
University of Crete

Computer Science Department

Conceptual Modeling and Tools for Digital Preservation

Yannis Marketakis

Master's Thesis

Heraklion, April, 2010

2

PANEPISTHMIO KRHTHS

SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

Montèla kai ErgaleÐa gia thn DiafÔlaxh Yhfiak¸n Antikeimènwn

ErgasÐa pou upobl jhke apo ton

Gi�nnh Market�kh

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh

METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Gi�nnhc Market�khc, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

Gi�nnhc TzÐtzikac, EpÐkouroc Kajhght c, Epìpthc

BasÐlhc QristofÐdhc, Kajhght c, Mèloc

Grhgìrhc AntwnÐou, Kajhght c, Mèloc

Dekt :

P�noc Traqani�c, Kajhght c

Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, AprÐlioc 2010

3

4

Conceptual Modeling and Tools for Digital Preservation

Yannis Marketakis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Modern society and economy is increasingly dependent on a deluge of only digitally available

information, therefore its preservation within an unstable and rapidly evolving technological (and

social) environment is a challenging problem of prominent importance. The contributions of this

thesis revolve around three main topics:

(a) Intelligibility. As it is hard to define explicitly what information or what knowledge is,

it is therefore very difficult to claim that a particular approach, methodology or technique can

indeed preserve information and knowledge. To tackle this issue and for preserving the meaning

of digital objects, we formalized the notion of intelligibility in a OAIS-compliant manner and

provided guidelines, methodologies and components that can aid humans in preserving infor-

mation and knowledge. Specifically we formalized the notion of intelligibility and intelligibility

gap through the notion of dependency. This perspective allows answering questions of the form:

(a) what kind of (and how much) representation information do we need, (b) how this depends

on the designated community, (c) what kind of automation could we offer (regarding packaging

and dissemination). Apart from developing formal and conceptual models, we developed RDF/S

ontologies and tools (GapManager) and applied them in real data in the context of the CASPAR

project.

(b) Provenance Modeling and Querying. There is a need for a comprehensive and extensible

conceptual framework to integrate, exchange and exploit provenance information within or across

digital archives. We extended the ISO standard CIDOC CRM, defining CIDOC CRM Digital, to

explicitly model digital objects and showed how it can be employed for expressing and querying

provenance information.

(c) Automating the Ingestion and Transformation of Metadata. Most of the preservation

approaches rely on metadata. However the creation and maintenance of metadata is a laborious

task that does not always pay off immediately. There is a need for tools that automate as

much as possible the creation and curation of preservation metadata. We developed PreScan, a

tool for automating the ingestion phase. It can bind together automatically extracted embedded

5

metadata with manually provided metadata. It also supports processes for ensuring the freshness

of the metadata repository and transforms metadata according to CIDOC CRM Digital.

Supervisor: Yannis Tzitzikas

Assistant Professor

6

Montèla kai ErgaleÐa gia thn DiafÔlaxh Yhfiak¸n Antikeimènwn

Gi�nnhc Market�khc

Metaptuqiak ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

H sÔgqronh koinwnÐa kai oikonomÐa exart�tai oloèna kai perissìtero apì plhroforÐec ekfras-

mènec apokleistik� se yhfiak morf , epomènwc h diat rhs touc se èna astajèc kai suneq¸c

metaballìmeno teqnologikì kai koinwnikì perib�llon eÐnai mÐa prìklhsh jemeli¸douc shmasÐac. H

sumbol aut c thc metaptuqiak c ergasÐac sto prìblhma thc yhfiak c diafÔlaxhc peristrèfetai

gÔrw apì trÐa kentrik� jèmata:

