
13-05-02 19:16 Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534)

Page 1 of 4http://www.csd.uoc.gr/~hy534/13a/ex09_tst_sch.html

CS-534: Packet Switch Architecture
Spring 2013

Department of Computer Science
© copyright: University of Crete,

Greece

Exercise Set 9:
TST and Clos Circuit Switch Scheduling

Assigned: 2 May 2013 (should be week 9) - Due: Mon. 27 May 2013 (week 12 - should be 11)

9.0 TST and Clos Switch Scheduling

In chapter 1, slide 15 (also shown
here on the right), we discussed
the need for time-slot interchanges
(TSI) in front of the crossbar, in a
time-space-time (TST) circuit
switch, in order to rearrange the
position of the various connections
inside the (synchronized)
incoming frames, so as to
eliminate output contention in the
crossbar (i.e. no two connections
in similar positions --same time--
of two different frames have the
same outgoing link).

In §5.2.3, slide 23 (also shown below on the right), we saw the 3-stage Clos network (and,
before that, its specialization, the Benes network).

There is an analogy --or even equivalence-- between these two systems in circuit switching (the
analogy carries over to packet switching, with TST becoming an input-queued or CIOQ
crossbar, and Clos becoming a "Parallel Packet Switch" (PPS)). The analogy goes as follows.
Each of the Clos middle-stage switches implements one time slot of the TST crossbar inside a
frame; there are N2 middle-stage switches in the Clos network, and there must be N2 time slots
in each frame of the crossbar in the TST switch. The role of each input TSI in the TST is to
"switch" in time any connection, from the arbitrary time slot that it arrives at, to an arbitrary time
slot when the crossbar is available to serve it; correspondingly, the role of each first-stage switch
in the Clos is to switch "in space" any connection, from the arbitrary input port that it enters on,
to an arbitrary middle-stage switch that is available to serve it. The general Clos fabric has N1
first-stage switches, each of them of size INxN2; and there are N2 middle-stage switches, each of
them of size N1xN3. The corresponding TST system has N1 input TSI's --one for each of the N1

http://www.csd.uoc.gr/~hy534/index.html
http://www.csd.uoc.gr/~hy534/08a/s1_intro_ho.pdf
http://www.csd.uoc.gr/~hy534/09a/s5_fabrics_sl.pdf

13-05-02 19:16 Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534)

Page 2 of 4http://www.csd.uoc.gr/~hy534/13a/ex09_tst_sch.html

input ports of the crossbar; each input TSI receives a frame consisting of IN time slots, and
arbitrarily rearranges its contents placing them into a frame consisting of N2 time slots; the
crossbar is of size N1xN3 and is shared among the N2 time slots in its frame (reconfigured N2
times per frame). Output TSI's in TST play a role corresponding to the third-stage switches in
Clos, in a way analogous to input TSI's and first-stage switches.

In this exercise set we will study the way in which the input TSI's in a TST circuit switch should
rearrange the incoming connections. To make it easier to think about the problem, we will
formulate it using colors, as in the next figure. Colors, in our case, will correspond to outgoing
links; in the figure there are n=4 outgoing links, so there are n=4 colors. For simplicity we will
assume that the number of incoming links is also n, equal to the number of outgoing links, and
that all liks have the same speed, hence the same number of slots in their frames --call this
number m.

Let us call "crossbar schedule" the colored rectangular array shown in the figure; in this array,
the horizontal direction corresponds to time (slots in a frame), the vertical direction corresponds
to crossbar inputs, and the color corresponds to crossbar outputs, as discussed above. Our topic
is the construction of this schedule; once the "schedule" is set, we know how to configure the
crosspoint of the space switch during each time slot of the frame. The schedule corresponds to
the frames produced by the input TSI's. Once the schedule is constructed, setting the TSI's so as
to generate it is straightforward, so we will not discuss that here. Also, assigning specific
connections (circuits) to specific entries in the schedule can be done in any random way, as long
as an entry of the correct color (output) is used in the correct row (input) of the table. Thus, for
our purposes here, all entries of the same color in the same row of the schedule are completely
equivalent to each other and interchangeable. We can now formulate the inputs to our problem,
and the constraints that the solution sought must satisfy.

For a given switch size n and frame size m, the input to our problem is the n x n array of numbers
shown in the left of the figure. Each entry in this array specifies the number of connections
(circuits) on a given incoming link to be switched onto a given outgoing link. Obviously, the
sum of the numbers in each row (the total number of circuits on an incoming link) cannot exceed
m (the frame size); similarly, the sum of the numbers in each column (the total number of
circuits on an outgoing link) cannot exceed m. In one sense, the problem of schedule
construction is hardest when the schedule is full, as in the figure, i.e. when all these horizontal
and vertical sums are equal to m (in another sense, constructing a full schedule has some
advantages --see exercise 9.3 below). The problem to be solved is the construction of a schedule
for the given numbers of connections. A schedule is an n x m array of colors, as shown above,
that satisfies the following constraints:

the number of entries of each color on each row are equal to the corresponding number
of connections given; and
each color appears at most once in each column of the schedule.

13-05-02 19:16 Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534)

Page 3 of 4http://www.csd.uoc.gr/~hy534/13a/ex09_tst_sch.html

9.1 Schedule Rearrangement when adding new Connections

When adding new connections (circuits) to a (not fully utilized) switch, the crossbar schedule
cannot always be updated by merely adding new entries to it --there are situations where existing
entries in the schedule have to be rearranged. This corresponds to the "rearrangeably non-
blocking" Clos networks.

(a) To see this, construct the following small scenario. Consider a 3x3 switch (n=3) with a frame
size of m=2. First, set-up a red connection on input a, then add a green connection on input b,
and then another green connection on input c. Now, try various scenaria of adding more red or
blue connections, in ways such that the new connections require or do not require rearrangement
of the first three entries in the schedule.

(b) Can you modify your placement of the first three entries in the schedule of question (a) so
that no new addition after that will require rearrangement?

(c) Make some scenaria similar to question (a) for a 3x3 switch (n=3) with a frame size of m=4.

This exercise 9.1 guides us to consider that algorithms for schedule construction should probably
fall in one of two categories: either (i) the algorithm considers the connections in a random
order, but then it must be prepared to rearrange schedule entries made earlier; or (ii) the
algorithm must start with "global" knowledge of all connections to be made, and must then
consider them in some particular "clever" order.

Next, we want to think whether a schedule always exists and work towards an algorithm for
constructing a schedule for any given set of numbers of connections (that do not exceed line
capacities), under the assumptions in this exercise set (equal number of crossbar inputs and
outputs, equal frame size on inputs and outputs). This is a hard and beautiful problem, and it is
worth thinking about it for a while.

9.2 Building a Schedule one Column at a Time

Let us try to construct a schedule one column at a time. In this exercise we will assume that the
switch is fully utilized, i.e. the total number of connections per input as well as per output is
equal to the frame size m. Under this assumption, all columns of the schedule must be full,
which means that each column is "merely" a permutation of all n colors.

After one column of the schedule is built, constructing the rest of the schedule is equivalent to
constructing a schedule for a switch with frame size m-1 and for a connection-number array that
results from the original array after subtracting 1 from each entry that corresponds to each of the
colors and inputs that were included in the first column that was built. This is shown pictorially
in the figure here, and it is equivalent to decomposing the original connection-number array into
a sum of m "permutation" arrays (arrays like the one in the middle of this figure).

13-05-02 19:16 Exercises 9: TST & Clos Ckt Sw. Scheduling (U.Crete, CS-534)

Page 4 of 4http://www.csd.uoc.gr/~hy534/13a/ex09_tst_sch.html

(a) Try to see whether this iterative algorithm will result in the construction of a valid schedule.
A crucial point in to see whether it is always possible to find a full permutation of all colors in
each and every step where a new column is built (without backtracking to rearrange previously
made columns). Does it help to observe that the sums of the entries in the connection-number
array, per row and per column, are all equal to m-i after the i-th step of the algorithm? Write your
thoughts down, without spending an excessive amount of time to fully solve the problem.

(b) Think about, and discuss, various methods for constructing the permutations of colors that
define the columns of the schedule during each step of the algorithm. Does it make a difference
if you try to "consume" first the larger entries of the connection-number array, with the hope of
ending up with few zero entries, or, conversely, if you try to consume first the smaller entries
(the 1's), with the hope of ending up with many zero entries? Of course, a row or a column with
a single non-zero entry immediately provides you with a uniquely-defined entry for the schedule,
but does it also constrain you by making it harder to come up with the rest of the entries? Write
your thoughts down, without spending an excessive amount of time to fully solve the problem.

9.3 Building a Schedule for a Non-Fully-Utilized Switch

Revisit exercise 9.1 in view of the algorithm developed in exercise 9.2. In exercise 9.1,
connections were added to a non-fully utilized switch, and, as we saw, this necessitated, in some
cases, the revision of the previously constructed schedule. The algorithm of exercise 9.2, on the
other hand, assumed a fully-utilized switch.

Make some proposal(s) on how to adapt the algorithm of exercise 9.2 to non-fully utilized
switches. Does the new algorithm look easier or harder? Apply your new algorithm to the
scenaria of exercise 9.1(a). Where exactly in the algorithm is the point where a decision is made
based on an "assumption" about future connections, such that, if the "assumption" turns out to be
false, the schedule will have to be rearranged when the actual new connections arrive? Write
your thoughts down, without spending an excessive amount of time to fully solve the problem.

Bibliographic References:

The questions posed in exercises 9.2 and 9.3 are exciting, non-trivial problems. The following
bibliographic references are related to them (you are not required to read them for answering this
exercise set):

T. Inukai: "An Efficient SS/TDMA Time Slot Assignment Algorithm", IEEE Trans.
Communications, vol. 27, Oct. 1979, pp. 1449-1455.
I. Gopal, D. Coppersmith, C. Wong: "Minimizing Packet Waiting Time in a Multibeam
Satellite System", IEEE Trans. Communications, vol. 30, 1982, pp. 305-316.
M. Bonuccelli, I. Gopal, C. Wong: "Incremental Time-Slot Assignment in SS/TDMA
Satellite Systems", IEEE Trans. Communications, vol. 39, no. 7, July 1991, pp. 1147-
1156.

Up to the Home Page of CS-534

© copyright University of Crete, Greece.
Last updated: 2 May 2013, by M.

Katevenis.

http://www.csd.uoc.gr/~hy534/index.html
http://www.csd.uoc.gr/~hy534/13a/copyright.html
http://www.ics.forth.gr/~kateveni/

