113 to|carried_out. has_ | Modify Rule | Delete Rule.
Rules ' I | has_nome
Ingern P . S
Iappin M3 wath|/ETitle binds |24 to has_title | Modify Rule | Delete Rule
L = Man Made Object
M3 with|}/Year /text (] binds| 1S to|foreated_by. tonk_ | Modify Rule | Delete Rule used_technigue
W3 with| Technique/text(binds| 6 to|bsed technique | Modify Rule | Delete Rule crealed_by.look_plice_atyear
|
has_title
Adti i with |§ binds | o Insert Rule|

| [
R eompsnenz®e v =L Kl =

S DR A &[E Y55 oszanz| v

Figure 4.21: STyX Mapping Rules

4.8. THE STyX PROTOTYPE

B - Netscape: STYX : Connecting the XML World to the World of Semantics <Z»

DI
File Edit View Go Communicatar Help
=
STYX : Connecting the XML World to the World of Semantics
Schema Sources Queties
Evaluate Tree Queries List of Concepts o
®» Man_Made Object
SELECT $h, Sc FROM $a IN Person, $b IN $a has_name,
Fc IN $a carried_out has_produced has_title ® Image
! # Place
Integer
Evaluate] Reset
. I :
Simple Examples of Queries ® Date
» Person
® Gerthe persons # String
® (et the objects * Event.
® {For the nowmes of persons ® Activity
8 et the date, place of birth and names of persons|
. 3 Man Made Object
@ (Fet the title of objects - -
® et the rammes of persons and the rirle of the objeers ther have creazed | Rales
® ot the names of persons and the title of their objects where their nome conteins the word C?aude! has_ide String
® (Ferthe namnes of persors and the tirle of their objecrs, where the virle contains the word Black | used zechnigue String
® (et the date of bith, plase of birth ond neanes of persons, and the tites of the objects thet have crzmzdl i by E
i ! V]
= [e | | o |

R eompsnenz®e v =L Kl =

LB][] |45 oseaca|»

Figure 4.22: STyX Query Interface

145

146

CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

B - Netscape: STYX : Connecting the XML World to the World of Semantics <Z»

|[=1/mlfe]
File Edit View Go Communicatar Help
i
STYX : Connecting the XML World to the World of Semantics
Schema Sources Queties
Query Results List e et i
§ & Man_Made Object
Quuery [SELECT $h, $c FROM ga IN Person, $h IN $ahas_name, $c IN $a.carried_out.has_produced has_titl
: ¢ Image.
file fjavaloZsour hail painters.dtd
Sources fJavafoz/sour tchive tchive_school.dtd ¢ Blace
flavafoZfsour i i did o Integer !
. Dt .
Date
Person
® Sting
Event
Person 5 ; ;e
icarvied_out.has_produced has_title [Boriie, Newspaper, Fipe, and Giss | ® Acthity
{has_name iGeorges Brogus |
Person ; ;. 5 i
arried_out.has_produced ias_ title iCosriz o La Roche ~Gupon Man Made_ Ohject
Rales
Person ’ ; e
icarvied_out.has_produced.has_title ; Boris ond Gisss on o Toble has_title String
- Ehas_name Fure Gres | e
icarried_out.has_produced.has_title {The Borle of Baryuls
Result: - ceated by Event
] I = material Sting i
b [e womar @ 2

I cuesrenaEe e =L Kl =

B > o @] [P 60 5 oaac]s]

Figure 4.23: Query Results

4.8. THE STyX PROTOTYPE

&JJJ Hetscape: STYX : Connecting the XML Worid to the World of Semantics <2> |[=1(a[x]|
File Edit View Go Communicatar Help
Ll
Schema Sources Quetes
i wy
Reritiney List of Coneepts
Sourcs : fila:/homs/fundolak/java/od/sources(datafact chive scheol fartchive schosl dtd & Man_Made Object
SELECT §h , $a_x8 , §c & Image
FROM $2 IN Person , $h IN $a.has name ., $3 x2 IN §a.has name , Sc IN
$a. carried out has produced.has _title ® Place
Quexy Variable (Binding Do) D (s o) » Integer il
Prefix: : : hownd to rule: ul/BName as uZ <-fos nome —
Query Variahle (Binding Poth) a [Persor)
hound to rule: +//Painter as ul<- Person # Date
Query Variahle (Binding Path) (@22 (ks nome) Jr——
hound to rule: ul/BName as uZ <-fos nome i
iQuery Variahle (Binding Porh) . c (carried ourhas prodused has_tirle) * Suing
hownd to rule: ul//Painting/BTitle as ud <- covied ourhes produced kas rirle @ Event
® Activity
Flan1.h
Toadinei
5 Man Made Ohject
Source : file: /home/fundulak/qavalol/sources/data/painters/painters. dtd & =
BELEGT §b 7, a Roles
FROM $a IN Person , §b IN $a has name , §a_x@ IN 8a has_nane
has_utle String
Prefiy, | | [Query Variahle {Binding Fath) b (s name)
hovnd to rule: ul/Name /temt (] as ul <- has name used _technigue Stiing
Query Variahle (Binding Fozh): a (Ferson)
Shownd fo rule: i iArtaat as vl < Person creazed by Evemt
Ouery Variahle f| b a x2 ik i . =
1 I = mueterial Sting £
b [e | womsr @ 2

I cuesrenaEe e =L Kl =

B8] o] oL @] ool o[o= [3]0] 5 ooz

Figure 4.24: Query Execution Plan

147

148 CHAPTER 4. INTEGRATING XML RESOURCES IN STyX

Chapter 5

Conclusions and Future Work

In this thesis we have presented a framework for the deployment of Web community portals. We
have worked on the following issues :

e the definition of a methodology for the creation of portal schemas which can be used as
metadata schemas and as mediator schemas;

o the publication of Web resources in terms of their content descriptive metadata and

e finally the querying and integration of autonomous and heterogeneous XML resources.

5.1 Creation of Portal Schemas

Our methodology for the construction of portal schemas was based on the integration of ontologies
and thesauri. Ontologies describe the basic notions of a domain or application of interest and
are defined by specialists in the domain after some common agreement. Thesauri (which can be
considered as a special kind of application ontologies) consist of hundreds of thousands of terms and
have been extensively used as efficient means for consistent indexing and retrieval of information in
several domains. Thesaurus terms are structured using a set of predefined relationships.

Although thesauri contain large hierarchies of terms, there is no way to express relationships
between the latter (other than the predefined ones). On the other hand, in an ontology one is
able to define rich semantic relationships between concepts to structure information as necessary.
But, ontologies come with usually shallow hierarchies of concepts. In this sense, ontologies and
thesauri can be considered as orthogonal ways for describing information and the former can be
used as a structural interface over thesauri. This observation lead to us define a methodology for
the construction of portal schemas that incorporate the structural view of the ontologies and the
deep hierarchical tazonomies provided by thesauri by the integration of these information sources.
Our method is independent of the format in which the resulting portal schema is represented.

The result of this research work was validated by two projects : the European C-Web project and
a national project between the Conservatoire National des Arts et Métiers and the French Ministry
of Culture. During these projects we have collaborated with users who have very easily identified
the need for such a methodology. The ELIOT portal presented in Section 3.5 was installed in the
services of the division of Patrimoine et Archaelogie of the French Ministry of culture and used by
the archaeologists to create and query metadata descriptions of HTML documents.

In our methodology, we have considered thesauri constructed using only the hierarchical rela-
tionship broader-term generic which carries subset semantics. An interesting perspective is to study

149

150 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

how the other thesaurus relationships (equivalence and associative) presented in Section 2.1.2 could
be taken under consideration and to see how these relationships could be used for the creation of
metadata and more specifically for query processing.

5.2 STyX : Ontology-based Integration of XML Web resources

In the second part of the thesis we have worked on the problem of querying heterogeneous and au-
tonomous XML resources in a domain of interest, using a mediator-based architecture and following
the local as view approach to describe sources to the mediator. The result of this work was the STyX
prototype. The novelty of our approach consists in the description of hierarchical XML resources
in terms of general conceptual graphs with inheritance relationships (ontology). In contrast to XML
data integration systems which use either a relational view [149] or an XML view [55] of data, the
presence of a rich schema at the mediator allows one to describe a large variety of XML resources
in the desired level of detail. Moreover, the presence of symmetric roles in the ontology allows one
to formulate (i) mapping rules and (ii) queries in a natural way.

XML resources in STyX are published by mapping rules which associate XPath location paths
with ontology paths. The mapping language allows one to both associate explicitly ontology con-
cepts with XML fragments in the sources, and to attribute specific semantics to the parent/child
relationship between XML fragments using the ontology paths.

The use of XPath offers a number of advantages. First, one is able to express any kind of
XML structures using the available axes of XPath (ancestor, descendant, parent, child, attribute).
Second, it is possible to express information that does not exist in the XML DTD but in the actual
XML document.

Query processing in STyX is done as follows : the user queries the information sources by
formulating simple tree queries in terms of the ontology. To obtain answers for a query, this must
be evaluated against all sources published in STyX. To evaluate a query over an XML resource,
it must be rewritten into an XML query (e.g. XQuery) expressed in terms of the local source’s
schema. The STyX query rewriting algorithm tries to find the mapping rules that provide answers
to the query by matching the query variables binding paths (expressed in terms of the ontology)
with the ontology paths of the rules. In the case where during rewriting not all query variables can
be mapped to a mapping rule, in contrast to [55], we attempt to complete these partial answers by
decomposing the query. The result of this decomposition is (i) the query that the source can answer
and (ii) a set of subqueries that can be possibly answered by the other sources. The partial answers
obtained from the sources are then joined at the mediator site. This is a recursive process and stops
when all sources have been considered.

In order to perform the joins between partial answers we have introduced keys. Two types of
keys are defined : local keys which are used to decide whether two XML fragments that originate
from the same source correspond to the same XML fragment, and global or semantic keys which
are used to identify XML fragments that originate from different sources. Local keys in the form of
XML attributes of type ID or the position of fragments in the document are used to identify those
originating from the same source. But these are mostly internal pointers. On the contrary, global
keys provide a common way to identify XML fragments that originate from different or even the
same source.

To conclude, we have defined and implemented a query rewriting algorithm for tree queries. The
introduction of keys in the model enables us to handle the cases where full answers from a source
cannot be found. In this case, it is possible to decompose the query and to complete the partial
answers obtained by the other sources.

5.2. STyX : ONTOLOGY-BASED INTEGRATION OF XML WEB RESOURCES 151

5.2.1 Future Work

Extending the ontology language An interesting direction of work consists of extending the
ontology path language. We have seen in Section 4.2 that the language is based on the composition
of ontology concepts, roles and attributes. But, in the current version of the language one cannot
'narrow down’ the target of a role or a role path. For example, one can specify the ontology path of
mapping rule R; but not of Ry, both illustrated below.