(a) Katanohsimìthta. Den arkeÐ h diafÔlaxh twn bits twn yhfiak¸n antikeimènwn, jèloume na

diaful�xoume kai th shmasÐa aut¸n twn bits. Kaj¸c eÐnai dÔskolo na orÐsoume epakrib¸c ti eÐnai

plhroforÐa gn¸sh, eÐnai epÐshc polÔ dÔskolo na isquristoÔme ìti mÐa sugkekrimènh prosèggish,

mejodologÐa h teqnik mporeÐ diathr sei thn yhfiak� ekfrasmènh plhroforÐa gn¸sh. Gia na

antimetwpÐsoume autì to prìblhma proteÐname th montelopoÐhsh thc ènnoiac thc katanohsimìthtac

me trìpo sumbatì me to prìtupo OAIS (Open Archival Information Systems, ISO 14721:2003)

kai en suneqeÐa orÐsame mÐa mejodologÐa kai sustatik�/ergaleÐa logismikoÔ gia thn pragm�twsh

aut c thc prosèggishc. Sugkekrimèna montelopoi same tic ènnoiec thc katanohsimìthtac (intel-

ligibility) kai tou kenoÔ katanohsimìthtac (intelligibility gap) mèsw thc ènnoiac thc ex�rthshc.

Aut h optik k�nei efikt thn ap�nthsh erwthm�twn ìpwc: (a) ti eÐdoc (kaj¸c kai pìsh) plhro-

forÐa anapar�stashc (Representation Information) qreiazìmaste, (b) pwc aut exart�tai apì

thn koinìthta gia thn opoÐa jèloume na diaful�xoume thn plhroforÐa, (g) ti eÐdouc automatismoÔc

mporoÔme na prosfèroume (ìson afor� thn arqeiojèthsh kai th dianom yhfiak¸n antikeimènwn).

Ektìc apì thn an�ptuxh tupik¸n montèlwn, orÐsame ta montèla se RDF/S, kai anaptÔxame er-

galeÐa kai efarmogèc (GapManager), kai tèloc ta qrhsimopoi same se pragmatik� dedomèna sta

plaÐsia tou eurwpaðkoÔ èrgou CASPAR.

(b) MontelopoÐhsh kai Eper¸thsh plhrofori¸n Proèleushc. Up�rqei an�gkh gia èna ploÔ-

sio kai epekt�simo ennoiologikì plaÐsio gia thn enopoÐhsh, antallag kai diaqeÐrish plhrofori¸n

pou aforoÔn sthn proèleush twn yhfiak¸n antikeimènwn. Gia to skopì autì epekteÐname to ISO

prìtupo CIDOC CRM, kai orÐsame to CIDOC CRM Digital, ¸ste na kalÔptei yhfiak� antikeÐ-

mena kai deÐxame pwc mporeÐ na qrhsimopoihjeÐ gia thn par�stash kai eper¸thsh plhrofori¸n

7

proèleushc.

(g) AutomatopoÐhsh thc L yhc kai MetasqhmatismoÔ twn Metadedomènwn. Oi perissìterec

proseggÐseic pou aforoÔn sthn yhfiak diat rhsh basÐzontai se metadedomèna. Wstìso h dhmiourgÐ-

a kai h sunt rhs touc eÐnai mÐa kopiastik diadikasÐa pou den apodÐdei �mesa ofèlh (an ta metade-

domèna aut� den exuphretoÔn epiqeirhsiakoÔc skopoÔc all� sullègontai mìno gia lìgouc makrì-

qronhc diafÔlaxhc). Wc ek toÔtou up�rqei h an�gkh gia ergaleÐa ta opoÐa automatopoioÔn th

dhmiourgÐa kai epimèleia twn metadedomènwn diat rhshc. Gia to skopì autì sqedi�same kai anap-

tÔxame to PreScan, èna ergaleÐo gia thn automatopoÐhsh thc diadikasÐac sullog c metadedomènwn.

Sugkekrimèna to PreScan sar¸nei sust mata arqeÐwn kai apì k�je arqeÐo ex�gei ta enswmatwmè-

na metadedomèna kai ta metasqhmatÐzei se ontologik� (ekfrasmèna b�sei thc ontologÐac CIDOC

CRM Digital). EpÐshc epitrèpei ton emploutismì touc apì to qr sth kai prosfèrei mhqanismoÔc

gia thn ananèwsh tou apojethrÐou katìpin allag¸n sto sÔsthma arqeÐwn.

Epìpthc Kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc Kajhght c

8

EuqaristÐec

Sto shmeÐo autì ja jela na euqarist sw ton epìpth kajhght mou k. Gi�nnh TzÐtzika gia

thn polÔtimh kajod ghsh kai ousiastik sumbol tou gia thn olokl rwsh aut c thc ergasÐac.

EpÐshc ton euqarist¸ gia thn empistosÔnh pou mou èdeixe kata thn di�rkeia thc sunergasÐac mac.

EpÐshc ja jela na euqarist sw ton kajhght k. BasÐlh QristofÐdh gia tic eÔstoqec

parathr seic tou kai sumboulèc gia thn per�twsh aut c thc ergasÐac, kaj¸c epÐshc kai gia thn

summetoq tou sthn trimel exetastik epitrop thc metaptuqiak c mou ergasÐac.

Epiprìsjeta ja jela na euqarist sw kai ton kajhght k. Grhgìrh AntwnÐou gia thn pro-

jumÐa tou na summet�sqei sthn trimel exetastik epitrop thc metaptuqiak c mou ergasÐac.

Par�llhla ja jela na euqarist sw to Ergast rio Plhroforiak¸n Susthm�twn tou Insti-

toÔtou TeqnologÐac kai 'Ereunac. Eidikìtera ja jela na euqarist sw jerm� touc apìfoitouc

tou Tm matoc Epist mhc Upologist¸n Thlèmaqo Tzan�kh kai Dan�h-QristÐna KomhtopoÔlou gia

thn enasqìlhsh touc me komm�tia aut c thc ergasÐac.

'Ena meg�lo euqarist¸ ja jela na d¸sw se ìlouc touc fÐlouc mou gia thn upost rixh. Ja

 jela na euqarist sw xeqwrist� touc KaterÐna DemeneopoÔlou, Gi�nnh Sperel�kh kai Mp�mph

Tzagkar�kh gia thn hjik sumpar�stash touc se dÔskolec kai eÔkolec stigmèc, thn katanìhsh

touc kai ta ìsa per�same mazÐ.

Tèloc ja jela na ekfr�sw thn eugnwmosÔnh mou stouc goneÐc mou Gi¸rgo kai MarÐa kai thn

aderf mou Eir nh gia thn st rixh, thn enj�rrunsh kai thn olìyuqh ag�ph touc se k�je b ma thc

zw c mou. Sac euqarist¸ polÔ gia ìla.

9

Contents

Table of Contents iii

List of Tables v

List of Figures viii

1 Introduction 1

1.1 What is Digital Preservation? . 2

1.2 Contribution of this thesis . 4

1.3 Organization of this thesis . 4

2 Digital Preservation Models and Languages 5

2.1 OAIS Reference Model . 5

2.2 Languages for Digital Preservation . 7

2.2.1 Preserving Structure . 8

2.2.2 Preserving Semantics . 9

2.2.3 Packaging . 10

2.2.4 Modeling using Semantic Web Languges 12

3 Preservation of Intelligibility of Digital Objects 15

3.1 On Digital Objects and Dependencies . 16

3.1.1 OAIS - Preserving the Understandability 19

3.2 A Formal Model for the Intelligibility of Digital Objects 20

3.2.1 A Core Model for Digital Objects and Dependencies 20

3.2.1.1 Conjunctive versus Disjunctive Dependencies 23

3.2.1.2 Synopsis . 26

i

3.2.2 Formalizing Designated Community Knowledge 27

3.2.3 Intelligibility-related Preservation Services 29

3.2.3.1 Deciding Intelligibility . 29

3.2.3.2 Discovering Intelligibility Gaps 33

3.2.3.3 Profile-Aware Packages . 36

3.2.3.4 Dependency Management and Ingestion Quality Control 37

3.2.4 Methodology for Exploiting Intelligibility-related Services 40

3.2.5 Relaxing Community Knowledge Assumptions 42

3.3 Modeling and Implementation Frameworks . 44

3.3.1 Conjunctive Dependencies using Semantic Web languages 44

3.3.2 Implementation Approaches for Disjunctive Dependencies 46

3.4 Implementation - GapMgr Tool . 48

3.4.1 Intelligibility (Dependency) Management Services 48

3.4.2 Implementation Settings and Experimental Evaluation 50

3.4.2.1 Experimental Evaluation . 57

3.4.2.2 Application Results from CASPAR 60

3.5 Related Approaches . 61

3.6 On Preserving the Dependency Graph . 63

3.7 Summary . 65

4 Provenance: Modeling and Querying 67

4.1 Introduction to Provenance . 67

4.1.1 Provenance and OAIS . 69

4.2 CIDOC CRM Extension for Digital Objects . 71

4.2.1 Overview of the Extension . 73

4.2.2 Detailed Description of the New Classes 74

4.2.3 Indicative Examples . 76

4.2.3.1 The Provenance of GOME dataset 76

4.2.3.2 Conversion . 78

4.2.3.3 Emulation . 81

4.3 Provenance Queries over CRMdig . 81

4.4 Related Work on Modeling Provenance . 82

4.5 Summary . 86

ii

5 Automating the Ingestion and Transformation of Metadata 89

5.1 Introduction . 89

5.2 Metadata and Preservation Requirements . 90

5.3 PreScan Tool . 92

5.3.1 Controller . 92

5.3.2 Metadata Extractor . 95

5.3.3 Repository Manager . 95

5.3.4 Metadata Representation Editor . 98

5.3.5 Evaluation of PreScan . 99

5.4 Related Approaches . 102

5.5 Summary . 104

6 Conclusions and Future Work 105

iii

iv

List of Tables

3.1 Implementation Approaches for Disjunctive Dependencies 48

3.2 Basic Query Services . 49

3.3 Basic Change Services . 51

3.4 Dependency Graph Depth . 57

3.5 GapMgr Evaluation using Main Memory API . 59

3.6 Dependency Management in other Domains . 62

4.1 OAIS and CIDOC CRM Provenance . 70

4.2 Provenance Query templates over CRMdig . 83

5.1 Examples of Metadata . 90

5.2 Recognized Formats and Extracted Metadata from JHOVE 96

5.3 Metadata According to CIDOC CRM . 99

5.4 Time Performance of the Scanning process . 101

5.5 Comparing PreScan with related systems . 103

v

vi

List of Figures

2.1 The Information Model of OAIS . 7

2.2 Packaging Information and Preservation Description Information 8

2.3 An example of an EAST description . 9

2.4 An example of a DEDSL description . 11

2.5 An example of a XFDU package . 12

2.6 Structure Organization for a XFDU package . 13

2.7 Example of an ontology for measurements expressed in RDF/S 13

3.1 The generation of two data products as a workflow 17

3.2 The dependencies of mspaint software application 18

3.3 The Representation Network of a FITS file . 20

3.4 Restricting the domain and range of dependencies 22

3.5 Modeling the dependencies of a FITS file . 23

3.6 DC Profiles Example . 29

3.7 The disjunctive dependencies of a digital object o 32

3.8 A Partitioning of facts and rules . 32

3.9 Dependency Types and Intelligibility Gap . 35

3.10 Exploiting DC Profiles for defining the “right” AIPs 37

3.11 Revising AIPs after DC profile changes . 38

3.12 Identifying related profiles when dependencies are disjunctive 39

3.13 Methodological steps for exploiting intelligibility-related services 40

3.14 Modeling DC profiles without making any assumptions 43

3.15 The Core Ontology for representing Dependencies (COD) 45

3.16 Extending COD for capturing provenance . 47

3.17 Example of Modules, Dependencies and Profiles 50

vii

3.18 The Use Case Diagram of GapMgr . 53

3.19 GapMgr Architecture . 54

3.20 The GUI of GapMgr: Defining dependencies . 55

3.21 The GUI of GapMgr: Computation of the intelligibility gap 56

3.22 The contribution of OAIS for preserving the Intelligibility of Digital Objects . . . 64

4.1 Global Ozone Monitoring Experiment (GOME) Image 69

4.2 OAIS PDI Preservation Description Information 70

4.3 The main concepts of CIDOC CRM . 71

4.4 CIDOC CRM Digital (CRMdig) . 74

4.5 The trail of GOME data scenario . 77

4.6 The trail of GOME data scenario modeled with CRMdig 77

4.7 Modeling the data processing levels of GOME . 79

4.8 JPG2PNG Converter . 80

4.9 JPG2PNG Converter . 80

4.10 Modeling Emulation . 81

4.11 Sample query 1 - Find creator/producer . 83

4.12 Sample query 6 - Change of custody chain . 84

4.13 Provenance graph according to OPM . 86

4.14 Provenance graph according to CRMdig . 87

5.1 The Component diagram of PreScan . 93

5.2 The algorithm of PreScan . 94

5.3 The GUI for managing mappings . 95

5.4 A fragment of the JHOVE output XML schema 96

5.5 Architecture of Semantic Web Ontologies and Metadata 98

5.6 Editing the RDF representation of metadata . 100

viii

Chapter 1

Introduction

Until a few decades ago information existed only in physical form. Information was written

or engraved on several materials such as stone, wood, papyrus, silk, paper and was human

recognizable. The preservation of information stored in physical materials was not a problem.

The only action that should be followed was to store these materials in a safe place in order to

protect them from destruction, either from natural disaster (flood, fire, earthquake) or corrosion

of materials. However the nature of these materials made difficult the replication and distribution

of the information.

Then the coming of digital ages provided a solution to these problems. Information obtained

a digital representation, new documents were created and disseminated to different consumers

within just a few minutes. Additionally digital objects could be easily replicated without loss or

degradation. Documents were created and disseminated in digital form and objects that were

not born-digital were transformed into digital ones. Furthermore the digital documents covered

only a little space compared to their analog counterparts, hence large collections of documents

could now fit in a few CDs.

However digital objects need specific viewer applications to be interpreted. These in turn

depend on specific libraries, operating systems and hardware devices. Furthermore digital in-

formation is stored in several storage media ranging from magnetic tapes, magnetic and optical

disks to volatile storage (RAM). Consequently digital objects became extremely vulnerable to

the software that is used to interpret it and the hardware that is used to store it, since if any of

the layers of the dependency tree is lost, the object will be inaccessible and useless. Additionally

there are vulnerabilities regarding the interpretation of digital objects and the documentation of

their provenance. So there is an increasing need to preserve digital objects, in essence to ensure

1

that digital objects will remain accessible and usable in future.

1.1 What is Digital Preservation?

Digital Preservation refers to the series of managed activities necessary to ensure continued

access to digital materials for as long as necessary. It refers to all of the actions required to

maintain access to digital materials beyond the limits of media failure or technological change.

Those material may be records that were born-digital or are the products of a digitization

process. In brief we could identify the following digital preservation approaches

• Long-term preservation - Continued access to digital materials, or at least to the in-

formation contained in them, indefinitely.

• Medium-term preservation - Continued access to digital materials beyond changes in

technology for a defined period of time but not indefinitely.

• Short-term preservation - Access to digital materials either for a defined period of time

while use is predicted but which does not extend beyond the foreseeable future and/or until

it becomes inaccessible because of changes in technology.

The preservation of digital objects entails far more than making backup copies and storing

them in disparate locations. Digital preservation is a series of managed activities necessary for

ensuring both the long-term maintenance of the digital objects and continued accessibility of

their content. The former requires the long-term maintenance of the bitstream of digital objects

(i.e. backing up files), while long term access is decomposed into a set of goals that the process

of digital preservation is intended to ensure:

a. viability is the reassurance that digital objects are intact and readable from the storage

media. Since technology changes, media obsolescence is becoming a big problem. Assume

we want to retrieve our documents from a 5.25” floppy disk. Nowadays it is difficult to

find a computer with a 5.25” floppy drive.

b. renderability means that a digital object can be used in the way it was intended. Render-

ability is threatened by the obsolescence of software applications. For example two decades

ago Wordstar files had the largest market penetration, but only a few people today can

read any of the millions of Wordstar files that exist.

2

c. intelligibility is the reassurance that digital objects are properly interpreted by humans.

So even if we are able to see the contents of a file, we cannot be sure that we will be able

to understand it. So sufficient documentation should also be preserved to allow a user in

future to understand the meaning of a digital object.

d. fixity is the quality of not being unintentionally altered or destroyed. Fixity can be threat-

ened by insecure storage, transmission errors, or media degradation. It is particularly

important for digital objects, because unlike analog objects, even a single destroyed bit

can cause the entire object unusable.

e. authenticity refers to the trustworthiness of the digital objects. Authenticity is enhanced

if it is possible to verify the creator of the digital object and establish that the object

has not been changed. The documentation of the creation and the derivation history of

a digital object is often known as digital provenance and if it is itself trustworthy, goes a

long way towards verifying the authenticity of the object.

For example suppose that we want to preserve a collection of files containing observations of

rainfall, temperature, pressure and wind velocities of various places on earth. More specifically

every line from these files will contain the coordinates of the measurement location and the

measurement values (in a specific order). Apart from preserving the bits of these files we must

also preserve the ability to render them. To this end we must identify how the bit sequences

are translated to text and therefore render this text on screen. However even if these data are

properly rendered, the users will view some numbers without any indication about the proper

interpretation of these numbers. So we should also preserve extra information that will aid

users to understand these data. Furthermore it is very important to capture also information

regarding the provenance of the digital objects of this collection. For example if these files

have been derived from other “primitive” data, using specific computational processes, then

the knowledge of these processes and the initial and intermediate data is necessary since it will

allow the validity and reproducibility of the collection of files. Additionally provenance guides

the answering of queries of form: Who created the data product and how? Which were the

parameters of the processes that were used? Which were the initial data that were used?

Synopsizing, the objective of digital preservation is to ensure on the long run the maintain-

ability and accessibility of a digital object.

3

1.2 Contribution of this thesis

In this thesis our focus concentrates on the preservation of the intelligibility and the preser-

vation of provenance. The contribution of this thesis lies in:

• Proposing a formal model for representing and managing the intelligibility of digital objects

comprising the abstract notions of module, dependency and DC profile.

• Specifying a number of basic intelligibility-related services

• Providing the guidelines for modeling and implementing the model for the preservation of

intelligibility of digital objects.

• Describing the modeling and querying requirements for the preservation of provenance of

digital objects

• Automating the creation and maintenance of preservation metadata.

• Reporting our experiences from the application of these models and tools in real-world

data sets.

The results of this thesis have been published in [30, 40, 44, 43]

1.3 Organization of this thesis

Chapter 1 is the introductory chapter of the thesis.

Chapter 2 elaborates with models and languages for the preservation of digital objects.

Chapter 3 introduces a formal model for the preservation of intelligibility of digital objects

based on dependency management.

Chapter 4 elaborates on the problem of modeling provenance.

Chapter 5 describes a tool that automates the ingestion and transformation of metadata of

digital files.

Chapter 6 concludes and report possible ideas that are worth for further research.

4

Chapter 2

Digital Preservation Models and

Languages

This chapter describes models and languages that could be employed for Digital Preservation.

It begins with a description of the conceptual model of the Open Archival Information System

(OAIS) in Section 2.1. Subsequently, at Section 2.2, several languages and formats (EAST,

DEDSL, XFDU, Semantic Web Languages) are described and is discussed how they could be

used for the preservation of digital objects.

2.1 OAIS Reference Model

An Open Archival Information System (for short OAIS) is an archive consisting of an or-

ganization of people and systems, that has accepted the responsibility to preserve information

and make it available for a Designated Community. The term OAIS also refers to the ISO ref-

erence model [20] defined by a recommendation of the Consultative Committee for Space Data

Systems1. This reference model, among others, provides a framework for the understanding

and increased awareness of archival concepts needed for long term digital information preserva-

tion and access. The reference model address a full range of archival information preservation

functions including ingest, archival storage, management, access and dissemination. The major

purpose of OAIS reference model is to facilitate a much wider understanding of what is required

to be preserved.

According to OAIS reference model Information is defined as any piece of knowledge that

1http://www.ccsds.org

5

is exchangeable and can be expressed by some type of data. For example the information in a

Greek novel book is expressed as the characters that are combined to create text. The same

pattern occurs in digital world. The information carried out in a text file in digital form (in

a CD-ROM) is expressed by the bits it contains which, when they are combined with extra

information that interprets them (i.e. mapping tables and rules) will convert them to more

meaningful representations (i.e. characters). This extra information is called Representation

Information. Every Data Object accompanied with Representation Information that interprets

it, form an Information Object. A Data Object is either a physical object (an object with physi-

cally observable properties) or a digital object (a sequence of bits). Representation Information

(RI) is the information that maps a Data Object into more meaningful concepts. In brief, the

RI of a digital object should comprise information about the Structure, the Semantics and the

needed Algorithms for interpreting and managing a digital object. It follows that intelligibility

is closely related to RI. In the previous example the extra RI we should store is the information

about the proper mapping of bit sequences to characters.

Representation Information however is just another Information Object, which means that

it is typically composed of its own data and other RI. This recursive nature of RI typically leads

to a potentially long chain of RI objects, called Representation Network. However OAIS aims

at preserving information for a Designated Community and therefore must take into account

the knowledge that is assumed to be known by the community. In terms of OAIS it is called

Knowledge Base. A person or system can be said to have a Knowledge Base which allows

them to understand received information. For example assume that the Greek novel of the

previous example exists in digital form, it is a text file. The information stored within the

file is expressed by the bits (the actual data). However these data are not useful without

the existence of appropriate Representation Information. The combination of the Data Object

(the file) with its Representation Information (mapping of byte codes to characters) make this

file understandable to the recipient’s Knowledge Base (the knowledge of Greek language and

grammar).

Information is submitted to an OAIS, or disseminated to a consumer through Information

Packages. An Information Package consists of the Content Information and Preservation De-

scription Information. The Content Information consists of the Data Object and its associated

Representation Information. Preservation Description Information (PDI) applies to the Con-

tent Information and is necessary for adequate preservation of the content information. PDI is

6

PhysicalObject

Representation Informationinterpreted using

StructureInformation SemanticInformation OtherRepresentationInformationadds meaning to

Standards AlgorithmsAccessSoftwareRepresentationRenderingSoftware
Software

Representation Informationinterpreted using

StructureInformation SemanticInformation OtherRepresentationInformationadds meaning to

Standards AlgorithmsAccessSoftwareRepresentationRenderingSoftware
Software

Information Object
DataObject RepresentationInformation

DigitalObject
BitSequence

interpreted
using

1*

1*

1*

Information Object
DataObject RepresentationInformation

DigitalObject
BitSequence

interpreted
using

1*

1*

1*

Figure 2.1: The Information Model of OAIS

further divided in four types of preservation information, Provenance, Context, Fixity. Addi-

tionally it is necessary to distinguish packages that are used for preservation by an OAIS and

packages that are used for submission and dissemination. This policy reflect the reality that

some submissions to OAIS might have insufficient PDI to meet final OAIS requirements or we

might want to deliver different (with more or less PDI) Information Packages to different com-

munities (having different Knowledge Bases). Therefore Information Packages are categorized

to Submission Information Packages (SIP) which are packages sent to an OAIS by a producer,

Archival Information Packages (AIP) which is a package containing a full set of PDI and is

intended for preservation within an OAIS, Dissemination Information Packages (DIP) that are

information packages delivered to consumers.

It’s important to notice that OAIS accommodates information that is inherently non-digital

but the modeling and preservation of such information is not addressed in detail. We will use

these notions in the sequel (in the formalization of the intelligibility model).

2.2 Languages for Digital Preservation

We will describe how the various languages and formats (EAST, DEDSL, XFDU, Semantic

Web languages) could be used for the preservation of digital files. We will use a collection of

files containing temperature measurements from various places on earth as a running example

and we will discuss the pros and cons of each approach.

Suppose we want to preserve the files containing temperature measurements from various

7

Provenance
Information

Reference
Information

Fixity
Information

Context
Information

Preservation
Descritpion
Information

Provenance
Information

Reference
Information

Fixity
Information

Context
Information

Preservation
Descritpion
Information

Figure 2.2: Packaging Information and Preservation Description Information

places on earth. Each file comprises an arbitrary number of lines where each line contains three

numerical values corresponding to the longitude, the latitude and the measured temperature (in

Celsius degrees). