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Abstract. One of the distinctive features of Information Retrievadtgyns com-

paring to Database Management systems, is that they offtar mmpression
for posting lists, resulting in better I/O performance ahdst faster query eval-
uation. In this paper, we introduce database represensatibthe index that re-
duce the size (and thus the disk 1/0Os) of the posting listés Ehnot achieved
by redesigning the DBMS, but by exploiting the non 1NF feasuthat exist-

ing Object-Relational DBM systems (ORDBMS) already offgpecifically, four

different database representations are described antedetaperimental results
for one million pages are reported. Three of these reprasens are one order
of magnitude more space efficient and faster (in query etiahjathan the plain

relational representation.

1 Introduction

Most information retrieval systems and Web search engisesnverted files, which
have been proven to be very efficient for answering queriés [Bowever, the last
years the scope of services that such systems offer (or dlodfelr) is getting wider.
For instance, they should be able to handle structured dajaGoogle Ba@, struc-
tured documents or semi-structured data (e.g. XML), animots/tags and multimedia
data types. Furthermore a plethora of new tasks, quiterdiftdrom the classical query
evaluation task, are being performed including data mimaiggrithms, machine learn-
ing, facet-based exploration (e.q.[29,6]), collabomtiecommendation and filtering.
For these reasons, the index of an engine should be easédpsiate and able to
accommodate various types of data and metadata. The tygreatities that a DBMS
offers (e.g. declarative query languages, query optir)zare very useful when cop-
ing with multiple types of data (and metadata). Moreoveresa other techniques and
algorithms (e.g. for OLAP) could be exploited for enablirey\dces beyond simple
search. In brief, it is widely accepted, that almost all asbesd applications (including
search engines) need to manage both structured data andotxhents[[9]. Fortu-
nately, recent work on DB brings it closer to IR. For instatieere have been proposed
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methods for ranking query results [1], keyword searchingdgtabases [17,26], comput-
ing efficiently top-k queries [8,118,22], optimizing texéruric tasks[[19], offering ex-
ploration services |7], and systems that somehow blend cagabilities have emerged
(e.g. [5]). All these works focus on providing efficient besatch retrieval services for
structured data. However the management of texts is of premiimportance. For this
reason, in this paper we elaborate on building and manalg@éimtiex of documents us-
ing a DBMS. One of the distinctive features of an IR index (@égerted file) is that it
offers better compression for sparse arrays resultingtiebkO performance. In order
to alleviate this inefficiency of DBMSs, in this paper we oduce database representa-
tions of the index that reduce the size (and thus the disk) lé®the representation of
the posting lists. This is not achieved by redesigning thé/I3Bnor by implementing
an additional data type, but by exploiting the non 1NF fesduhat existing ORDBM
systems offer. In brief, Object-Relational DBMSs extergrblational model to include
useful features from object-orientation, e.g. complexes;@mnd extends relational query
languages, e.g. SQL, to deal with these extensions.

In this paper, we introduce four different representati(detabase schemas) for
indexing texts and we report comparative experimentalt®sAll the experiments have
been performed oveitosd. The index ofMitos is based on PostgresSQL (from now
on PSQL). Four different database representations of dsxinvere tested for various
tasks. The crux of our findings is that the support of sete@kttributes by ORDBMSs
can offer significant storage space savings and query di@iuspeedup. To the best
of our knowledge this is the first work that exploits the ObjRelational features of
existing DBMS for the benefit of the index. There are only fdigtaly related works
that are discussed in Sectidn 2. We do not compare theseadatadpresentations with
inverted files because our focus is to identify the more &dalBB representations and
not to replace inverted files. Our findings can significanplgedup text-centric tasks in
settings where a DBMS is already in place. For instance, MbeTises MyS(ﬁ, while
there are Semantic Web repositories, like SWkrhat are based on PSQL.

The rest of this paper is organized as follows: Sedtion 2 sariz@s previous work
on DBMS-based IR systems. Sectidn 3 discusses DBMS indimkpr@sents four pos-
sible database index representations. Seéfion 4 repgoerimental results. Finally,
Sectiorlb concludes the paper and identifies issues forgiwthrk and research.

2 Related work

One of the first attempts to provide information retrievaidtionality such as keyword
and proximity searches by using user defined operatorss@ithed in[15]. Some years
later, the first IR system over a DBMS was presented [16].\Relee ranking queries
were implemented using unchanged SQL on an AT&T DBC-1012lfgmachine
for TREC-3. They found that the DBMS overhead was somewtgt, Hiut tolerable
for a large scale machine, emphasizing that using a DBMS peead the workload

2 |nttp://groogle.csd.uoc.gr:8080/mitos/
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across large numbers of processors. Recently, severalagprs to merge DB’s struc-
tured data management and IR unstructured text searchiésciiave been proposed.
According to [21], they can be classified in four differenteggories:

— Middleware approach This approach integrates DB and IR engines at the appli-
cation level[9]. Query evaluation and indexing is providedhe IR engine, while
the DBMS manages the documents and other metadata. Acgdad[@1] the ba-
sic drawback of this approach is the difficulty to synchrerttze DBMS document
contents and the IR’s index.

— DBMS extension by loose couplindost DBMS offer extensible architectures
using a high level interface, which can be used to integftRihctionalities. Al-
though such extensions can be easily implemented, it issmoinnmended accord-
ing to [30] when high performance is desired. Systems basethis approach,
includePowerDB-IR [[14] (a scalable IR system for frequently changing data) sets
QUIQ [20] (a collaborative customer support application, wheeBBMS holds all
the data and an external server maintains the index)X [28] (an Oracle based
engine for XML and plain text data with top-k retrieval) aHgSpirit [13] (a hy-
permedia retrieval engine using probabilistic Datalog).

— DBMS extension by tight couplingln this approach, new data types and func-
tionality for IR features are integrated into the core of BIBMS engine or the
reverse (IRMS Information Retrieval & Management Syste?d).[ Tight coupled
systems includ€@ddyseus [30], an engine build over an ORDBMS engine, and
MonetDB/X100 [10], a column oriented storage management based system.

— DB-IR system from scratch This approach suggests developing new DB-IR ar-
chitectures from scratch|[2,9] aiming at providing struatudata independence,
generalized scoring, and flexible and powerful query laggsa

The approach that we investigate in this paper falls morcethe loose coupling ap-
proach. No special data types are introduced and the retresdels are implemented
on top (at a separate API that connects through jdbc to the BMowever we do ex-
ploit the SQL:1999 ARRAY type, allowing the storage of a ection of values directly
in a column of a table, and the PSQL (8.2 and abdw#re data type that is useful
for storing semi-structural data and variable in numbed$ielo the best of our knowl-
edge, the only related work is that ©fldyseus [30] andMonetDB [10]. The difference
with our work is thatOddyseus adopts a tight-coupling approach where the DBMS is
extended with new data types, whildonetDB implements an inverted file-like data
structure at the physical layer. Specifically Oddyseus adBstree at the posting list
of each term in order to speedup the lookup of document ffiergiand the evalua-
tion of multi-word queries. However detailed experimemnéslults, regarding the space
overhead and the speedup of this approach, are not reported.

In comparison to[[24], this paper (a) contains a detailedudision of all related
works, (b) introduces and investigates an additional degalbepresentation (that yields
smaller in size tables), (c) reports experimental resuies @ one order of magnitude
bigger corpus, and (d) reports experimental results foudwmnt-based access tasks.



3 On DBMS-based Indices

3.1 DBMS Limitations

Roughly, an inverted file comprises entries of the fdtmce) wheret is a term while
occ stands for the occurrencestoih the corpus. Occurrences may comprise only doc-
ument identifiers, or also the weight and/or the positiomageor block-based) afin
each document. Term occurrences occupy most of the spabe afdex and for this
reason special number encodinds [3] are usually employesditace the space required.

A straightforward implementation over a relational DBMS wab occupy much
more space than an inverted file. Consider for example thg ént{d;, ds, ds}). That
would be represented by three tuples, ], ¢, ds], [t, ds] resulting in wasted space. Fur-
thermore, special number encoding schemes are not cyrriported by DBMSs.
Apart from the higher storage space requirements, we expeaiuery response time
to be higher for a DBMS based index, since more 1/O’s are exgdo be needed. This
has been experimentally verified in [25], whéfé@os was found less efficient than Ter-
rier [23]. However, the adoption @kt-valued attributes that are offered by ORDBMSs
can alleviate these problems as we will describe in detai len.

3.2 DBMS Features

Since the scope of services that IR systems and Web searictesispould offer is con-
stantly widening, it is important that they are based oeasly extensible index. Using
a DBMS index, the extension of the index schema with addiioalumns and relations
is rather straightforward. For instance, the index can ensled with various informa-
tion, like users, dates, tags, metadata, in order to supporé sophisticated queries
and retrieval models. Furthermore, as the physical laykailled by the DBMS, the
processes ahdex construction and maintenance can be simplified (i.e. there is no need
for creating and merging partial indices in order to cordttie index of a big corpus).
Finally, the advances in DBMS for multicore and clusterestems can transpar-
ently benefit IR systems that are built on top, simplifying tireation ofparallel and
distributed systems. For instance, PSQL can take advantage of more than onableail
system CPUs/cores (e.qg. for dispatching queries), whidetigoing projegbgpool-I 5
works on supporting more advanced distributed query peiegdeatures, such as the
dispatching of parts of a query plan to the available CPUs.

3.3 The Indexer of Mitos

Mitos is a recently developed Web search engine in Java, thasdferide spectrum
of functionalities (for a detailed description seel[25)ynSptically, Mitos is equipped
with an advanced stemmer for the Greek language, offersimearesult clustering, ad-
vanced link analysis techniques and facet-based expdaragirvices [29]Mitos adopts
the tf-idf weighting scheme and uses PSQL for managing its index. Fer &aim it
keeps a) its document frequenc¥f) in the collection and b) its term frequenayf§

5 http://pgpool.projects.postgresgl.org/



I Database Tables |

[Repr. || Document [ Word [ Occurrence |
PR [id:int, url: varchar, [[id:int, namewarchar, df:int]| [word.id:int, docid: int, tf: float]
norm: float, rank: float]
OR [id:int, url: varchar, [[id:int, namewvarchar, df:int]| [word.id:int, occur:iArray(Point)]
norm: float, rank: float]
COR [id:int, url: varchar, - [word_namewvarchar,
norm: float, rank: float] occuriArray(Point), dfint]
HOR [id:int, url: varchar, - [word_namewvarchar,
norm: float, rank: float] occurhstore(text, text),dfint]

Table 1. Four Different Database Representations of the Index

for each document. One of the main differencesviiios compared to other search
engines, is that it does not store to the index the positibterm occurrences in docu-
ments. Insteadylitos stores the lexically analyzed extracted text of the craypleges,
to the filesystem. WheNlitos returns the query results to the user, it parses the stored
copies of the texts of the relevant documents, to find thepstgpwith respect to the
query terms. This is needed only for the documents that lieerresult pages the user
will visit.

To compute the answer of a query the index should provideieftiterm-based
access (i.e. inverted files). However there are other tdskts¢quiredocument-based
access. Such tasks include documentdeletion, query eérpgnstrieve the most highly
ranked terms of the top-ranked documents) and relevandéde& (retrieve the terms
of the documents for which the user provided feedback).

3.4 DB Representations for Occurrences

Here we introduce four different database representatiribe index (shown in Table
[@). All comprise a relatiorocument, that stores for each document its id, url, norm,
and PageRank score. They only differ on how they store ward®acurrences.

(PR) Plain-Relational
This is the representation currently in use Mijtos and is like the one used in
[16/14,28]. The relatiomord stores the words, their identifiers and théfir while
triples of the formjword_id, doc_id, t f] are stored in the relatiooccurrence. The
main drawback of this representation is that eaohd_id is stored for each docu-
ment in which it appears in. This redundancy results in htghege space.
(OR) Object-Relational
This representation exploits the set-valued attributppstted by PSQL in order to
reduce the space occupied by occurrences. It exploitsdime datatype offered by
PSQL for representing the paitdoc_id, t f). For eachword_id an array ofpoints
is stored. In this way eachord_id is stored exactly once in the taldecurrence.
(COR) Compact Object-Relational
This representation drops the relatiword, sinceword_id is a primary key in both
word andoccurrence tables, and movesord_name anddf to occurrencetable.
(HOR) HStore Object-Relational



[Repr. [ Document Table] Word Table [ Occurrence Table |

[ [[Attr. T Type [Attr. | Type | At ] Type [Attr. T Type |
PR id [BT, Hash|namd BT, Hash, Trie| docid BT, Hash - -
OR id [BT, Hash|namgB™, Hash, Trie| wordid BT, Hash - -
COR]| id |BT, Hash| — — wordnamg BT, Hash, Trie| — —
HOR]|| id |BT, Hash| — — word.namg BT, Hash, Trie|occurwith or without GIT N

Table 2. Combinations Between Representations and Indices

This representation is lik€'OR, except that it uses the PSQistore data type
instead of goint array.hstoreis a data type for storing sets of (key,valtext pairs
in a single PSQL data field. FéGfOR the key is theloc_id and the value is thef.

3.5 PSQL Indices

In order to provide more efficient access paths to the relafiwe need to build appro-
priate PSQL indices. Regardimtpcument table, the access is done given the_id,
i.e., an attribute of integer type. We have two choices ferittdex type we can build
on doc_id, namely either &8+ Tree or Hash index. Regardingvord table, the access
is done given thewame, and we can use BT T'ree or Hash index. Furthermore, we
could also exploit th8rie index, which has been implemented on top of PSQL, as a
part of the SP-GIST index family [4,11]. According fo [1%efTrie index offers more
than 150% performance increase for exact search matched®8QLB T'rees, and
scales better regarding size. Finally, for toeurrencetable, possible choices are either
aB*Tree or Hash index, onword_id. For theCOR and HO R though, thevord and
occurrence tables have been merged. Since the access is done giveasthe we can
create either @B+ Tree, Hash or Trie index on it. Moreover in order to accelerate
document based access 6O R, GeneralizedInvertedIndex(GIN) indices can be
build on top of thehstore occur attribute. Unfortunately we could not accelerataudoc
ment based access fOrkR andCOR , since PSQL does not offer functionality to build
indices on top of arrays. Tallé 2 summarizes the possiblétations.

3.6 Bulk Index Creation/Updates

It is more than evident, that the benefits from using a DBMSaattbe expense of the
data storage and retrieval efficiency. Specifically, the-guize of the ACID properties,
the concurrency control, the update of DBMS indices and fhessible reorganization
on disc, may harm the efficiency of the index. In order to redsiech overheads, we
use thecopy function of PSQL during the index creation. In this manneg, skip the
concurrency control, as well as several integrity constsathecks, while at the same
time we minimize the 1/0’s needed to insert a specific amotinew tuples. Moreover,
in case we want to add a new document collection to an exigtihex, we first drop
the DBMS indices, then we insert the new tuples, and finalgreate the indices at
the end. After all documents have been indexed, for eachrdeotil we compute the
norm (|d||) of its vector @) as defined by the tf-idf weighting scheme, and store it in
thenorm field, in order to speed-up query evaluation.



Repr. Queries
qword docc ddoc

PR SELECT id, df SELECT wordid, docid, tf SELECT id, norm, rank
FROM word WHERE FROM occurrence WHERE | FROM document WHERE
name IN (informat’, retriev’) word.id IN (informat.id, retrievid) |id IN (doc1, doc2,.., docN)

OR SELECT id, df SELECT wordid, occur SELECT id, norm, rank
FROM word WHERE FROM occurrence WHERE FROM document WHERH
name IN (informat’, 'retriev’) word.id IN (informat.id, retrievid) |id IN (doc1, doc2, .., docN)

COR SELECT wordname, occur, df SELECT id, norm, rank
FROM occurrence WHERE FROM document WHERH
word_name IN (informat’, 'retriev’) id IN (doc1, doc2, .., docN)

COR SELECT wordname, occur, df SELECT id, norm, rank
FROM occurrence WHERE | WHERE FROM documen
word_name IN (informat’, 'retriev’) id IN (doc1, doc2, .., docN)

Table 3. Queries for each Representation

3.7 Query Evaluation

Table[3 shows the queries needed according to the vectoe spadel for each rep-
resentation, assuming the queinformation retrieval” (transformed to fnformat re-

triev” because of stemming). The query,.q is issued to get théf values of the query
terms,q,.. to get thet f values of the query terms in the documents they appear in, and
qdoc 10 get the norms and ranks of the corresponding documenésOIR and HOR,

the number of issued queries is decreased by one, sinel tldues are now stored in
the occurrence table instead of th@ord table. These elementary queries can be used
for implementing various ranking methods. Essentiallgytprovide the interface that

a classical inverted file exposes to the query evaluatiormpcorent.

4 Experimental Results

We conducted experiments on a desktop PC with a Pentium I\GBIZ processor, 2
GB main memory and a single 7200 rpm SATA hard disk, on top atkidistribu-
tion Ubuntu v8.04, using a 2.6.24 kernel and the ext3 filesysmounted with the
default options). We used PSQL v8.3.3, configured with 16 &4 shareduffers.
Our collection contained documents of various formats{lhipdf, .doc, etc) including
pages crawled from our univeriﬁtyand FORTH domains. Specifically, it comprises
1,004, 721 documents216, 449 distinct terms and its total size is approximately 198
GB. The average size of each document is around 200 KB (diretlatge number of
.doc and .pdf files), and the average number of words in eactndent is 239.

4.1 Database Size and Copy Times

In this section we focus on the storage requirements of tbaroences, as this is the
crucial point and the main difference between the four regméations. We will use
Object Relational Inverted File (ORI F) to refer to theOR, COR and HOR represen-

tations, since they represent occurrences roughly the gdmaenly difference is the

5 http://www.uoc.gr
7 http:/iwww.forth.gr



[Notation[Definition |
number of word occurrences in the entire collection
number of documents

d Zi:l..D w(d;) wherew(d;) is the number of dig-
tinct words in document; .

number of distinct words of the entire collection
tuple size (the space overhead for a tuple in a DBM)
field size of a tuple

Table 4.Size Notations

2|9 =

7=

particular PSQL data type employed). For each casePiitandORI F', we consider
two different settings, depending on whether the positafriiee occurrences are stored
or not in the index. By adopting the notations described iblf@&, the size of each
representation can be estimated as follows:

— PR (without positions)Ny(3f + ¢)
N, is multiplied by (3f + ¢), because for each occurrence we have to keep a tu-
ple containing the correspondimgprd_id, doc_id andtf. Recall thatt is the tuple
overhead of the DBMS and is independent of the attributelefuple.

— PR (with positions):Ng(3f +t) + N(3f +t)
N, is multiplied by (3 f + t) for the same reason as in ti&R? (without positions)
case. In addition)V is multiplied by (3f + ¢), since for each occurrence we have
to keep a tuple containing the correspondivigid_id, doc_id andposition.

— ORIF (without positions)W (f + t) + Ny2f
We have to storéV tuples holding for each word theord_id and N, pairs of
doc_id andtf. No extrat has to be payed as they are stored in the same tuple.

— ORIF (with positions):W (f +t) + Ng2f + Nf
Again we have to stor@ tuples holding for each word theord_id, and N, pairs
of doc_id andtf in the same tuple. Moreover, we have to store in the same fuiple
fields holding the positions where terms appear in.

Hereafter we focus on the case where we do not store positibissclear that
ORIF occupies less space th&R. The inequalityORIF< PRyields:W (f +t) +
Na2f < Ng(B8f +t) & W(f +t) < Naf + Ngt & W(f +1t) < No(f +1t) &
W < Ny which is always true since every wordiii (wherelV’ denotes the vocabulary,
not its cardinality) will appear in at least one documéit (= N, if each distinct
word appears in exactly one document and each documenir®stactly one distinct
word). Regarding the lower and upper bounddpf(recall thatN, = ., ,w(d;)),
asl < w(d;) < W, itfollows thatD < N; < DW. Moreover if we assume that each
document hasv,, distinct words, thenVg = wq.qD. In our collectionwg,, is 239
words, soP R is expected to occupy much more space tdy F'. In the case that we
also store term positions, it is clear ti@aR 1 ' will again require less space, asiR
we useN (3 f + t) to store the positions instead of just« f in ORIF.

Regarding the physical database size for each represemtate consider that the
PSQL storage requirement for string types is 4 bytes plusttéal string size, while
the storage requirement for integers and floats (consiglehiea int4 and f1loat4



[Repr. ][ Number of Pages (8KB each) per Table | Number of Tuples per Table [[ Time ]
[ |[DocumentWord [Occurrence] Total [[Document Word [Occurrence]  Total || Copy |
PR 35,654 [1,278 1,301,657]1,338,589¢10.7GB])[ 1,004,721216,449240,806,51]242,027,68]| ~2.8 day:
OR 35,654 1,278 28,577 | 65,5096-524MB) || 1,004,721216,449 216,449 | 1,437,619 ~24 min.
COR]|| 35654 | — 28,860 | 64,5146-516MB) [[1,004,721 — 216,449 | 1,221,170]| ~25 min.
HOR|| 35,654 | — 24,106 59,7606-478MB) || 1,004,721 — 216,449 | 1,221,170(| ~35 min.

Table 5.DB Tables Size in Pages (8 Kb) and Indexing Times

types respectively) is 4 bytes and the size of tgpent is 16 byte@. In addition, the
storage cost per tuple is 40 bytes, due to an internal id géseto identify the physical
location of a tuple within its table, i.¢.= 40 bytes.

The sizes of the tables for each representation that camelsje our collection are
given in Tabléb. Notice that the sizes@f1 F are significantly smaller (more than one
order of magnitude). Specifically R occupies 10.7 GB, whil® RI F' occupy around
0.5 GB. This means that the storage spac@®®& F is roughly 0.25% of the total
collection size. As a consequence the times to copy thegabéesignificantly smaller
for ORIF, in comparison taP R, offering a much more scalable solution, as far as
indexing time and size are concerned. Specificélliz, needs almost 3 days to copy the
tables, while the other representations need only 30 nérartéess.

[Repr. I Database Table Indices [ Time |
[ |[DocumentWord [Occurrence] Total [[ IndexCreation |
PR usingHash 4,666 2,050 1,466,665(1,473,381411.7 GB)|77,793.7s£21.5 hours|
PR usingB T Tree 2,208 | 720 | 528,421 | 531,349 4.2GB) || 2,150s (35 min)
[ORusingHash || 4,666 [2,050] 1,168 | 7,884 (63MB) || 13.05 |
|[ORusingB™Tree || 2,208 | 720 478 | 3,406 <27 MB) || 11.6s |
CORusingHash 4,666 — 2,050 6,716 (~53 MB) 11.6s
CORusingBT Tree|| 2,208 | — 720 2,928 (<23 MB) 6.4s
HOR usingHash 4,666 — 2,050 6,716 (~53 MB) 6.9s
HORusingBT Tree|| 2,208 | — 720 2,928 (~23 MB) 6.7

Table 6.Indices Size in Pages (8 KB) and Creation Times

4.2 Indices Size and Creation Times

The sizes of the PSQL indices for each representation axersimoTable 6. Again the
space difference between the representations is more tfeaorder of magnitude. This
is also reflected to the PSQL index creation times. Spedifitia¢ process takes some
seconds iMORIF, and roughly a day foPR. We could not evaluate th&ie index,
as it only accepts words with latin characters and our td#at@mn mainly contained
greek documents. In addition we could not evalualth indices, in order to accelerate

8 PSQL version 8.3 supports arrays of composite types. Thusowiel create a composite type
(holding anint 4 and af1oat4 (8 bytes) instead of theoint type), reducing the memory
size of the array to half



[Repr.][ 1term I 2 terms I 3terms I 4 terms |
| ||Qw| Gocce |Qdoc| tot ||Qw| Gocce |Qdoc| tot ||Qw| Qocc |Qdoc| tot ||Qw| Gocce |Qdoc| tot |

PR ||64(54,4143,94958,431| 90(94,5448,689103,323| 84|148,22(9,620157,924| 95|202,25312,774215,126
;ZR?F 88(33,6335,29939,02(| 74|63,3307,750 71,154(| 88| 99,808(9,456109,352{101{131,31712,073 143,491
E)R) 16| 846 (1,957 2,814|( 18| 1,650(4,744 6,412 || 24| 2,443 [7,402 9,869 || 32| 3,153 {10,12§ 13,313
8:% 6 | 766 |2,143 2,915|| 7 [ 1,490(5,61¢ 7,130 || 7 | 2,337 [8,084 10,428|| 5 | 3,018 {10,053 13,076
B

(COI?? — | 856 (3,391 4,247|| — | 1,618(5,777 7,395 || — | 2,419 [7,907 10,321|[ — | 3,292 | 9,873| 13,165
(C’;%R — | 798 (4,447 5,245|| — | 1,529|5,605 7,134 || — | 2,349 {7,982 10,331|[ — | 3,085 |10,237 13,322
(HOI)% —11,023(3,944 4,967|| — | 1,280(5,637 6,917 || — | 1,949 (8,023 9,972 || — | 2,424 |9,9993 12,417
EHH(%I)% — | 127 (3,208 3,335|| — | 255 |5,627 5,882 || — | 319 (8,007 8,326 | — | 518 [10,09§ 10,616
B

Table 7. Query Evaluation Times (msec)

document based accsm general, the results show that" T'ree indices occupy half
of the size ofHash indices.

4.3 Query Evaluation Times

To measure query evaluation times, we adopted the followoenario: for each of
the four representations and for each PSQL index combimatie: a) execute all the
queries of the corresponding representation with 1, 2, 3dedns, b) repeat the above
queries 10 times and c) calculate average times. We do nhtd@c¢he time to re-
ceive/scan the results. The terms contained in the aboveguweere different (for each
query and for each iteration of the experiment) and they welected based on theif.
Specifically, we selected frequently occuring terms wittf &alue about 300,000. The
big df number implies big overhead to the DBMS. The crash we hadwerteced in our
previous experiments [24] using PSQL 8.0, due to the largeb@r ofdoc_ids passed
in the IN list of theqy,. queries, was solved after upgrading to PSQL 8.3. The afore-
mentioned times were gathered through theyregatod™d toolkit which is written

in Java. This means that the measured times include the eagidf the JDBC driver
(version 8.3-603 JDBC 4), an overhead that also exists iiviites engine.

As one can observe from the times reported in TRbI@ R/ F' representations are
one order of magnitude more efficient thB®, due to the efficiency in occurrence ta-
ble. More precisely) RIF are approximately 20 times faster th&® for all queries,
although theD RI F index is only an order of magnitude (see Tdble 5) smaller fA&n
index. This is due to the fact th&@RIF indices, fit in main memory, so every page
that is fetched in memory, is constantly kept there. ConmggiRI F' representations,
we observe thaD R andCOR have an identical performance, whittOR is slightly

% GIN index creation query was running for 3 days, before weebs it due to time limitations
10 http://www.csd.uoc.grbandreou
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faster, especially when usingl™Tree index. A common behavior for all represen-
tations is the slowy,. query times, which is actually the bottleneck foRR1 F'. This

is due to the long IN list ofloc;qs. We found that passing more than 250,d06.ids
makes the,. query too slow. We tackled this problem by dividing the INifsblocks

of 250,00Qdoc_ids and submitting one query for each block of the list. Subsetipwe
summed the gathered times. In the future we plan to invdstighether we can reduce
the overhead of such queries by using temporary tables.réegahe DBMS indices,

we can conclude tha™Tree indices are the best choice since they provide equivalent
or slightly better performance ti ash indices, while occupying half the storage space.

4.4 Query Expansion Times

To measure query expansion times we used the following sicefiar all terms in the
top-5 results of a given query, we compute the sum of th&srin these documents and
suggest to the user the 5 terms with the highest sum. Unfatelyy the gathered times
were unacceptable fdP R (almost 16 hours), since no index ovérc_id existed and
PSQL performed a slow sequential scan over a table of 24M00Quples. This task

is much faster foORIF' (19.8 minutes), but again expensive, since an index over the
array andhstore values, was not build. An approach to speed-up such tasksstsre
also adirect index (keeping for eacldoc_id the set ofword_ids it contains). This index
can be represented in @&hR1 F-like representation. We expect the total size of the two
ORI F representations (inverted and direct) to be less than thaid) and at the same
time should provide faster term-based and document-bassd aervices.

100000

10000 - u

B Table Size
1000 - -

Hash size

log(MB)

100 - - . W B-Treesize

Total Size (H)

10 1 | Total Size(B)

1

PR OR COR HOR

Fig. 1. Size of Tables and Indices (in log scale)

5 Conclusion

In this paper we proposed and evaluated four different ORBB#®presentations for
text indexing.ORI F' representations were found to be the most efficient, beirgg on
order of magnitude less space consuming and more than 26 faser in query evalu-
ation compared t& R. Specifically, for a collection of 1 million documents ocging

11



200 GB, PR needs almost 3 days to copy the tables, while! F' representations need
30 minutes or less. ThBR-index occupies 10.5 GB, while the rest representationd nee
only 500 MB. This means that thi@RI F' index is the 0.25% of the collection size. Fig-
ures1[2@), 2(b), 2(c) and 2[d) summarize the results oéxperimental evaluation.

It is worth mentioning that almost all previous related wo(k.g. [16,14,28]) adopt a
P R-like representation. As there are numerous applicati@sed on ORDBMS, our
findings can be exploited for enriching these applicatioitls more scalable IR capabil-
ities. To avoid misunderstandings, we do not suggest thptamoof databases instead
of inverted indices, we just identified ways to speedup DBbSed text indices.

10000 100000 7
1000 10000
< = 1000
é 100 E" M Hash
E’ = 100
10 M B-Tree
10 I I
1 1
PR OR COR HOR PR OR COR HOR

(a) Times to Copy DB Tables (in log scale)(b) Creation Times of PSQL Indices (in log
scale)

14000 250000 1
v

12000 1 200000

10000
150000

8000 —&—PRusing Hash

msec
msec

- ORusing B-Tree

6000 100000 == OR using Hash

CORusing B-Tree

4000 CORusing Hash
== HOR using B-Tree 50000

2000 4—m—ooo— == HOR using Hash
[ 0

1 2 3 4 1 2 3 4

number of terms number of terms

(c) Query Evaluation usingg™ T'rees (d) Query Evaluation usingfash

Fig. 2. Index Creation and Query Evaluation Times

Although some DBMSs currently provide tuple ranking basadext-valued at-
tributes (e.g. Oracle 9i Text extension, postgreSQL Fult Bearch, etc), an implemen-
tation over these services does not allow supporting differetrieval models. Instead
the ranking would be tightly coupled with the peculiaritegshe particular DBMS. For
this reason we based query evaluation on a small set of etamyequeries that enable
implementing several retrieval models in a flexible manHekvever, an alternative ap-
proach would be to use fewer and more complex SQL queriesthdd even compute
the ranked set of objects in one shot (depending on thevakngodel). This is an addi-
tional issue for further research. Furthermore, we plarotogare the DBMS approach
with the classical inverted file approach on the same cadlecaind to compare the ef-

12



ficiency of BT T'ree indices with thetree — T'rie index [27] that has been proposed to
index relationships with set-value attributes. Finaltydan order to optimize document
based access on tO R representation, we plan to evalugié N indices on top of
thehstore values. The evaluation of the efficiency in case of concugasries, as well
as the investigation of the applicability of parallelizatitechniques (e.g. map-reduce)
over a DBMS-index, are subject for future research.
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