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Abstract. One of the distinctive features of Information Retrieval systems com-
paring to Database Management systems, is that they offer better compression
for posting lists, resulting in better I/O performance and thus faster query eval-
uation. In this paper, we introduce database representations of the index that re-
duce the size (and thus the disk I/Os) of the posting lists. This is not achieved
by redesigning the DBMS, but by exploiting the non 1NF features that exist-
ing Object-Relational DBM systems (ORDBMS) already offer.Specifically, four
different database representations are described and detailed experimental results
for one million pages are reported. Three of these representations are one order
of magnitude more space efficient and faster (in query evaluation) than the plain
relational representation.

1 Introduction

Most information retrieval systems and Web search engines use inverted files, which
have been proven to be very efficient for answering queries [31]. However, the last
years the scope of services that such systems offer (or should offer) is getting wider.
For instance, they should be able to handle structured data (e.g. Google Base1), struc-
tured documents or semi-structured data (e.g. XML), annotations/tags and multimedia
data types. Furthermore a plethora of new tasks, quite different from the classical query
evaluation task, are being performed including data miningalgorithms, machine learn-
ing, facet-based exploration (e.g. [29,6]), collaborative recommendation and filtering.

For these reasons, the index of an engine should be easily extensible and able to
accommodate various types of data and metadata. The typicalamenities that a DBMS
offers (e.g. declarative query languages, query optimizers), are very useful when cop-
ing with multiple types of data (and metadata). Moreover, several other techniques and
algorithms (e.g. for OLAP) could be exploited for enabling services beyond simple
search. In brief, it is widely accepted, that almost all advanced applications (including
search engines) need to manage both structured data and textdocuments [9]. Fortu-
nately, recent work on DB brings it closer to IR. For instancethere have been proposed

1 http://www.google.com/base
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methods for ranking query results [1], keyword searching indatabases [17,26], comput-
ing efficiently top-k queries [8,18,22], optimizing text-centric tasks [19], offering ex-
ploration services [7], and systems that somehow blend suchcapabilities have emerged
(e.g. [5]). All these works focus on providing efficient best-match retrieval services for
structured data. However the management of texts is of prominent importance. For this
reason, in this paper we elaborate on building and managing the index of documents us-
ing a DBMS. One of the distinctive features of an IR index (e.g. inverted file) is that it
offers better compression for sparse arrays resulting in better I/O performance. In order
to alleviate this inefficiency of DBMSs, in this paper we introduce database representa-
tions of the index that reduce the size (and thus the disk I/Os) of the representation of
the posting lists. This is not achieved by redesigning the DBMS, nor by implementing
an additional data type, but by exploiting the non 1NF features that existing ORDBM
systems offer. In brief, Object-Relational DBMSs extend the relational model to include
useful features from object-orientation, e.g. complex types, and extends relational query
languages, e.g. SQL, to deal with these extensions.

In this paper, we introduce four different representations(database schemas) for
indexing texts and we report comparative experimental results. All the experiments have
been performed overMitos2. The index ofMitos is based on PostgresSQL (from now
on PSQL). Four different database representations of its index were tested for various
tasks. The crux of our findings is that the support of set-valued attributes by ORDBMSs
can offer significant storage space savings and query evaluation speedup. To the best
of our knowledge this is the first work that exploits the Object-Relational features of
existing DBMS for the benefit of the index. There are only few slightly related works
that are discussed in Section 2. We do not compare these database representations with
inverted files because our focus is to identify the more scalable DB representations and
not to replace inverted files. Our findings can significantly speedup text-centric tasks in
settings where a DBMS is already in place. For instance, YouTube uses MySQL3, while
there are Semantic Web repositories, like SWKM4, that are based on PSQL.

The rest of this paper is organized as follows: Section 2 summarizes previous work
on DBMS-based IR systems. Section 3 discusses DBMS indices and presents four pos-
sible database index representations. Section 4 reports experimental results. Finally,
Section 5 concludes the paper and identifies issues for further work and research.

2 Related work

One of the first attempts to provide information retrieval functionality such as keyword
and proximity searches by using user defined operators, is described in [15]. Some years
later, the first IR system over a DBMS was presented [16]. Relevance ranking queries
were implemented using unchanged SQL on an AT&T DBC-1012 parallel machine
for TREC-3. They found that the DBMS overhead was somewhat high, but tolerable
for a large scale machine, emphasizing that using a DBMS can spread the workload

2 http://groogle.csd.uoc.gr:8080/mitos/
3 See http://highscalability.com/youtube-architecture
4 http://athena.ics.forth.gr:9090/SWKM/
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across large numbers of processors. Recently, several approaches to merge DB’s struc-
tured data management and IR unstructured text search facilities have been proposed.
According to [21], they can be classified in four different categories:

– Middleware approach This approach integrates DB and IR engines at the appli-
cation level [9]. Query evaluation and indexing is providedby the IR engine, while
the DBMS manages the documents and other metadata. According to [21] the ba-
sic drawback of this approach is the difficulty to synchronize the DBMS document
contents and the IR’s index.

– DBMS extension by loose couplingMost DBMS offer extensible architectures
using a high level interface, which can be used to integrate IR functionalities. Al-
though such extensions can be easily implemented, it is not recommended accord-
ing to [30] when high performance is desired. Systems based on this approach,
includePowerDB-IR [14] (a scalable IR system for frequently changing data sets),
QUIQ [20] (a collaborative customer support application, wherea DBMS holds all
the data and an external server maintains the index),TopX [28] (an Oracle based
engine for XML and plain text data with top-k retrieval) andHySpirit [13] (a hy-
permedia retrieval engine using probabilistic Datalog).

– DBMS extension by tight couplingIn this approach, new data types and func-
tionality for IR features are integrated into the core of theDBMS engine or the
reverse (IRMS Information Retrieval & Management System) [21]. Tight coupled
systems includeOddyseus [30], an engine build over an ORDBMS engine, and
MonetDB/X100 [10], a column oriented storage management based system.

– DB-IR system from scratchThis approach suggests developing new DB-IR ar-
chitectures from scratch [2,9] aiming at providing structural data independence,
generalized scoring, and flexible and powerful query languages.

The approach that we investigate in this paper falls more into the loose coupling ap-
proach. No special data types are introduced and the retrieval models are implemented
on top (at a separate API that connects through jdbc to the DBMS). However we do ex-
ploit the SQL:1999 ARRAY type, allowing the storage of a collection of values directly
in a column of a table, and the PSQL (8.2 and above)hstore data type that is useful
for storing semi-structural data and variable in number fields. To the best of our knowl-
edge, the only related work is that ofOddyseus [30] andMonetDB [10]. The difference
with our work is thatOddyseus adopts a tight-coupling approach where the DBMS is
extended with new data types, whileMonetDB implements an inverted file-like data
structure at the physical layer. Specifically Oddyseus addsa B-tree at the posting list
of each term in order to speedup the lookup of document identifiers and the evalua-
tion of multi-word queries. However detailed experimentalresults, regarding the space
overhead and the speedup of this approach, are not reported.

In comparison to [24], this paper (a) contains a detailed discussion of all related
works, (b) introduces and investigates an additional database representation (that yields
smaller in size tables), (c) reports experimental results over a one order of magnitude
bigger corpus, and (d) reports experimental results for document-based access tasks.
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3 On DBMS-based Indices

3.1 DBMS Limitations

Roughly, an inverted file comprises entries of the form(t, occ) wheret is a term while
occ stands for the occurrences oft in the corpus. Occurrences may comprise only doc-
ument identifiers, or also the weight and/or the positions (exact or block-based) oft in
each document. Term occurrences occupy most of the space of the index and for this
reason special number encodings [3] are usually employed toreduce the space required.

A straightforward implementation over a relational DBMS would occupy much
more space than an inverted file. Consider for example the entry (t, {d1, d3, d5}). That
would be represented by three tuples[t, d1], [t, d3], [t, d5] resulting in wasted space. Fur-
thermore, special number encoding schemes are not currently supported by DBMSs.
Apart from the higher storage space requirements, we expectthe query response time
to be higher for a DBMS based index, since more I/O’s are expected to be needed. This
has been experimentally verified in [25], whereMitos was found less efficient than Ter-
rier [23]. However, the adoption ofset-valued attributes that are offered by ORDBMSs
can alleviate these problems as we will describe in detail later on.

3.2 DBMS Features

Since the scope of services that IR systems and Web search engines should offer is con-
stantly widening, it is important that they are based on aneasily extensible index. Using
a DBMS index, the extension of the index schema with additional columns and relations
is rather straightforward. For instance, the index can be extended with various informa-
tion, like users, dates, tags, metadata, in order to supportmore sophisticated queries
and retrieval models. Furthermore, as the physical layer ishandled by the DBMS, the
processes ofindex construction and maintenance can be simplified (i.e. there is no need
for creating and merging partial indices in order to construct the index of a big corpus).

Finally, the advances in DBMS for multicore and clustered systems can transpar-
ently benefit IR systems that are built on top, simplifying the creation ofparallel and
distributed systems. For instance, PSQL can take advantage of more than one available
system CPUs/cores (e.g. for dispatching queries), while the ongoing projectpgpool-II5

works on supporting more advanced distributed query processing features, such as the
dispatching of parts of a query plan to the available CPUs.

3.3 The Indexer of Mitos

Mitos is a recently developed Web search engine in Java, that offers a wide spectrum
of functionalities (for a detailed description see [25]). Synoptically,Mitos is equipped
with an advanced stemmer for the Greek language, offers realtime result clustering, ad-
vanced link analysis techniques and facet-based exploration services [29].Mitos adopts
the tf-idf weighting scheme and uses PSQL for managing its index. For each term it
keeps a) its document frequency (df ) in the collection and b) its term frequency (tf )

5 http://pgpool.projects.postgresql.org/
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Database Tables
Repr. Document Word Occurrence

PR [id:int, url: varchar, [id:int, name:varchar, df:int] [word id:int, doc id:int, tf:float]
norm:float, rank:float]

OR [id:int, url: varchar, [id:int, name:varchar, df:int] [word id:int, occur:Array〈Point〉]
norm:float, rank:float]

COR [id:int, url: varchar, - [word name:varchar,
norm:float, rank:float] occur:Array〈Point〉, df:int]

HOR [id:int, url: varchar, - [word name:varchar,
norm:float, rank:float] occur:hstore〈text, text〉, df:int]

Table 1.Four Different Database Representations of the Index

for each document. One of the main differences ofMitos compared to other search
engines, is that it does not store to the index the positions of term occurrences in docu-
ments. Instead,Mitos stores the lexically analyzed extracted text of the crawledpages,
to the filesystem. WhenMitos returns the query results to the user, it parses the stored
copies of the texts of the relevant documents, to find the snippets with respect to the
query terms. This is needed only for the documents that lie inthe result pages the user
will visit.

To compute the answer of a query the index should provide efficient term-based
access (i.e. inverted files). However there are other tasks that requiredocument-based
access. Such tasks include document deletion, query expansion (retrieve the most highly
ranked terms of the top-ranked documents) and relevance feedback (retrieve the terms
of the documents for which the user provided feedback).

3.4 DB Representations for Occurrences

Here we introduce four different database representationsfor the index (shown in Table
1). All comprise a relationdocument, that stores for each document its id, url, norm,
and PageRank score. They only differ on how they store words and occurrences.

(PR) Plain-Relational
This is the representation currently in use byMitos and is like the one used in
[16,14,28]. The relationword stores the words, their identifiers and theirdf , while
triples of the form[word id, doc id, tf ] are stored in the relationoccurrence. The
main drawback of this representation is that eachword id is stored for each docu-
ment in which it appears in. This redundancy results in high storage space.

(OR) Object-Relational
This representation exploits the set-valued attributes supported by PSQL in order to
reduce the space occupied by occurrences. It exploits thepoint datatype offered by
PSQL for representing the pairs〈doc id, tf〉. For eachword id an array ofpoints
is stored. In this way eachword id is stored exactly once in the tableoccurrence.

(COR) Compact Object-Relational
This representation drops the relationword, sinceword id is a primary key in both
word andoccurrence tables, and movesword name anddf to occurrence table.

(HOR) HStore Object-Relational

5



Repr. Document Table Word Table Occurrence Table
Attr. Type Attr. Type Attr. Type Attr. Type

PR id B+, Hash nameB+, Hash, Trie doc id B+, Hash − −

OR id B+, Hash nameB+, Hash, Trie word id B+, Hash − −

COR id B+, Hash − − word nameB+, Hash, Trie − −

HOR id B+, Hash − − word nameB+, Hash, Trie occur with or withoutGIN

Table 2.Combinations Between Representations and Indices

This representation is likeCOR, except that it uses the PSQLhstore data type
instead of apoint array.hstore is a data type for storing sets of (key,value)text pairs
in a single PSQL data field. ForHOR the key is thedoc id and the value is thetf .

3.5 PSQL Indices

In order to provide more efficient access paths to the relations, we need to build appro-
priate PSQL indices. Regardingdocument table, the access is done given thedoc id,
i.e., an attribute of integer type. We have two choices for the index type we can build
on doc id, namely either aB+Tree or Hash index. Regardingword table, the access
is done given thename, and we can use aB+Tree or Hash index. Furthermore, we
could also exploit theTrie index, which has been implemented on top of PSQL, as a
part of the SP-GiST index family [4,11]. According to [12], theTrie index offers more
than 150% performance increase for exact search matches over to PSQLB+Trees, and
scales better regarding size. Finally, for theoccurrence table, possible choices are either
aB+Tree orHash index, onword id. For theCOR andHOR though, theword and
occurrence tables have been merged. Since the access is done given thename, we can
create either aB+Tree, Hash or Trie index on it. Moreover in order to accelerate
document based access forHOR, GeneralizedInvertedIndex(GIN) indices can be
build on top of thehstore occur attribute. Unfortunately we could not accelerate docu-
ment based access forOR andCOR , since PSQL does not offer functionality to build
indices on top of arrays. Table 2 summarizes the possible combinations.

3.6 Bulk Index Creation/Updates

It is more than evident, that the benefits from using a DBMS areat the expense of the
data storage and retrieval efficiency. Specifically, the guarantee of the ACID properties,
the concurrency control, the update of DBMS indices and their possible reorganization
on disc, may harm the efficiency of the index. In order to reduce such overheads, we
use thecopy function of PSQL during the index creation. In this manner, we skip the
concurrency control, as well as several integrity constraints checks, while at the same
time we minimize the I/O’s needed to insert a specific amount of new tuples. Moreover,
in case we want to add a new document collection to an existingindex, we first drop
the DBMS indices, then we insert the new tuples, and finally re-create the indices at
the end. After all documents have been indexed, for each documentd we compute the
norm (‖d‖) of its vector (d) as defined by the tf-idf weighting scheme, and store it in
thenorm field, in order to speed-up query evaluation.

6



Repr. Queries
qword qocc qdoc

PR SELECT id, df SELECT wordid, doc id, tf SELECT id, norm, rank
FROM word WHERE FROM occurrence WHERE FROM document WHERE

name IN (’informat’, ’retriev’) word id IN (informat id, retriev id) id IN (doc1, doc2,..., docN)
OR SELECT id, df SELECT wordid, occur SELECT id, norm, rank

FROM word WHERE FROM occurrence WHERE FROM document WHERE
name IN (’informat’, ’retriev’) word id IN (informat id, retriev id) id IN (doc1, doc2,..., docN)

COR SELECT wordname, occur, df SELECT id, norm, rank
- FROM occurrence WHERE FROM document WHERE

word name IN (’informat’, ’retriev’) id IN (doc1, doc2,..., docN)
COR SELECT wordname, occur, df SELECT id, norm, rank

- FROM occurrence WHERE WHERE FROM document
word name IN (’informat’, ’retriev’) id IN (doc1, doc2,..., docN)

Table 3.Queries for each Representation

3.7 Query Evaluation

Table 3 shows the queries needed according to the vector space model for each rep-
resentation, assuming the query ”information retrieval” (transformed to ”informat re-
triev” because of stemming). The queryqword is issued to get thedf values of the query
terms,qocc to get thetf values of the query terms in the documents they appear in, and
qdoc to get the norms and ranks of the corresponding documents. InCOR andHOR,
the number of issued queries is decreased by one, since thedf values are now stored in
theoccurrence table instead of theword table. These elementary queries can be used
for implementing various ranking methods. Essentially, they provide the interface that
a classical inverted file exposes to the query evaluation component.

4 Experimental Results

We conducted experiments on a desktop PC with a Pentium IV 3.4GHz processor, 2
GB main memory and a single 7200 rpm SATA hard disk, on top of Linux distribu-
tion Ubuntu v8.04, using a 2.6.24 kernel and the ext3 filesystem (mounted with the
default options). We used PSQL v8.3.3, configured with 1600 MB as sharedbuffers.
Our collection contained documents of various formats (.html, .pdf, .doc, etc) including
pages crawled from our university6 and FORTH7 domains. Specifically, it comprises
1, 004, 721 documents,216, 449 distinct terms and its total size is approximately 198
GB. The average size of each document is around 200 KB (due to the large number of
.doc and .pdf files), and the average number of words in each document is 239.

4.1 Database Size and Copy Times

In this section we focus on the storage requirements of the occurrences, as this is the
crucial point and the main difference between the four representations. We will use
Object Relational Inverted File (ORIF ) to refer to theOR, COR andHOR represen-
tations, since they represent occurrences roughly the same(the only difference is the

6 http://www.uoc.gr
7 http://www.forth.gr
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Notation Definition

N number of word occurrences in the entire collection
D number of documents
Nd

∑
i=1..D

w(di) wherew(di) is the number of dis-
tinct words in documentdi.

W number of distinct words of the entire collection
t tuple size (the space overhead for a tuple in a DBMS)
f field size of a tuple

Table 4.Size Notations

particular PSQL data type employed). For each case, i.e.PR andORIF , we consider
two different settings, depending on whether the positionsof the occurrences are stored
or not in the index. By adopting the notations described in Table 4, the size of each
representation can be estimated as follows:

– PR (without positions):Nd(3f + t)
Nd is multiplied by(3f + t), because for each occurrence we have to keep a tu-
ple containing the correspondingword id, doc id andtf. Recall thatt is the tuple
overhead of the DBMS and is independent of the attributes of the tuple.

– PR (with positions):Nd(3f + t) +N(3f + t)
Nd is multiplied by(3f + t) for the same reason as in thePR (without positions)
case. In addition,N is multiplied by(3f + t), since for each occurrence we have
to keep a tuple containing the correspondingword id, doc id andposition.

– ORIF (without positions):W (f + t) +Nd2f
We have to storeW tuples holding for each word theword id andNd pairs of
doc id andtf. No extrat has to be payed as they are stored in the same tuple.

– ORIF (with positions):W (f + t) +Nd2f +Nf

Again we have to storeW tuples holding for each word theword id, andNd pairs
of doc id andtf in the same tuple. Moreover, we have to store in the same tupleN

fields holding the positions where terms appear in.

Hereafter we focus on the case where we do not store positions. It is clear that
ORIF occupies less space thanPR. The inequalityORIF< PR yields:W (f + t) +
Nd2f < Nd(3f + t) ⇔ W (f + t) < Ndf + Ndt ⇔ W (f + t) < Nd(f + t) ⇔
W < Nd which is always true since every word inW (whereW denotes the vocabulary,
not its cardinality) will appear in at least one document (W = Nd if each distinct
word appears in exactly one document and each document contains exactly one distinct
word). Regarding the lower and upper bounds ofNd (recall thatNd =

∑
i=1..D w(di)),

as1 ≤ w(di) ≤ W , it follows thatD ≤ Nd ≤ DW . Moreover if we assume that each
document haswavg distinct words, thenNd = wavgD. In our collectionwavg is 239
words, soPR is expected to occupy much more space thanORIF . In the case that we
also store term positions, it is clear thatORIF will again require less space, as inPR

we useN(3f + t) to store the positions instead of justN ∗ f in ORIF .
Regarding the physical database size for each representation, we consider that the

PSQL storage requirement for string types is 4 bytes plus theactual string size, while
the storage requirement for integers and floats (considering theint4 andfloat4

8



Repr. Number of Pages (8KB each) per Table Number of Tuples per Table Time
Document Word Occurrence Total Document Word Occurrence Total Copy

PR 35,654 1,278 1,301,657 1,338,589(∼10.7GB) 1,004,721216,449240,806,511242,027,681∼2.8 days
OR 35,654 1,278 28,577 65,509(∼524MB) 1,004,721216,449 216,449 1,437,619 ∼24 min.
COR 35,654 − 28,860 64,514(∼516MB) 1,004,721 − 216,449 1,221,170 ∼25 min.
HOR 35,654 − 24,106 59,760(∼478MB) 1,004,721 − 216,449 1,221,170 ∼35 min.

Table 5.DB Tables Size in Pages (8 Kb) and Indexing Times

types respectively) is 4 bytes and the size of typepoint is 16 bytes8. In addition, the
storage cost per tuple is 40 bytes, due to an internal id generated to identify the physical
location of a tuple within its table, i.e.t = 40 bytes.

The sizes of the tables for each representation that correspond to our collection are
given in Table 5. Notice that the sizes ofORIF are significantly smaller (more than one
order of magnitude). SpecificallyPR occupies 10.7 GB, whileORIF occupy around
0.5 GB. This means that the storage space ofORIF is roughly 0.25% of the total
collection size. As a consequence the times to copy the tables are significantly smaller
for ORIF , in comparison toPR, offering a much more scalable solution, as far as
indexing time and size are concerned. Specifically,PR needs almost 3 days to copy the
tables, while the other representations need only 30 minutes or less.

Repr. Database Table Indices Time
Document Word Occurrence Total Index Creation

PR usingHash 4,666 2,050 1,466,665 1,473,381 (∼11.7 GB) 77,793.7s (∼21.5 hours)
PR usingB+Tree 2,208 720 528,421 531,349 (∼4.2 GB) 2,150s (∼35 min)

OR usingHash 4,666 2,050 1,168 7,884 (∼63 MB) 13.0s
OR usingB+Tree 2,208 720 478 3,406 (∼27 MB) 11.6s

COR usingHash 4,666 − 2,050 6,716 (∼53 MB) 11.6s
COR usingB+Tree 2,208 − 720 2,928 (∼23 MB) 6.4s

HOR usingHash 4,666 − 2,050 6,716 (∼53 MB) 6.9s
HOR usingB+Tree 2,208 − 720 2,928 (∼23 MB) 6.7

Table 6. Indices Size in Pages (8 KB) and Creation Times

4.2 Indices Size and Creation Times

The sizes of the PSQL indices for each representation are shown in Table 6. Again the
space difference between the representations is more than one order of magnitude. This
is also reflected to the PSQL index creation times. Specifically the process takes some
seconds inORIF , and roughly a day forPR. We could not evaluate theTrie index,
as it only accepts words with latin characters and our test collection mainly contained
greek documents. In addition we could not evaluateGIN indices, in order to accelerate

8 PSQL version 8.3 supports arrays of composite types. Thus wecould create a composite type
(holding anint4 and afloat4 (8 bytes) instead of thepoint type), reducing the memory
size of the array to half

9



Repr. 1 term 2 terms 3 terms 4 terms
qw qocc qdoc tot qw qocc qdoc tot qw qocc qdoc tot qw qocc qdoc tot

PR

(H)
64 54,4183,949 58,431 90 94,5448,689 103,323 84 148,2209,620 157,924 95 202,25312,778215,126

PR

(B+)
88 33,6335,299 39,020 74 63,3307,750 71,154 88 99,808 9,456 109,352 101 131,31712,073143,491

OR

(H)
16 846 1,952 2,814 18 1,650 4,744 6,412 24 2,443 7,402 9,869 32 3,153 10,128 13,313

OR

(B+)
6 766 2,143 2,915 7 1,490 5,616 7,130 7 2,337 8,084 10,428 5 3,018 10,053 13,076

COR

(H)
− 856 3,391 4,247 − 1,618 5,777 7,395 − 2,419 7,902 10,321 − 3,292 9,873 13,165

COR

(B+)
− 798 4,447 5,245 − 1,529 5,605 7,134 − 2,349 7,982 10,331 − 3,085 10,237 13,322

HOR

(H)
− 1,023 3,944 4,967 − 1,280 5,637 6,917 − 1,949 8,023 9,972 − 2,424 9,9993 12,417

HOR

(B+)
− 127 3,208 3,335 − 255 5,627 5,882 − 319 8,007 8,326 − 518 10,098 10,616

Table 7.Query Evaluation Times (msec)

document based access9. In general, the results show thatB+Tree indices occupy half
of the size ofHash indices.

4.3 Query Evaluation Times

To measure query evaluation times, we adopted the followingscenario: for each of
the four representations and for each PSQL index combination, we: a) execute all the
queries of the corresponding representation with 1, 2, 3 and4 terms, b) repeat the above
queries 10 times and c) calculate average times. We do not include the time to re-
ceive/scan the results. The terms contained in the above queries were different (for each
query and for each iteration of the experiment) and they wereselected based on theirdf .
Specifically, we selected frequently occuring terms with adf value about 300,000. The
bigdf number implies big overhead to the DBMS. The crash we had encountered in our
previous experiments [24] using PSQL 8.0, due to the large number ofdoc ids passed
in the IN list of theqdoc queries, was solved after upgrading to PSQL 8.3. The afore-
mentioned times were gathered through theAggregator10 toolkit which is written
in Java. This means that the measured times include the overhead of the JDBC driver
(version 8.3-603 JDBC 4), an overhead that also exists in theMitos engine.

As one can observe from the times reported in Table 7,ORIF representations are
one order of magnitude more efficient thanPR, due to the efficiency in occurrence ta-
ble. More precisely,ORIF are approximately 20 times faster thanPR for all queries,
although theORIF index is only an order of magnitude (see Table 5) smaller thanPR

index. This is due to the fact thatORIF indices, fit in main memory, so every page
that is fetched in memory, is constantly kept there. ComparingORIF representations,
we observe thatOR andCOR have an identical performance, whileHOR is slightly

9 GIN index creation query was running for 3 days, before we canceled it due to time limitations
10 http://www.csd.uoc.gr/∼andreou
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faster, especially when using aB+Tree index. A common behavior for all represen-
tations is the slowqdoc query times, which is actually the bottleneck forORIF . This
is due to the long IN list ofdocids. We found that passing more than 250,000doc ids
makes theqdoc query too slow. We tackled this problem by dividing the IN list in blocks
of 250,000doc ids and submitting one query for each block of the list. Subsequently we
summed the gathered times. In the future we plan to investigate whether we can reduce
the overhead of such queries by using temporary tables. Regarding the DBMS indices,
we can conclude thatB+Tree indices are the best choice since they provide equivalent
or slightly better performance toHash indices, while occupying half the storage space.

4.4 Query Expansion Times

To measure query expansion times we used the following scenario: for all terms in the
top-5 results of a given query, we compute the sum of theirtfs in these documents and
suggest to the user the 5 terms with the highest sum. Unfortunately, the gathered times
were unacceptable forPR (almost 16 hours), since no index overdoc id existed and
PSQL performed a slow sequential scan over a table of 240,000,000 tuples. This task
is much faster forORIF (19.8 minutes), but again expensive, since an index over the
array andhstore values, was not build. An approach to speed-up such tasks, isto store
also adirect index (keeping for eachdoc id the set ofword ids it contains). This index
can be represented in anORIF -like representation. We expect the total size of the two
ORIF representations (inverted and direct) to be less than that of PR, and at the same
time should provide faster term-based and document-based acess services.
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Fig. 1.Size of Tables and Indices (in log scale)

5 Conclusion

In this paper we proposed and evaluated four different ORDBMS representations for
text indexing.ORIF representations were found to be the most efficient, being one
order of magnitude less space consuming and more than 20 times faster in query evalu-
ation compared toPR. Specifically, for a collection of 1 million documents occupying
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200 GB,PR needs almost 3 days to copy the tables, whileORIF representations need
30 minutes or less. ThePR-index occupies 10.5 GB, while the rest representations need
only 500 MB. This means that theORIF index is the 0.25% of the collection size. Fig-
ures 1, 2(a), 2(b), 2(c) and 2(d) summarize the results of theexperimental evaluation.
It is worth mentioning that almost all previous related works (e.g. [16,14,28]) adopt a
PR-like representation. As there are numerous applications based on ORDBMS, our
findings can be exploited for enriching these applications with more scalable IR capabil-
ities. To avoid misunderstandings, we do not suggest the adoption of databases instead
of inverted indices, we just identified ways to speedup DBMS-based text indices.
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Although some DBMSs currently provide tuple ranking based on text-valued at-
tributes (e.g. Oracle 9i Text extension, postgreSQL Full Text Search, etc), an implemen-
tation over these services does not allow supporting different retrieval models. Instead
the ranking would be tightly coupled with the peculiaritiesof the particular DBMS. For
this reason we based query evaluation on a small set of elementary queries that enable
implementing several retrieval models in a flexible manner.However, an alternative ap-
proach would be to use fewer and more complex SQL queries thatcould even compute
the ranked set of objects in one shot (depending on the retrieval model). This is an addi-
tional issue for further research. Furthermore, we plan to compare the DBMS approach
with the classical inverted file approach on the same collection, and to compare the ef-

12



ficiency ofB+Tree indices with thetree− Trie index [27] that has been proposed to
index relationships with set-value attributes. Finally, and in order to optimize document
based access on theHOR representation, we plan to evaluateGIN indices on top of
thehstore values. The evaluation of the efficiency in case of concurrent queries, as well
as the investigation of the applicability of parallelization techniques (e.g. map-reduce)
over a DBMS-index, are subject for future research.
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