Ry: URL/Painter/Painting asu; — Person.carried_out.produced
Ry: URL/Painter/Painting as u; — Person.carried_out.produced.Painting

The first rule states that the Painting elements obtained from evaluating source path Painter/-
Painting on URL are instances of concept Man_Made Object (the target of the role path carried-
_out.produced in the ontology). The second rule is more precise than the first : it states that the
obtained Painting elements are instances of concept Painting (subconcept of Man Made Object)
and not objects in general. Consequently, adding this information in the ontology path language
allows one to specify more precisely the semantics of the underlying sources.

Query rewriting must be though reconsidered : recall that the algorithm matches the bind-
ing path of query variables (except the root’s) with the ontology path of the rules. If we would
have allowed the use of concepts in the role paths, simple matching of paths would not have been
sufficient : more complex reasoning on the subsumption relationship between role paths would be
necessary. Nevertheless, the idea behind the rewriting algorithm does not change.

Another extension of the mapping language would be to consider conditions & la Information
Manifold [136] in the definition of the rules. For example, imagine a source which contains persons
born after 1900. In this case, one could specify that the value of the attribute year is greater than
or equal to 1900. The presence of such conditions would force an additional satisfiability check after
query rewriting.

Complexity & Completeness Let us discuss the complexity and completeness issues associated
with the query rewriting algorithm in S7yX . The algorithm makes use of the closure M* of a
mapping M. The size of M™* is exponential in the size of M. Given a query () and a mapping M,
the rewriting algorithm is polynomial in the size of Q and M™*. This is due to the fact that the
algorithm discovers bindings by examining all legal combinations of mapping rules.

Nevertheless, the rewriting algorithm is not complete. First, let us define the notion of com-
pleteness in our context : let @ be a query expressed in terms of the STyX ontology O and let D be
a database, instance of O. Let {s1, s2,... s, } be the set of sources published to the STyX mediator.
The problem of completeness can be then formulated as follows : let Q be a query expressed in
terms of the ontology O, and Q' an S-query rewriting. Is the set of answers for) when evaluated
against D, the same as the set of answers of ' when evaluated against the sources?

The answer in our case is no. There are several reasons for this incompleteness :

First case : Consider the following two sources s; and se which are published by the set of mapping
rules illustrated below.

s1 | A1: URLq/Artist asu; — Person
As: uy/Action as us — carried_out
_)
_)

so | By: URL9/Action as vy Activity
By: wv1/Result as vo produced

152 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Source s; contains persons (rule A;) and the activities that these have carried out (rule Asg).
Source sy contains activities (rule B;) and the objects produced by these activities (rule By).
The first source returns persons and activities and the second returns activities and man made
objects.

Consider now query) in Table 5.1 which looks for “the objects created by persons” :

Q: select xo Q' select o
from Person z, from Person z,
zi.carried out.produced zo zy.carried out a,

a.produced x4

Table 5.1: Queries @ and Q'

When the rewriting algorithm considers source s1, it will associate variable z; with rule A;.
Variable x5 is not associated with rule Ao, since the ontology path of the rule is not the same
as zo’s binding path. Source ss will not be considered for rewriting, since there is no absolute
rule whose ontology path is the same, or is subsumed by z1’s binding path. Nevertheless, if
the query formulated was query @' illustrated in Table 5.1 then, when rewriting for the first
source, the partial binding [z1 — Aj,a — As] would have been created. Given this binding,
the query would be decomposed into the prefix query requesting “the activities of persons” and
the suffix query looking for “the activities and the objects produced” for which a full binding
can be found by the second source.

The above example makes evident that in order not to miss any answers for a query, this must
be reformulated into a query where all query variable binding paths with length greater than
1, must be decomposed into compositions of paths of length 1. In this case, new ’weakly’
quantified existential variables must be introduced. In other words, out of the initial query,
a set of queries subsumed by the initial one must be produced and each of them must be
considered for evaluation.

Another solution to this problem would be to calculate the closure of the set of mappings for
all sources published in STyX . In other words the joins between the sources are precomputed
and the rewriting is performed using this closure. Nevertheless, the major disadvantage of
this solution is that it is not flexible in the case of the modification of a source which will lead
to the re-computation of the closure.

Second Case : Another source of incompleteness is found in the use of keys to perform joins
between partial results. Consider for example query @ illustrated below which looks for “the
title of man made objects and their year of creation”.

@ select o, x3
from Man Made Object z;
z1.has_title zo,
z1.created by.took place in.year zj

Consider the two sources s3 and s4 published by the mapping rules illustrated below.

5.2. STyX : ONTOLOGY-BASED INTEGRATION OF XML WEB RESOURCES 153

s3 | C1: URLs/Artifact as uy

Cy: u1/QTitle as u9

s4 | D1: URL4/Cultural_Object as v;
Dsy: w1/@Year as vy

Man_Made Object

has _title

Man_Made Object

created by.took place in.year

Ll

When the rewriting algorithm considers source ss, it creates binding [z +— Ci,z2 — Ca].
Given the binding, the query is decomposed into a prefix and a suffix query, both illustrated

below.
Qp select z Qs select z3
from Man Made Object z; from Man_ Made Object
zp.has_title zo xy.created by.took place in.year x3

When the partial results are obtained, a join on the instances of variable z; (instances of
concept Man_Made Object) must be performed. Consider that concept Man_Made Object
is associated with two keys : ki and ky. Source s3 provides values for key k1 and source sy
for values of key ko. Hence, it is not possible to perform any join between instances of z;
obtained from the two sources, since these do not have a common key for these instances.
Suppose now a third source s which returns values for both keys. When computing the
integrated database D, the presence of this source allows to join the objects obtained from
the partial databases of sources s3 and s4. But, this source is not considered in the rewriting.
A solution to this problem would be to use source ss in the final plan and the key values
obtained could be used to perform the necessary joins. More general, the idea is to calculate
the transitive closure of keys and to use this information in the plan.

Another direction of research concerns the optimization of the final query execution plan which
is a union of joins of prefix queries. It might be the case that in such a join, there might exist
prefix queries which will be sent by evaluation to the same source. An optimization that could be
considered is the composition of queries to be evaluated on the same source instead of evaluating
them separately and then perform a join on the mediator site (i.e. pushing joins to the sources).
Last, an issue that should be studied is to extend the query rewriting algorithm to handle graph
queries.

154 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Appendix A

XML

The eXtensible Markup Language or XML [60] is a language proposed as a standard for the
representation and exchange of Web documents proposed by the World Wide Web Consortium [215].
XML is proposed by the W3C as a language for the exchange and meaningful representation of Web
documents. It is a descendant of SGML [98] and of HTML!.

The World Wide Web (Web) has emerged during the last decade as the central forum for
data storage and exchange, and as the infrastructure for a large part of human communications
and information based activities in many domains. The principle of the Web is that information is
exchanged in the form of files, that are uniquely identified by a Uniform Resource Locator (URL).
Information can be either a simple text file, an image, a sound or a video i.e. it has a minimal
structure. To represent information on the Web, HTML (Hypertext Markup Language) is used,
which is the lingua franca for publishing hypertext information on the Web. It is a non-proprietary
format based upon SGML, and can be created and processed by a wide range of tools, from simple
plain text editors to sophisticated WYSIWYG authoring tools. HTML, as in SGML, is based on
the principle of tags, special elements in the HTML documents, that dictate how the document
should be visualized by the navigators.

Currently, data exchanged on the Web is not just static HTML pages but also data that is

dynamically exported by databases. originates from databases. Moreover, the applications that are
accessing these pages are not limited to the navigator. Consider a travel agency that cooperates
with many hotels, advertising them on the Web by means of HTML pages. More specifically, these
pages are created on demand (by an SQL query) that accesses a relational database where all data
relevant to those hotels is stored. The result of this SQL query is then appropriately formatted into
a collection of HTML pages.
Consider now another travel agency that needs to get this information to offer to its clients the best
prices. The only way to access this data is through the HTML pages provided by the first agent. For
that, a specific software needs to be written that parses these pages and extracts the necessary data.
The problem here is that any modification of their formatting would cause the complete rewriting
of the software. It could also be the case that if the second agent needs for example to access
the average price of hotels in Greece, then all HTML pages should be downloaded, and a rather
complicated software should be written to get this information (even though this is implemented
by a simple SQL query invoked on a single column of the relational database).

This simple example demonstrates the need for the definition of new formats for the represen-
tation and ezchange of Web. XML (eXtensible Markup Language) [4] has emerged as the de-facto

"http:/ /www.w3.org/MarkUp/

155

156 APPENDIX A. XML

standard for the representation and exchange of Web data. It was specifically designed to describe
content rather than presentation, as is the case with HTML. It is a descendant of SGML and it
complements HTML. It is based on special elements or tags which, on the contrary with HTML, are
semantic ones : they are there to give precise meaning to the content that they englobe and they
do not contain any information on how the contents could be visualized by a navigator. Differences
between HTML and XML can be summarized as follows :

1. HTML tags concern only the visual representation of the document. On the other hand, XML
tags are semantic tags that capture the document’s real structure;

2. new semantic tags can be added at any time in an XML document to indicate new content;
3. the XML document’s structure can be arbitrarily complex;

4. an XML document can contain the description of its grammar (schema), known as Document
Type Definition;

A.1 XML Syntax

An XML document consists of three parts :
1. an XML declaration;
2. a Document Type Definition and finally

3. the document’s content.

A.1.1 XML Declaration

An example of an XML document is shown in Figure A.1. The document starts with the XML
declaration (line 1)

<?xml version=’’1.07’7>

This declaration appears in the beginning of every XML document and indicates the wversion of
XML that this document is written in. Although this declaration is an optional one, it is necessary
to appear since it is used by parsers and other tools to analyze the document with respect to the
XML version that is written in. At the same time, we could also associate some attributes to this
declaration such as the character encoding used in the document.

A.1.2 Declaration of the Document Type

The second part of an XML document defines the XML DTD (Document Type Definition) that
describes the grammar or gemeral structure of the document. In the example XML document in
Figure A.1 this declaration is found between lines 2 and 12. This description can either be included
in the document (the case for the document in Figure A.1) or can be declared externally and
specified by using a declaration of the type :

<!DOCTYPE W4F_DOC SYSTEM ¢‘w4f_doc.dtd’’ [local declarations]>

A.1. XML SYNTAX 157

The filename specified after the SYSTEM keyword can be either a local file name or a URL. The
usage of URLSs allows multiple documents (that might reside on different servers) to share the same
DTD. The part of local declarations, allows one to define new structures or to modify existing ones.
This is done only for the XML document in the context of which these modifications are done and
do not affect the XML documents that possibly share the same XML DTD.

The declaration of an XML DTD for an XML document is optional. If it appears, it should be
before the document content and the structure of the document must respect the structures defined
by the DTD.

1.<?xml version=’’1.07’7>

2. <!DOCTYPE WAF_DOC SYSTEM ¢ ‘w4f_doc.dtd’’ [
3 <!ELEMENT W4F_DOC (Painter | Painting)*>
4. <!ELEMENT Painter (Paintings_list)>

5. <!ATTLIST Painter Name CDATA #IMPLIED>

6 <!ELEMENT Paintings_list (Painting)*>

7 <!ELEMENT Painting (Year, Technique?)>

8. <!ATTLIST Painting Title CDATA #IMPLIED>
9. <!ELEMENT Year (#PCDATA)>

10. <!ELEMENT Technique (#PCDATA)>

11. <!ENTITY Comment ‘‘Private Collection’’>
12. <!ENTITY Biography SYSTEM ‘‘biography.xml’’>]
13. <W4F_DOC>

14. <Painter Name=’Georges Braque’>

15. &Biography;

16. <Paintings_list>

17. <Painting Title="Black Fish">

18. <Year>1942</Year>

19. <Technique>0il on canvas</Technique>
20. <COMMENT>&Comment ; </COMMENT>

21. </Painting>

22. <Painting Title="Bottle and Fishes">
23. <Year>autumn 1910</Year>

24. <Technique>0il on canvas</Technique>
25. </Painting>

26. </Paintings_list>

27. </Painter>

28. </WAF_DOC>

Figure A.1: An XML document

A.1.3 XML Entities

The use of entities is a mean to factorize parts of an XML document and to reuse them in several
places. An entity is always declared in an XML DTD.

In the document shown in Figure A.1, the declarations are local ones (the XML DTD is defined
locally) but they can be part of an external DTD. The XML DTD defined in the document of
Figure A.1, the entities Comment and Biography (lines 11 and 12 respectively) are defined. The first
is an internal entity (i.e it is defined in the XML document) and the second is an external one (an
XML file). An entity is used in an XML document by a reference of the form &name; where name
is the entity’s name (for example the use of entity Comment in line 20). .

158 APPENDIX A. XML

A.1.4 XML Elements

The basic component of an XML document is an element. Each element is composed of (i) a start-
tag (e.g. < type >), (ii) its content and (iii) an end-tag (e.g. < /type >) where type is the element
name and it corresponds to the element type. For example, in the previous document there exist
seven elements : W4F_DOC, Painter, Paintings_list, Painting, Year, Technique, COMMENT, as well
as all the elements defined in the document biography.zml. From this point on we use the terms
element and element type interchangeably.

The names of elements that might appear in an XML document are free and are defined using
the letters of the alphabet, numbers and the characters '—' and ' _’. XML is case-sensitive, so the
element name Painter is not the same as PAINTER. Moreover, element names cannot (i) start by a
number and (ii) contain blanks.

Each XML document has a single element that serves as the root of the XML document, which
defines the content of the document itself. For the XML document illustrated in Figure A.1, the
root element is of type WAF_DOC. If the document is associated to a DTD, the type of the root
element must be the same as the type identified after the declaration DOCTYPE.

The content of an XML element is determined by whatever is specified between the element’s
start-tag and end-tag : other elements, entities, text, comments, processing instructions etc. For our
example document, the content of the element of Painter (line 14) consists of : an element of type
Paintings_list (line 16) and a reference to the entity Biography (line 15). The element of type
Paintings_list contains in its turn two elements of type Painting (lines 17, 22) where each one
of them contains an element of type Year (lines 18, 23) and an element of type Technique (lines
19, 24). The first Painting element (line 17) contains also an element of type COMMENT (line 20).
An element can appear more than one times in the content of another element. This is the case of
the Painting elements in the previous example. The content of an XML element can be empty.

Tags in XML are user-defined, in contrast to HTML [214] where they are defined by HTML
syntax. An important issue concerning XML documents is that they must be well-formed :

1. for each start-tag there should be an end-tag (and vise versa) and
2. end-tags should appear in inverse order that their corresponding start-tags have been declared.

An example of an XML document which is not well formed is illustrated in Figure A.2. In this
document, the end-tag of the XML element Painter does not exist in the document (line 17).
Remark also that the order of the end-tags of elements Painting and Technique (lines 10) has
changed. More specifically, the end-tag of element Painting appears before the end-tag of element
Technique although their start-tags appear in the inverse order. From this point on we assume that
the XML documents that we deal with are well-formed.

A.1.5 XML Attributes

Each XML element can be associated with one or more attributes. XML attributes can be essentially
considered as properties of the XML element. XML attributes are defined as couples of (name, value)
pairs where name is the attribute name and value the attribute value: an XML attribute has a value
but not a content as is the case for XML elements.
For the XML document illustrated in Figure A.1, the element Painter (line 14) is associated with
the attribute Name with value ’Georges Brague’ that indicates the name of the painter.

As with XML elements, XML attributes are user defined. Principles for attribute names are
similar to those for element names. The value of an XML attribute is always a sequence of characters

A.2. XML : DOCUMENT TYPE DEFINITIONS 159

1.<?xml version=’’1.0’’7>

2 <Painter Name=’Georges Braque’>

3 &Biography;

4 <Paintings_list>

5. <Painting Title="Black Fish">

6 <Year>1942</Year>

7 <Technique>0il on canvas</Technique>
8. <COMMENT>&Comment ; </COMMENT>

9. </Painting>

10. <Painting Title="Bottle and Fishes">
11. <Year>autumn 1910</Year>

12. <Technique>0il on canvas

13. </Painting>

14. </Technique>

15. </Painting>

16. </Paintings_list>

17. </W4F_DOC>

Figure A.2: A non well-formed XML document

(string). An attribute of an element in a well-formed XML document can occur only once within
the context of the element. An attribute is always associated to a value.

A.2 XML : Document Type Definitions

As illustrated previously, an XML document might be associated to a document type definition
(DTD) which serves as the grammar that the XML document must respect. An XML DTD can
also be seen as a schema, from the database perspective, that an XML document conforming to
this DTD (instance) should respect.

In the XML DTD, element types with their content models are defined, as well as well all the
entities that will be eventually used by documents conforming to this DTD. Moreover, to each
element type we can also associate XML attributes.

The presence of an XML DTD offers a number of advantages for the exploitation of XML
documents : document production through XML editors and XSLT programming [82]. One of the
most important advantages is the use of DTDs for the exchange of data. In a producer/consumer
context, the presence of DTDs facilitates the exchange of data from the consumer point of view. If
the consumer knows the structure of the XML documents that he will receive from the producer,
the construction of the necessary software to process those documents becomes an easier task . .
Nevertheless, there are several limitations concerning XML DTDs:

e an XML DTD is not an XML document, consequently tools for processing XML documents
cannot be used to process DTDs (parsers, stylesheets processors, etc.);

e there is no typing for element content;

e enforcing a restriction on the number of child elements is not possible (for example one cannot
restrict the number of Painting elements to be at-most 3);

e and finally there is no subtyping between element types. Consequently it is not possibly to
share structures between different elements.

160 APPENDIX A. XML

Example A.2.1 Consider the XML DTD illustrated in Figure A.1. The element of type WAF_DOC
is defined to be the root element of the XML document (line 2). An element of this type (line 3)
consists of zero or more (occurrence indicator “¢”) elements of type Painter, or elements of type
Painting. An element of type Painter (line 4) consists of an element of type Paintings_list. An
element of this type consists of zero or more (occurrence indicator “*”) elements of type Painting.
An element of type Painting (line 7) consists of (aggregation connector “,”) an element of type
Year, and an optional element of type Technique (occurrence indicator “?”).

Last, an element of type Painter, is associated to an XML attribute Name (the name of the
painter) (line 5) and an element of type Painting is associated to an XML attribute Title (the
title of the painting) (line 8).

A.2.1 Element Declaration

An XML DTD defines for each element type, its name, its structure and attributes. The definition
of an XML element in a DTD is of the form :

<1ELEMENT element_name content_model>

The keyword ELEMENT indicates the element declaration. It is followed by the element’s name
(element_name) and then by the description of the structure of the element (content_model). There
are b different types of element content models :

1. empty;

2. it might contain only text, a number of sub-elements, contain text and sub-elements (mixed
content model)

3. and last it can contain any combination of other elements.

A content model for an XML element indicates not only the type of its sub-elements but also (i)
the order in which they should appear and (ii) the number of occurrences of its sub-elements. More
specifically, XML defines the following occurrence indicators :

1. “* for zero or more,
2. “+” for one or more and last

3. “?” for zero or one occurrence of an element.

At the same time, XML forces order of elements with the aggregation operator “,” or no order using

the alternation operator “|”.

More specifically, if e is an element type, then the content of an element is determined by the
regular expressions e* (zero or more occurrences), e+ (one or more occurrences), e |’ (alternation),
e? (zero or one) and e, e’ (aggregation).

An XML DTD is in fact a context-free grammar for the XML document. For the previous
example, consider the element type Painting. An element of this type contains an element of type
Year, and an optional element of type Technique and these elements should appear in an document
in this order. Since a context-free grammar can be recursive, we might have an XML document
where an element can contain a sub-element of the same type.

A.2. XML : DOCUMENT TYPE DEFINITIONS 161

A.2.2 Attributes Declaration

An attribute is always declared within the context of an XML element :
<VATTLIST element_name attribute_name attribute_definition>

element_name is the name of the element in whose context the attribute is defined, attribute_name
is the name of the attribute.

attribute_definition consists of (i) the attribute type (which can be a string, a tokenized type
or an enumerated type), (ii) constraints specifying whether the attribute is mandatory or optional
and (iii) possible default values for it.

Consider for example the XML DTD illustrated in Figure A.1. An element of type Painter
is associated to an attribute Name, which is of type string (CDATA), and is mandatory (declaration
#REQUIRED).

XML supports specific attribute types : ID, IDREF, IDREFS. When an attribute is declared to

be of type ID in the context of an element, it means that the value of this attribute can be used
as an internal identifier for all elements of this type within an XML document : there cannot exist
two elements in the XML document which have the same value for this attribute.
When an attribute of type IDREF is declared in the context of an element, it means that this attribute
references an element for which an attribute of type ID has been declared (the attribute’s value is
some other element’s identifier declared with an attribute of type ID). IDREFS means that the value
of this attribute is a list of identifiers separated by spaces.

Example A.2.2 Consider the previous XML DTD which is now modified and illustrated in Fig-
ure A.3. Consider the XML element of type Painter which is the empty element. The attribute
painter_id declared in the contexrt of this element (line 6) is of type ID and is mandatory. Simi-
larly, we have defined for the element of type Painting the attribute painting_id of type ID, also
mandatory. In the contrary to the previous version of the XML DTD where paintings of a painter
are defined below their respective painter, in this DTD, the paintings of a painter are described using
the attribute painter defined in the elements of type Painting: for each element of this type, the
value of this attribute is an identifier already defined in the XML document. This example reveals
another problem of XML DTDs. Here, references are not typed. This means, that the values used
for an attribute of type IDREF cannot be typed : for erample we cannot restrict the values of the
attribute painter defined in Painting element type to take its values in the set of values of the
painter_id attribute defined in Painter elements.

As illustrated previously, a well-formed XML document is a document with balanced start and
end tags. If a well-formed XML document has a DTD, and in addition conforms to this DTD, then
it is called walid : it respects (i) the grammar of the DTD and (ii) the definitions concerning the
structure of the elements (attributes).

An example of an XML document which is not valid is shown in Figure A.4. Remark that the
Name subelement appears before the Painting subelement in the definition of the of the Painter
element (line 4). But in the XML document this order is inversed (lines 12 and 17 respectively).
Also, a Painting element can have either one or zero Year subelements. But in the XML document,
the Painting element has two such subelements. The document does not respect the XML DTD
and consequently is not valid.

162 APPENDIX A.

1.<?xml version=’’1.0’77>

2. <!DOCTYPE WAF_DOC SYSTEM ¢ ‘w4f_doc.dtd’’ [
3 <!ELEMENT W4F_DOC (Painter | Painting)*>
4. <!'ELEMENT Painter EMPTY>

5. <'ATTLIST Painter Name CDATA #IMPLIED
6 painter_id ID #REQUIRED>

7 <!ELEMENT Painting (Year, Technique?)>

8 <!ATTLIST Painting Title CDATA #IMPLIED

9 painting_id ID #IMPLIED

10. painter IDREF #REQUIRED>
11. <!ELEMENT Year (#PCDATA)>

12. <!ELEMENT Technique (#PCDATA)>

13. <!ENTITY Comment ‘‘Private Collection’’>

14. <!ENTITY Biography SYSTEM °‘biography.xml’’>]
15. <W4F_DOC>

16. <Painter Name=’Georges Braque’ painter_id=’1’>
17. &Biography;

18. </Painter>

19. <Painting Title="Black Fish" painter=’1’>

20. <Year>1942</Year>

21. <Technique>0il on canvas</Technique>

22. <COMMENT>&Comment ; </COMMENT>

23. </Painting>

24. <Painting Title="Bottle and Fishes" painter_id=’1’>
25. <Year>autumn 1910</Year>

26. <Technique>0il on canvas</Technique>

27. </Painting>

28. </WAF_DOC>

Figure A.3: Another XML document

1.<?xml version=’’1.07’7>

2. <!DOCTYPE W4F_DOC SYSTEM ¢‘w4f_doc.dtd’’ [
3. <!ELEMENT W4F_DOC (Painter)x*>

4. <!ELEMENT Painter (Name, Painting)>

5. <!ELEMENT Painting (Technique, Year?)>

6. <!ATTLIST Painting Title CDATA #REQUIRED>
7. <!ELEMENT Year (#PCDATA)>

8. <!ELEMENT Technique (#PCDATA)>

9. <!ELEMENT Technique (#PCDATA)>

10. <W4F_DOC>

11. <Painter>

12. <Painting>

13. <Year>1942</Year>

14. <Year>1943</Year>

15. <Technique>0il on canvas</Technique>
16. </Painting>

17. <Name>’Georges Braque’</Name>

18. </Painter>

19. </W4F_DOC>

Figure A.4: A non valid XML document

XML

Appendix B

XML Path Language (XPath)

The XML Path Language (XPath) [52] is a W3C Recommendation whose main purpose is to
address parts of an XML document. It is a non-XML language and it provides a common syntax
and semantics for the functionality shared between XSLT [82] and XPointer [186]. Moreover, the
significance of XPath language is considerable since it is the language used by the majority of XML
query languages for binding query variables.

XPath works on the XML document considering it as a tree of nodes. XPath indicates nodes in
the document tree by their absolute/relative position, type, content and other more complex criteria.
XPath allows to navigate in the document tree, as well as to select tree nodes that fulfill a number
of conditions.

The primary syntactic construct in XPath is a path expression, which is always evaluated with
respect to a contert. In the following we present first the tree model of XPath, and then the basic
XPath expressions.

B.1 XPath Data Model

An XML document can be seen as a tree, which consists of nodes of different types that correspond
to the different syntactic XML categories. XML parsers such as those based on the model DOM
(Document Object Model) [213], construct a tree before applying any treatment to the document.
The tree representation can be seen as a conceptual representation of the document, that separates
the syntax from a more abstract representation of the document content. In an XML tree there
are essentially seven types of nodes, illustrated in Table B.1 each one of them is associated to a
syntactic category of XML.

Node Types Syntactic Category of XML
Document XML document
Element XML element
Attr XML attribute
Text text values
Comment XML comments
ProcessingInstruction processing instructions
Namespace namespaces

Table B.1: XML node types in an XML tree

163

164 APPENDIX B. XML PATH LANGUAGE (XPATH)

In the XPath data model the root node of the XML document is not the same as the root element.
The root node of the XML document is of type Document, it appears always first and contains the
entire document. More precisely, it contains the node corresponding to the root element, and any
comments and processing instructions that occur outside the root element.

One can observe that in the previous set of node types there is no type neither for the DTD
nor for the entities. In fact the tree model does not consider the presence of a DTD, and where the
references toward the entities have been replaced by their textual content.

For each node type there exist two types of information: first is the name of the node and the
second its value (Table B.2).

Node Type Name Value
Document - —
Element element name —
Attr attribute name attribute value
Text - text
Comment — comment’s text
Namespace prefix URI that designates the namespace

Table B.2: XML node types : their name and value

The XML tree for the XML document illustrated in Figure A.1 is shown in Figure B.1.

For every type of node, there is a way of determining the string-value of nodes of that type. For
some node types, the string-value is part of the node; for other, the string-value is computed from
the string-value of descendant nodes.

Some node types have also an expanded-name. This name consists of a local part and from a
namespace URI. The local part is a string and the namespace URI is either a string or null. For
example, for the element <Painter> its local name is Painter and its namespace URI is null. For
the element <xsd:Painting> the expanded name is zsd:Painting where the local part is “Painting”
and the namespace URI is “zsd” defined in the document.

Moreover, in an XML tree there is an ordering, defined on all the nodes in the tree. This order
corresponds to the order in which the first character of the XML representation of each node appears
in the XML representation of the document after expansion of the entities.

Element nodes have a (possible empty) list of child nodes. The root node has at least one child
node : the document root element. The root node of the XML document is of type Document
and it always appears first. It contains a single child of type Element which corresponds to the
root element of the document. Each node of type Element can have a number of children nodes.
Namespace nodes appear before attribute nodes and both appear before the children nodes of the
element.

Example B.1.1 For the document illustrated in Figure A.1, Page 157, the oot of the tree contains
the root element WAF_DOC. This element has one child node of type Element, whose name is Painter.
In turn, this one has one child node of type Element whose name is Paintings_list. This node has
two children, both of type Element. The first, has four child nodes: the first is of type Attribute, its
name s Title and its value is “Black Fish”; the other three are of type Element. The name of the
first is Year, of the second Technique and of the third Comment. All three have only one child node
of type Text.

B.1. XPATH DATA MODEL 165

Document

Element
W4F DOC

AT T
Element
Painter

;o At Element ‘ Element
! Name v Biography Paintings list

! I

1

' Georges //
Braque -’

‘ Element B ‘ Element U

Painting Painting
///»\\\\/ \
S Attr Element Element U ‘ Element U
{ Title | Year Technique COMMENT
'\ Black Fish/
Text Text U Text U
1942 Oil On Canvas Private Collection

Figure B.1: The XML Tree for the XML document in Figure A.1

166 APPENDIX B. XML PATH LANGUAGE (XPATH)

B.1.1 XPath expressions

In XPath, the referencing of nodes is done by navigating in the tree. Navigation is done by means
of path expressions always evaluated in a contert. XPath expressions are either absolute or relative.
In this first case, the expression is evaluated on the root node of the XML tree, while in the second
case is evaluate on some context (calculated by another path expression).

XPath expressions are called location paths. A location path is a sequence of location steps. Each
step is evaluated in some contezt, which is a set of XML nodes defined by the previous location step
if it is a relative path, or on the document root element if it is an absolute path. The general form
of an XPath location path is :

[/Istep1/stepa/... [stepy,

where “/" is the initial optional step that defines whether the path is an absolute one or a relative
one.
The general form of a location step is

axis::node _test[predicate: |[predicates]. . . [predicate,)
and can be decomposed into three parts :

1. an azis, which specifies the structural relationship (child, descendant, ancestor, attribute etc.)
between the nodes selected by the location step and the context node,

2. a node test, which specifies the nodes that will be considered in the result set of the expression.
The role of the node test is dual: it can either specify the type of the node (element, attribute,
comment, processing instruction etc.) and/or the name of the node in the XML tree,

3. and optional predicates, which use arbitrary expressions to further refine the set of nodes
selected by the location step.

The result of an XPath expression can be (i) a set of nodes (an unordered collection of nodes
without duplicates called node-set in the XPath jargon), (ii) a boolean (true or false), (iii) a number
and (iv) a string (a sequence of characters). The members of a node-set are not the actual nodes in
the XML tree but rather references to these nodes.

In order to evaluate a location path, the location steps are evaluated in the order they are defined
in the path : on the result obtained by the evaluation of step;, step;y1 is evaluated. Location paths
can be used in two different ways. First, a location path can be considered as a pattern for selecting
XML fragments. Second, it is a way to nawvigate in the XML document from node to node.

XPath supports a number of different axis for the navigation in the XML document. These allow
the navigation in the XML document from node to node. XPath axes are illustrated in Table B.3
and they can be classified into mainly three categories :

e Axes child, descendant, descendant-or-self are used for navigating downwards in the XML doc-
ument.

e Axes parent, ancestor, ancestor-or-self for backward navigation.
e Axes preceding-sibling, following-sibling, preceding and following for sideway navigation.
e Finally, axe attribute is used for selecting attribute nodes.

Each axis has a principle node type. More specifically :

B.1. XPATH DATA MODEL

167

Axe Description

child selects the child node of the context node

descendant selects the descendant nodes of the context node
descendant-or-self | selects the context node and all its descendant nodes
parent selects the parent node of the context node

ancestor selects all ancestor nodes of the context node

ancestor-or-self
preceding-sibling
following-sibling

selects the context node and all its ancestor nodes
selects the sibling node that precedes the context node
selects the sibling node that follows the context node

preceding selects all sibling nodes preceding the context node
following selects all sibling nodes following the context node
self selects the context node

attribute selects the attribute nodes of the context node
namespace selects the namespace nodes

Table B.3: XPath Axis

e for the attribute axis, the principle node type is Attr;
e for the namespace axis, the principle node type is Namespace;
e and finally for all other axis, the principle node type is Element.

The node-test can be either the expanded-name of a node, or *, text(), node(). Node test *, is
true for any node of the principle node type of the axis in the step. Node test text() is true for any
textual node and finally, node test node() is true for any node.

Example B.1.2 The absolute location path [child::W4F DOC/child::Painter is composed of two
location steps:

Step /child::W4F _DOC : This step selects the root node of the XML document (due to the presence
of the “/” azxis), and then selects the child elements of the node (azis child); from all the child
nodes it selects the elements of type is WAF_DOC (document root element).

Step child::Painter : This step is evaluated on the result of the first step (on the element WAF_DOC).
It selects the children nodes of this element, and then out of those the elements of type Painter
are selected.

The first location step is an absolute one (it is evaluated on the root node of the document), and
the second is a relative one, is evaluated on the result of the first one.

Example B.1.3 Consider the location path [descendant::Painting/attribute::Title This path is de-
composed into two steps:

Step /descendant::Painter : This step selects the root node of the XML document (due to the pres-
ence of the “/” axis), and then selects the descendant elements of the node (azis descendant).
Then from the set of those nodes it selects the elements of type Painting.

Step attribute::Title : This step is evaluated on the result of the first step (on the elements of type
Painting). For each of those elements, it selects its attribute nodes (azis attribute) and from
those it keeps those whose name is Title.

168 APPENDIX B. XML PATH LANGUAGE (XPATH)

As mentioned earlier, in XPath location steps we can have optional predicates that reduce the
size of the result set. An important feature is the possibility to use location paths in predicates,
since it allows to select nodes according to the properties of related nodes in the document tree. A
predicate can be in fact a complex expression that includes disjunction,conjunction and negation of
atoms, where an atom is a location step, or a condition between a location step and a value.

Example B.1.4 Consider the location path
child::Painter|child::@Name="Georges Braque and child::Painting[@Title]]

This location step considers elements of type Painter such that the predicate child::@Name="Georges
Braque and child::Painting[@Title] is true :

o the value of the attribute Name of the context node is equal to ’Georges Braque’ and

e the context node has a child element of type Painting which in turn has an attribute Title.

B.1.2 XPath Functions

In location steps we can also use functions from the core library of XPath. These functions are
distinguished into four sets :

Node Set Functions : Functions that belong in this set are :

e [ast() which returns the position of the last element in a context,

e position() that returns the position of an element in a context, count() which returns the
number of nodes in the set of nodes passed as argument,

e local-name() that returns the local part of an expanded name of a node,

e namespace-uri() which returns the namespace URI of the expanded name of the element,
and finally the

e name() function that returns the expanded name of the node.

For the three last functions if a node set is passed as an argument, then the function is applied
on the first node of the argument set.

In this set of functions belongs the function id() which allows to navigate in the XML docu-
ment. In fact this function selects elements by their unigue ID. The argument to this function
can be a string value; for example the step id(’1’) selects the element in the document which
has an attribute of type ID with value ’1°.

String functions : Functions that belong in this set are similar to the string functions of the
C programming language. Those are concat(), starts-with(), contains(), substring-before(),
substring-after(), substring(), string-length(). concat() concatenates its string arguments in
the order they appear, starts-with() checks whether the second string argument is a prefix
of the first, substring-before()/substring-after() returns the part of the first string argument
that is before/after the second string argument, string-length() returns the length of the string
passed as parameter. If the parameter is omitted, then this function is applied to the context
node (which is first converted to its string value). Function normalize-space() removes all white
spaces of the string passed as parameter. As in the case of string-length() if the argument is
omitted, then the function is applied to the context node. XPath introduces also the function

B.1. XPATH DATA MODEL 169

translate() that performs case conversion. Last, the most important function is string() which
converts the object passed as parameter to its string-value. If the object passed as parameter
is a node set, then the first node in the set is considered and its string-value is returned.
Numbers and boolean values are translated to string values.

Boolean Functions : The boolean() function converts the object passed as parameter to a boolean
value. Function not() accepts as argument a boolean and returns its complement value.
Functions true() and false() return values true and false respectively. Finally, function lang()
verifies if the language of the context node (encoded using the xml:lang attribute is the same
as the string passed as parameter.

Number Functions: Those functions operate on numbers or on node-sets and return numbers.
Similar to the string functions, they resemble to functions in the C programming language.
Functions floor(), ceiling() and round() operate on the number passed as parameter. Function
sum() accepts as parameter a node-set, and returns the sum of the nodes in this set, where each
of the nodes is transformed to a number. Last, the number() function converts its argument to
a number. If the parameter passed is a node-set then it is first converted to a string (applying
the string() function presented previously), which is then transformed to a number.

Example B.1.5 Consider the location path
child::Painting[position()=1]/id(@painter)/attribute::Name
the XML document illustrated in Figure A.3. This path consists of three location steps :

Step child::Painting[position()=1] This step finds the children nodes of the context node (azxis child)
and keeps the first (node-set function position()) element of type Painting.

Step id(@painter) This step, uses the node-set function id() which selects elements by their ID value.
Here the argument passed is the value of the attribute painter of the context node. The step
returns the nodes in the XML tree whose value of attribute ID equals to the value of the painter
attribute of the context node.

Step attribute::Name This step selects the attribute (attribute azis) Name of the context node.

170 APPENDIX B. XML PATH LANGUAGE (XPATH)

Bibliography

[1]

<

[10]

[11]

[12]

Introduction to the Art & Architecture Thesaurus. Published on behalf of the Getty Art
History Information Program, Oxforf University Press, New York.

Art & Architecture Thesaurus. http://www.getty.edu/research /tools/vocabulary/aat.

S. Abiteboul. Querying semi-structured data. In Proc. of the Int. Conf. on Data Transaction
(ICDT), Delphi, Greece, 1997.

S. Abiteboul, P. Buneman, and D. Suciu. Data On the Web: From Relations to Semistructured
Data and XML. Morgan kaufmann Publishers, October 1999.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Language
for Semistructured Data. International Journal on Digital Libraries (JODL 97), 1996. URL:
ftp://ftp.inria.fr/INRIA /Projects/verso/VersoReport-101.ps.gz.

Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized
views. In Proc. of the Int. Conf. on Principle of Database Systems (PODS), pages 254-263,
Seattle, Washington, May 1998.

Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient management of transitive
relationships in large data and knowledge bases. In James Clifford, Bruce G. Lindsay, and
David Maier, editors, Proc. of the Int. Conf. on Management of Data (SIGMOD), pages
253-262, Portland, Oregon, 1989. ACM Press.

Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Automated selection of materi-
alized views and indexes in Microsoft SQL Server. In Proceedings of VLDB, Cairo, Egypt,
2000.

Vincent Aguilera. Interrogation de documents XML. PhD thesis, Ecole Nationale des Ponts
et Chaussees, 2002.

Vincent Aguilera, Sophie Cluet, Pierangelo Veltri, and Fanny Wattez. Querying XML docu-
ments in Xyleme. ACM SIGIR Workshop on XML and Information Retrieval, July 2000.

Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation
of lattice operations. ACM Transactions on Programming Languages and Systems, 11(1):115—
146, January 1989.

S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle, B. Amann, I. Fun-
dulaki, M. Scholl, and A-M. Vercoustre. Managing RDF Metadata for Community Webs. In
Proceedings of the 2nd Int’l Workshop on The World Wide Web and Conceptual Modelling,
2000.

171

172

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

BIBLIOGRAPHY

S. Alexaki, G. Karvounarakis, V. Christophides, D. Plexousakis, and K. Tolle. Managing
Voluminous RDF Description Bases. In Proceedings of the 2nd International Workshop on the
Semantic Web, pages 1-13, Hong-Kong, May 2001.

Altavista web page. http://www.altavista.com.

Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl. Ontology-based Integration
of XML Resources. In Proc. of the First International Conference on the Semantic Web,
Sardinia, Italy, June 2002. LNCS.

Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl. Querying XML sources using
an Ontology-based Mediator. In Proc. of Int. Conference on Cooperative Information Systems
(CooplS), Irvine, California, USA, November 2002.

Bernd Amann, Catriel Beeri, Irini Fundulaki, Michel Scholl, and Anne-Marie Vercoustre.
Mapping XML fragments to Community Web Ontologies. Informal Proceedings of the Fourth
International Workshop on Web and Databases (WebDB), May 2001. In conjunction with
ACM SIGMOD-PODS.

Bernd Amann and Irini Fundulaki. Integrating Ontologies and Thesauri to Build RDF
Schemas. In Proceedings of the 3rd European Conference on Research and Advanced Tech-
nology for Digital Libraries, Paris, France, September 1998.

Bernd Amann, Irini Fundulaki, and Michel Scholl. Integrating Ontologies and Thesauri for
RDF schema creation and metadata querying. International Journal of Digital Libraries,
2000.

J. Ordille A.Y. Levy, A. Rajaraman. Query Answering Algorithms for Information Agents. In
Proc. of the Thirteen International Conference on Artificial Intelligence, AAAI-96, Portland,
OH, 1996.

F. Baader, D. Calvanese, D.I.. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors.
Description Logic Handbook. Cambridge University Press, 2002.

C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y. Papakonstantinou, and P. Velikhov.
XML-Based Information Mediation with MIX. In Exhibitions Program of ACM SIGMOD
Int. Conference on Management of Data, June 1999.

C. Batini, M. Lenzerini, and M. Navathe. A Comparative Analysis of Methodologies for
Database Schema Integration. In ACM Computing Surveys, volume 18, pages 323-364. ACM
Press, 1986.

C. Beeri, A. Levy, and M-C. Rousset. Rewriting Queries Using Views in Description Logics.
In Proc. PODS, pages 99-108, Tucson, Arizona, May 1997.

S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semistructured and
Structured Data Sources. SIGMOD Record, 28(1):54-59, 1999.

Paul V. Biron and Ashok Malhotra. XML Schema Part 2 : Datatypes. W3C Recommendation,
May 2001. http://www.w3.org/ TR /xmlschema-2.

A. Borgida. Description Logics in Data Management. IEEE Transactions on Knowledge and
Data Engineering, 7(5):671-682, 1995.

BIBLIOGRAPHY 173

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

A. Borgida, R. Brachman, D. McGuiness, and L. Resnick. CLASSIC: A Structural Data
Model for Objects. In Proc. of the Int. Conf. on Management of Data (SIGMOD), pages
58-66, Portland, Oregon, June 1989.

T. Bray. RDF and Metadata, June 1998. http://www.xml.com/xml/pub/98/06 /rdf.html.

D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification
1.0. Technical Report CR-rdf-schema-20000327, W3C, March 2000. W3C Candidate Recom-

mendation.

P. Buneman. Semistructured data. In Proc. of the Int. Conf. on Principle of Database Systems
(PODS), Tucson, Arizona, 1997.

Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Wang Chiew Tan.
Keys for XML. In Proc. WWW10, pages 201-210, 2001.

Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: A Query Language and Algebra
for Semistructured data based on structural recursion. VLDB Journal, 9(1):76-110, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of Regular Expres-
sions and Regular Path Queries. In Proc. of the Int. Conf. on Principle of Database Systems
(PODS), pages 194-204, Philadelphia, Pennsylvania, USA, 1999.

Diego Calvanese, Giusepe De Giacomo, Mauricio Lenzerini, and Moshe Vardi. Answering
Regular Path Queries using Views. In Proc. of the Int. Conf. on Data Engineering (ICDE),
pages 389-398, San Diego, California, USA, February 2000. IEEE Computer Society.

Diego Calvanese, Giusepe De Giacomo, Mauricio Lenzerini, and Moshe Vardi. Query process-
ing using views for regular path queries with inverse. In Proc. of the Int. Conf. on Principle
of Database Systems (PODS), Dallas, Texas, USA, May 2000. ACM Press.

Diego Calvanese, Giusepe De Giacomo, and Maurizio Lenzeriniand Moshe Vardi. What is
View Based Query Rewriting. In Proceedings of the 7th International Workshop on Knowledge
Representation meets Databases, pages 17-27, Berlin, Germany, August 2000.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Answering queries using
views in description logics. In Knowledge Representation Meets Databases, pages 6-10, 1999.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Description logic framework for information integration. To appear in Proceedings of
the 6th International Conference on Principles of Knowledge Representation and Reasoning
(KR’98).

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. What is
view-based query rewriting? In Mokrane Bouzeghoub, Matthias Klusch, Werner Nutt, and
Ulrike Sattler, editors, Proceedings of the 7Tth International Workshop on Knowledge Repre-
sentation meets Databases (KRDB 2000), Berlin, Germany, August 21, 2000, number 29 in
CEUR Workshop Proceedings, pages 17-27, 2000.

Yves Caseau. Efficient handling of multiple inheritance hierarchies. In OOPSLA 93, Wash-
ington, September 1993.

174

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

BIBLIOGRAPHY

R.G. Cattel. The Object Database Standard: ODMG-93. Morgan Kauffman, 1993.

Online Computer Library Center. Dewey decimal classification. Available at
www.oclc.org/dewey/.

D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and L. Stefanescu. XQuery: A Query
Language for XML. http://www.w3.org/TR/xquery, February 2001.

D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heterogeneous
Data Sources. In Proceedings of WebDB, Dallas, USA, May 2000.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The TSIMMIS project: Integration of heterogeneous information sources. In Pro-
ceedings of IPSJ Conference, Tokyo, Japan, October 1994. TSIMMIS project: http://www-
db.stanford.edu/tsimmis.

C.Y. Chee, Y. Arens, C. A. Knoblock, and C. N. Hsu. Retrieving and Integrating Data from
Multiple Information Sources. International Journal of Intelligent and Cooperative Informa-
tion Systems, 2(2):127-158, 1993.

Rada Chirkova and Michael Genesereth. Linearly bounded reformulations of conjunctive
databases. In Proceedings of DOOD, pages 987-1001, 2000.

V. Christophides, S. Cluet, and J. Siméon. On Wrapping Query Languages and Efficient XML
Integration. In Proc. of the Int. Conf. on Management of Data (SIGMOD), Dallas, USA, May
2000.

Vassilis Christophides. Community Webs (C-Webs): Technological Assessment and Sys-
tem Architecture. Available at http://www.ics.forth.gr /¢hristop/CWebArch.ps.gz, September
2001.

Vassilis Christophides, Dimitris Plexousakis, Michel Scholl, and Sotirios Tourtounis. On La-
beling Schemes for Community Web Portals. Submitted for Publication.

J. Clark and S. DeRose (eds.). XML Path Language (XPath) Version 1.0. W3C Recommen-
dation, November 1999. http://www.w3c.org/ TR /xpath.

S. Cluet. Designing OQL: Allowing Objects to be Queried. Information Systems, 23(5), 1998.

S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your Mediators Need Data Conversion. In
Proc. of the Int. Conf. on Management of Data (SIGMOD), Seattle, Washington, June 1998.

S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository. In Proceedings
of the International Conference on Very Large DataBases (VLDB), Rome, Italy, September
2001.

Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting Aggregate queries using
views. In Proc. of the Int. Conf. on Principle of Database Systems (PODS), pages 155-156,
Philadelphia, Pennsylvania, 1999. ACM Press.

W. Cohen. Integration of heterogeneous databases without common domains using queries
based on textual similarity. In Proc. of the Int. Conf. on Management of Data (SIGMOD),
Seattle, Washington, May 1998.

BIBLIOGRAPHY 175

[58]

[59]

[60]

[61]

[62]
[63]
[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

C. Collet, M. Huhns, and W. Shem. Resource Integration Using a Large Knowledge Base in
Carnot. IEEE Computer, pages 55—62, December 1991.

D. Connolly, F. van Harmelen, I. Horrocks, and D. L. McGuiness. DAML-+OIL Reference
Description. http://www.w3.org/TR/daml+oil-reference-20011218, March 2001.

World Wide Web Consortium. Extensible Markup Language (XML 1.0 (second edition)),
October 2000. http://www.w3.org/TR/REC-xml.

Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and Moshe Shadmon. A
fast index for semistructured data. In The VLDB Conference, pages 341-350, 2001.

C-Web Project. http://cweb.inria.fr.
The Upper CYC Ontology. http://www.cyc.com.

Shaul Dar, Michael Franklin, Bjorn Jonsson, Divesh Srivastava, and Michael Tan. Semantic
data caching and replacement. In Proceedings of VLDB, pages 330-341, 1996.

Jean Davoigneau, Renaud Benoit-Cattin, Xavier de Massary, Bernard Gauthiez, and Cather-
ine Manigand-Chaplain. THESAURUS DE L’ARCHITECTURE. Sous-Direction des Etudes,
de la Documentation et de I'Inventaire, direction de I’Architecture et du Patrimoine, Ministere
de la Culture et de la Communication, 2000.

Ministére de la Culture. http://www.culture.fr.

S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service for RDF. In
Proceedings of the W3C Query Languages Workshop, Cambridge, Massachusetts, 1998.

S. Deen. Data Integration in Distributed Databases. IEEE Transactions on Software Engi-
neering, 13(7):860-864, July 1987.

S. DeRose, E. Maler, and D. Orchard (eds.). XML Linking Language (XLink) Version 1.0.
W3C Proposed Recommendation, December 2000. http://www.w3c.org/TR/xlink.

Alin Deutch, Mary Fernandez, and Dan Suciu. Storing semistructured data with STORED.
In Proc. of the Int. Conf. on Management of Data (SIGMOD), pages 431-442, Philadelphia,
Pennsylvania, USA, June 1999.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. XML-QL: A
Query Language for XML. Submission to the World Wide Web Consortium, August 1998.
http://www.w3.org/TR /1998 /NOTE-xml-ql-19980819.html.

Paul F. Dietz. Maintaining order in a linked list. In Proc. of the Fourteenth Annual ACM
Symposium on Theory of Computing (STOC’82), pages 122-127, San Francisco, California,
USA, May 1982.

Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in a list.
In Proc. of the Sizteen Annual ACM Symposium on Theory of Computing (STOC’87), pages
365-372, New York, NY, USA, May 1987.

M. Doerr. Authority Services in Global Information Spaces: A requirements analysis and
feasibility study. Technical Report TR-163, Institute of Computer Science, Foundation for
Research and Technology, Heraklion, Crete, Greece, February 1996.

176

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

BIBLIOGRAPHY

M. Doerr and N. Crofts. Electronic organization on diverse data - the role of an object oriented
reference model. In Proceedings of 1998 CIDOC Conference, Melbourne, Australia, October
1998.

Martin Doerr and Irini Fundulaki. SIS-TMS: A Thesaurus Management System for Dis-
tributed Digital Collections. In Proceedings of the Second European Conference on Research
and Advanced Technologies for Digital Libraries (ECDL), Heraklion, Crete, Greece, September
1998.

F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Principles of Knowledge Representation
and Reasoning, chapter Reasoning in Description Logics, pages 193-238. Studies in Logic,
Language and Information. CLSI Publication, 1996.

Denise Draper, Alon Levy, and Daniel S. Weld. The Nimble System. In Proceedings of the
International Conference on Database Engineering, 2001.

Dublin Core. http://www.nlm.nih.gov /research /umls.

Oliver M. Duschka and Michael R. Genesereth. Answering Recursive queries using Views.
In Proc. of the Int. Conf. on Principle of Database Systems (PODS), Tuscon, Arizona, USA,
1997.

Oliver M. Duschka and Michael R. Genesereth. Query Planning in Infomaster. In Proc. of the
Int. Conf. on Management of Data (SIGMOD), pages 109-111, San Jose, CA, USA, 1997.

J. Clark (ed.). XSL Transformation (XSLT) Version 1.0. W3C Recommendation, November
1999. http://www.w3c.org/TR/xslt.

M. Evett, W. Andersen, and J. Hendler. Parallel Processing for Artificial Intelligence, chap-
ter Providing Computational Effective Knowledge Representation via Massive Parallelism.
Elsevier Science, 1993.

W. Fan, G. Kooper, and J. Simeon. A Unified Constraint Model for XML. In Proc. WWW10,
Hong-Kong, China, May 2001.

D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in
a Nutshell. In R. Dieng, editor, Proceedings of the 12th European Workshop on Knowledge
Acquisition, Modeling and Management (EKAW). Springer-Verlag, 2000.

Dieter Fensel, Stefan Decker, Michael Erdmann, and Rudi Studer. Ontobroker: Or How to
Enable Intelligent Access to the WWW. In Proceedings of the 11th Workshop on Knowledge
Acquisition, Modeling, and Management, Banff, Canada, April 1998.

Mary Fernandez, Wang-Chiew Tan, and Dan Suciu. Trading between relational and XML. In
Proc. of the Int. WWW Conf., 2000.

Daniela Florescu and Donald Kossmann. Storing and querying XML data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3):27-34, 1999.

Daniela Florescu, Alon Levy, Dan Suciu, and Khaled Yagoub. Optimization of run-time
management of data intensive web sites. In Proceedings VLDB, 1999.

BIBLIOGRAPHY 177

[90]

[91]

[92]

93]

[94]

[95]

[96]

[97]

[98]

[99]
[100]

[101]

[102]

[103]

[104]

D.J. Foskett. Readings in Information Retrieval, chapter Thesaurus. Morgan Kaufmann,
1997.

Bancilhon Francois, Delobel Claude, and Kanellakis Paris. Building an Object-Oriented
Database System : The Story of O2. Morgan Kaufman, 1992.

Irini Fundulaki, Bernd Amann, Catriel Beeri, Michel Scholl, and Anne-Marie Vercoustre.
STYX : Connecting the XML World to the World of Semantics. In Int. Conf. on Eztending
Data Base Technology (EDBT), Prague, Czech Republic, March 2002. Demo Presentation.

V. Gaede and O. Giinther. Multidimensional Access Methods. ACM Computing Surveys,
30(2):170-231, 1998.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. The TSIMMIS project: Integration of heterogeneous information sources. Journal
of Intelligent Information Systems, 8(2):117-132, March 1997.

Georges Gardarin, Antoine Mensch, and Anthony Tomasic. An Introduction to the e-XML
Data Integration Suite. In Int. Conf. on Extending Data Base Technology (EDBT), LNCS,
pages 297-306, Prague, Czech Republic, March 2002.

Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Journal of
Distributed Computing, Special Issue for the Twenty Years of Distributed Computing Research,
http://www.cs.technion.ac.il/ hagit/podc20/, 2003.

F. Goasdoué, V. Lattés, and M-C Rousset. The use of CARIN language and algorithms for
information integration: The PICSEL System. International Journal on Cooperative Infor-
mation Systems, 2000.

Charles F Goldfarb. The SGML Handbook. Oxford University Press, 1990. ISBN: 0-19-853737-
1.

Google web page. http://www.google.com.

Gosta Grahne and Alberto Mendelzon. Tableau Techniques for querying information sources
through global schemas. In Proc. of the Int. Conf. on Data Transaction (ICDT), volume
1540 of Lecture Notes in Computer Science, pages 332-347, Jerusalem, Israel, 1999. Springer
Verlag.

T. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition,
5:199-220, 1993.

Thomas. R. Gruber. A Translation Approach to Portable Ontology Specifications. Technical
Report KSL 92-71, Knowledge Systems Laboratory, Computer Science Department, Stanford
University, April 1993.

N. Guarino. Understanding, Building, and Using Ontologies. A commentary to "Using Explicit
Ontologies in KBS Developemtn", by Heijst, Schreiber, and Wielinga.

N. Guarino. Formal Ontology and Information Systems. In N Guarino, editor, Proceedings of
the 1st International Conference on Formal Ontologies in Information Systems, pages 3-15,
Trento, Italy, June 1998.

178

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]

BIBLIOGRAPHY

N. Guarino. Information Extraction: A Multidisciplinary Approach to an Emerging Informa-
tion Technology, chapter Semantic Matching : Formal Ontological Distinctions for Information
Organization, Extraction, and Integration, pages 139-170. Springer Verlag, 1998.

N. Guarino, C. Masolo, and G. Vetere. OntoSeek: Content-Based Access to the Web. IEEFE
Intelligent Systems, pages 70-79, May/June 1999.

H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection for OLAP. In
Proceedings of ICDE, pages 208-219, 1997.

R. Shabo H. Kaplan, T. Milo. A comparison of labeling schemes for ancestor queries. In Proc
of the thirteen Annual Symposium on Discrete Algorithms (SODA’02), pages —, San Francisco,
California, USA, January 2002. ACM/SIAM.

J. Heflin, J. Hendler, and S. Luke. Reading Between the Lines: Using SHOE to Discover
Implicit Knowledge from the Web. In In Proc. of AAAI Workshop on Artificial Intelligence
and Information Integration, 1998.

D. Heimbigner and D. McLeod. A Federated Architecture for Information Management. ACM
Transactions on Office Information Systems, 3(3):253-278, July 1985.

H. Hwang and U. Dayal. View Definition and Generalization for Database Integration in a
Multibase System. IEEE Transactions On Software Engineering, 10(6):628-645, November
1984.

International Guidelines for Museum Object Information: The CIDOC Information Cate-
gories. http://www.cidoc.icom.org/guide/.

International Council of Museum Documentation (ICOM/CIDOC).
http://www.cidoc.icom.org.

Documentation - Guidelines for the establishment and development of monolingual thesauri.
International Organization for Standardization, 11 1986. Ref. No ISO 2788-1986.

Documentation - Guidelines for the establishment and development of multilingual thesauri.
International Organization for Standardization, 2 1985. Ref. No. ISO 5964-1985.

The KA2 Ontology. http://www.nlm.nih.gov/research /umls.

Carl-Christian Kanne and Guido Moerkotte. Efficient storage of XML Data. Technical Report
8/99, University of Manheim, 1999. Available at http://pi3.informatik.uni-manheim.de.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In Proceedings of the 11th International Conference on
World Wide Web, Hawai, May 2002.

V. Kashyap and A. Sheth. Cooperative Information Systems, Trends and Directions, chapter
Semantic Heterogeneity in Global Information Systems: the Role of Metadata, Context and
Ontologies. Academic Press, 1998.

M. Kaul. View System: Integrating Heterogeneous Information Bases by Object Oriented
Views. In Proc. of the Int. Conf. on Data Engineering (ICDE), pages 2-10, Los Angeles,
February 1990.

BIBLIOGRAPHY 179

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Knowledge Interchange Format (KIF). http://logic.stanford.edu/kif/kif.html.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM, 1995.

W. Kim and F. Lochovsky, editors. Object-Oriented Concepts, Databases and Applications.
Addyson Wesley, 1989.

W. Eliot Kimber. HyTime and SGML: Understanding the HyTime HyQ Query Language,
August 1993. Availiable via anonymous ftp at ftp.ifi.uio.no /pub/SGML/HyTime.

T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold. In Proc. of the
AAAI Spring Symposium on Informatio n Gathering in Distributed Heterogeneous Environ-
ments, Stanford, CA, March 1995.

K. Knight and S. Luk. Building a Large-Scale Knowedge Base for Machine Translation. In
Proc. of the American Association of Artificial Intelligence AAAI-9, Seattle, WA, 1994.

P.G. Kolaitis, D.L.. Martin, and M.N. Thakur. On the complexity of the containment problem
for conjunctive queries. In Proc. of the Int. Conf. on Principle of Database Systems (PODS),
Seattle, Washington, June 1998. ACM Press.

Andreas Krall, Jan Vitek, and Nigel Horspool. Near optimal hierarchical encoding of types. In
Mehmet Aksit and Satoshi Matsuoka, editors, 11th European Conference on Object Oriented
Programming (ECOOP’97), pages 128-145, Finland, 1997. Springer-Verlag.

Sandrine Lafois. Implantation et comparaison de structures de données pour 'interrogation
d’arborescences volumineuses de termes (thesaurus)”. Mémoire de Stage, SIR PE-CNAM-
TELECOM, Ecole doctorale EDITE, October 2000.

C. Lagoze. The Warwick Framework : A Container Architecture for Diverse Sets of Metadata.
D-Lib Magazine, July /August 1996.

Laks Lakshmanan, Fereidoon Sadri, and Iyer Subramaniananian. A Declarative Language
for Querying and Restructuring the World Wide Web. In Proceedings of Post-ICDE IEEFE
Workshop on Research Issues in Data Engineering (RIDE-NDS), 1996.

J. Larson. A Theory of Attribute Equivalence in Databases with Application to Schema
Integration. IEEE Transactions On Software Engineering, 15(4):449-463, April 1989.

O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax Speci-
fication. Technical Report REC-rdf-syntax-19990202, W3C, February 1999. W3C Proposed
Recommendation.

D. B. Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure. Commaunications
of the ACM, 38(11):33-38, 1995.

A. Levy. Answering queries using views: a survey. http://www.cs.washington.edu/homes//-
alon/site/files/view-survey.ps. submitted for publication.

A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information sources using
source descriptions. In T. M. Vijayaraman et al., editors, Proceedings of the twenty-second
international Conference on Very Large Data Bases, September 8—6, 1996, Mumbai (Bombay),
India, pages 251-262. Morgan Kaufmann Publishers, 1996.

180

[137]

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

148

149

[150]

[151]

[152]

BIBLIOGRAPHY

A. Levy and M. Rousset. CARIN: A Representation Language Combining Horn Rules and
Description Logics. In Proc. of the European Conference on Artificial Intelligence (ECAI-96),
1996.

A.Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Informa-
tion systems. Journal of Intelligent Information Systems, 1995. Special Issue on Networked
Information Discovery and Retrieval.

Alon Y. Levy. Logic Based Artificial Intelligence, chapter Logic-Based Techniques in Data
Integration. Kluwer Publishers, 2000. forthcoming.

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proceedings of PODS, San Jose, California, US, May 1995.

Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path expres-
sions. In Proc. of 27th International Conference on Very Large Data Bases(VLDB’02), pages
361-370, Roma, Italy, September 2001. Morgan Kaufmann.

Witold Litwin, Leo Mark, and Rick Rousopoulos. Interoperability of multiple autonomous
databases. ACM Computing Surveys, 22(3):267-293, 1990.

D. Lomet and J. Widom, editors. IEEE Data Engineering Bulletin, Special Issue on Materi-
alized Views and Data Warehousing, volume 18-(2), June 1995.

B. Ludscher, Y. Papakonstantinou, and P. Velikhov. A Framework for Navigation-Driven
Lazy Mediators. In ACM Workshop on the Web and Databases (WebDB’99). http://www-
rocq.inria.fr/ cluet/WEBDB/procwebdb99.html, Philadelphia, USA, 1999.

R. M. MacGregor. Inside the LOOM Description Classifier. SIGART Bulletin, 2(3), 1991.

Alexander Maedche and Stefen Staab. Ontologies: Representation, Engineering, Learning
and Applications. Tutorial presented in the 1st International Semantic Web Conference, June
2002.

D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

M. Maloney and A. Malhotra. RDF Query Specification. In Proceedings of the W3C Query
Languages Workshop, Cambridge, Massachusetts, 1998.

I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries over Heteroge-
neous Data Sources. In Proceedings of the International Conference on Very Large Databases
(VLDB), Rome, Italy, September 2001.

I. Manolescu, D. Florescu, and D. Kossmann. Pushing XML Queries inside Relational
Databases. Technical Report 4112, INRITA, January 2001.

Ioana Manolescu. Optimization techniques for querying heterogeneous distributed data sources.
PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, December 2001.

M. Marchiori and J. Saarela. Query + Metadata + Logic = Metalog. In Proceedings of the
W3C Query Languages Workshop, Cambridge, Massachusetts, 1998.

BIBLIOGRAPHY 181

[153]

[154]

[155]

[156]
[157]
[158]

[159]

[160]

[161]

[162]

[163]

[164]
[165]

[166]

[167]

Amelie Marian, Serge Abiteboul, Gregory Cobena, and Laurent Migne. Change-centric man-
agement of versions in an xml warehouse. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri,
Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard T. Snodgrass, editors, Proc. of
27th International Conference on Very Large Data Bases (VLDB’02), Roma, Italy, September
2001. Morgan Kaufmann.

E. Mena, V. Kashyap, A. Sheth, and A. lllarramendi. OBSERVER An Approach for Query
Processing in Global Information Systems based on Interoperation across Pre-existing On-
tologies. In IEEE Computer Society Press, editor, Proceedings First IFCIS International

Conference on Cooperative Information Systems (CoopIS’96), pages 14-25, Brussels, June
1996.

Alberto Mendelzon, George Mihaila, and Tova Milo. Querying the World Wide Web. In
Conference on Parallel and Distributed Information Systems, 1996.

MERIMEE Thesaurus. http://www.culture.fr/documentation /merimee/accueil.htm.
Mesmuses project. http://aquarelle.inria.fr/mesmuses/index.html.

R.S. Michalski. Categories and Concepts, Theoretical Views and Inductive Data Analysis,
chapter Beyond Prototypes and Frames: The Two-Tiered Concept Representation. Academic
Press, 1993.

A. Michard, V. Christophides, M. Scholl, M. Stapleton, D. Sutcliffe, and A-M. Vercoustre.
The Aquarelle Resource Discovery System. Journal of Computer Networks and ISDN Systems,
30(13):1185-1200, August 1998.

Laurent Mignet, Mihai Preda, Serge Abiteboul, Sebastien Ailleret, Bernd Amann, and Amelie
Marian. Acquiring XML pages for a Webhouse. In BDA, 2000.

G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,
38(11):39-41, 1995.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction to WordNet:
An On-line Lexical Database. ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.pdf, 1993.
White Paper.

A. Motro and P. Buneman. Constructing Superviews. In Proc. of the Int. Conf. on Manage-
ment of Data (SIGMOD), number 5664, Ann Arborm, April 1981.

Namespaces in XML. http://www.w3.org/TR/REC-xml-names.

D. Nardi and R. J. Brachman. Description Logic Handbook, chapter An Introduction to
Description Logics, pages 5—44. Cambridge University Press, 2002.

Members of the Topic Maps.Org Authoring Group. XML Topic Maps (XTM) 1.0.
http://www.topicmaps.org/xtm/1.0, August 2001.

D. Olteanu, H. Meuss, T. Furche, and F. Bry. Xpath: Looking forward. In Pro-
ceedings of Workshop on XML Data Management (XMLDM) in conjunction with EDBT,
LNCS, Prague, Checzh Republic, March 2002. Springer. http://www.pms.informatik.uni-
muenchen.de/publikationen/ PMS-FB-2002-4.

182 BIBLIOGRAPHY

[168] Open Directory. http://www.dmoz.org.

[169] C. Paice. A Thesaural Model for Information Retrieval. Information Processing and Manage-
ment, 27(5):443-447, 1991.

[170] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator sys-
tems. In Proc. of International Conference on Very Large Databases (VLDB), pages 413-424,
Bombay, India, September 1996. Morgan Kaufmann.

[171] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A mediation system
based on declarative specifications. In Data Engineering, New Orleans, February 1996. TSIM-
MIS project: http://www-db.stanford.edu/tsimmis.

[172] Y. Papakonstantinou and V. Vassalos. Query rewriting using semistructured views. In Proc.
of the Int. Conf. on Management of Data (SIGMOD), Philadelphia, Pennsylvania, USA, 1999.

[173] Platform for Internet Content Selection. http://www.w3.org/PICS.

[174] R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries using Views. In Pro-
ceedings of the International Conference on Very Large DataBases, Cairo, Egypt, September
2000.

[175] R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries using Views. VLDB
Journal, 2001.

[176] Stephane Radicevic. Interfaces pour l’élection de liens par intégration d’une ontologie et de
thesaurus. Mémoire d’Ingénieur, Conservatoire National des Arts et Métiers, January 2000.

[177] Anand Rajaraman, Yehoshua Sagiv, and J. D. Ullman. Answering queries using templates
with binding patterns. In Proc. of the Int. Conf. on Principle of Database Systems (PODS),
San Jose, California, May 1995. ACM Press.

[178] Thesaurus of the Royal Commision of the Historical Monuments of England (RCHME).
http://www.rchme.gov.uk /thesaurus/thes splash.htm.

[179] W3C Technology and Society Domain : Resource Description Framework (RDF).
http://www.w3.org/RDF/.

[180] The ICS-FORTH RDFSuite Web Site. http://139.91.183.30:9090/RDF.
[181] Retsina Semantic Web Calendar Agent. http://www.daml.ri.cmu.edu/site/projects/RDFCalendar.

[182] C. Reynaud, J.P. Sirot, and D. Vodislav. Semantic Integration of XML heterogeneous data
sources. In Proceedings of International Database Engineering and Applications Symposium

(IDEAS), 2001.

[183] Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial Databases with Application to
GIS. Morgan Kaufmann Publishers, 2001.

[184] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). http://www.w3.org/TandS/-
QL/QL98/pp/xql.html, 1998.

[185] The RDF Site Summary. http://groups.yahoo.com/groups/rss-dev/files/schema.rdf.

BIBLIOGRAPHY 183

[186]

[187]

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

[199]

200]

R. Daniel Jr. (eds.) S. DeRose, E. Maler. XML Pointer Language (XPointer) Version 1.0.
W3C Candidate Recommendation, September 2001. http://www.w3c.org/ TR /xptr.

J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and J. Funderburk. Querying XML
Views of Relational Data. In Proc. Int. Conf. on Very Large Data Bases (VLDB), Rome,
Ttaly, 2001.

J. Sharma. Oracle8ispatial: Experiences with extensible databases. An Oracle Technical
White Paper, May 1999.

A. Sheth. Interoperating Geographic Information Systems, chapter Changing Focus on Inter-
operability in Information Systems: From System, Syntax, Structure to Semantics. Kluwer,
1999.

A. Sheth and V. Kashyap. So far (Schematically), yet So Near (Semantically). In Proceedings
of the IFIP TC2/WG2.6 Conference on Semantics of Interoperable Database Systems, DS-5,
IFIP Transactions A-25, Holland, November 1992.

A. P. Sheth and J.A. Larson. Federated Database Systems for Managing Distributed, Het-
erogeneous and Autonomous Databases. ACM Computing Surveys, 22(3):183-236, September
1990.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill, July 2001.

M. Sintichakis and P. Constantopoulos. A Method for Monolingual Thesauri Merging. In
Proc. 20th International Conference on Research and Development in Information Retrieval,
ACM SIGIR, Philadeplphia PA, USA, July 1997.

D. Soergel. The Art and Architecture Thesaurus, AAT. A critical appraisal. Technical report,
College of Library and Information Sciences, University of Maryland, 1995.

D. Srivastava, S. Dar, H.V. Jagadish, and A. Levy. Answering Queries with Aggregation using
Views. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 318-329, Bombay, India,
September 1996.

K. Stoffel, M. Taylor, and J. Hendler. Efficient Management of Very Large Ontologies. In
Proceedings of American Association for Artificial Intelligence Conference, 1997.

I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang.
Storing and querying ordered xml using a relational database system. In Proc. of the Int.
Conf. on Management of Data (SIGMOD), Madison, Wisconsin, USA, June 2002.

H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures.
W3C Recommendation, May 2001. http://www.w3.org/TR/xmlschema-1.

Robin Thornes. Protecting Cultural Objects in the Global Information Society: The Making
of Object ID. Getty Information Institute, 1997.

A. Tomasic, R. Amouroux, P. Bonnet, O. Kapitskaia, H. Naacke, and L. Raschid. The
Distributed Information Search Component (DISCO) and the World Wide Web. In Proc. of
the Int. Conf. on Management of Data (SIGMOD), pages 546-548, Tuscon, Arizona, USA,
June 1997.

184 BIBLIOGRAPHY

[201] Antony Tomasic. XML/DBC: A Standard API for Access to XML Repositories and Media-
tors. Second International Workshop on Data Integration over the Web (DIWEB), May 2002.
Invited panel presentation.

[202] Mary Tork Roth, Manish Arya, Laura M. Haas, Michael J. Carey, William Cody, Ron Fagin,
Peter M. Schwarz, John Thomas, and Edward L. Wimmers. The Garlic project. In Proc. of
the Int. Conf. on Management of Data (SIGMOD), volume 25, 2 of ACM SIGMOD Record,
pages 557-558, New York, June 4-6 1996. ACM Press.

[203] United List of Artist Names. http://www.getty.edu/research/tools/vocabulary /ulan.
[204] Unified Modeling Language System. http://www.nlm.nih.gov/research/umls.

[205] IEEE Standard Upper Ontology. http://suo.ieee.org.

[206]

206] Mike Uschold and Michael Gruninger. Ontologies: principles, methods, and applications.
Knowledge Engineering Review, 11(2):93-155, 1996.

[207] MARC STANDARDS. http://lcweb.loc.gov/marc/marc.html.

[208] Pierangelo Veltri. A View Mechanism for Large Scale XML Repositories: Design and Imple-
mentation. PhD thesis, Université Paris XI, Orsay, October 2002.

[209] Vertigo database Group, CNAM-Paris. http://cedri.cnam.fr/vertigo.

[210] V. Vianu. A web Odyssey: from Codd to XML. In Proc. of the Int. Conf. on Principle of
Database Systems (PODS), Santa Barbara, CA, USA, 2001.

[211] W3C XML Query Working Group. W3C XML Query Requirements. Technical report, W3C,
January 2000. http://www.w3.org/TR/2000/WD-xmlquery-req-20000121.

[212] S. Weibel, J. Miller, and R. Daniel. Dublin Core. OCLC/NCSA Metadata Workshop Report,
1995.

[213] World Wide Web Consortium. Document Object Model (DOM) 2.0.
http://www.w3.org/DOM/DOMTR.

[214] World Wide Web Consortium. HyperText Markup Language (HTML) 4.1.
http://www.w3.org/MarkUp/.

[215] World Wide Web Consortium. The W3C web site. http://www.w3.org/.

[216] G. Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE Com-
puters, 25(3):38-49, March 1992.

[217] N. Wirth. Type extensions. ACM Transactions on Programming Languages and Systems,
10(2):204-214, April 1988.

[218] Misha Wolf, Ken Whistler, Charles Wicksteed, Mark Davis, and Asmus Freytag. A Stan-
dard Compression Scheme for Unicode. Technical Report Unicode Technical Standard 6,
UNICODE, August 2002.

[219] James Wood. Readings in Knowledge Representation, chapter What’s in a link? Morgan
Kaufmann, 1985.

BIBLIOGRAPHY 185

[220] Wordnet. http://www.cogsi.princeton.edu/wn.

[221] World ~ Wide Web Consortium. W3C Semantic ~ Web Activity.
http://www.w3.0rg/2001 /semweb-fin /w3c.

[222] Lucie Xyleme. A Dynamic Warehouse for XML Data of the Web. IEEE Data Engineering
Bulletin, 2001.

http://osage.inria.fr/verso/PUBLI/.
[223] Yahoo web page. http://www.yahoo.com.

[224] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in data ware-
housing environment. In Proceedings VLDB, pages 136-145, Athens, Greece, 1997.

[225] Yannis Papakonstantinou and Hector Garcia-Molina and Jennifer Widom. Object Exchange
Across Heterogeneous Information Sources. In Proceedings of the International Conference on
Data Engineering (ICDE), March 1996.

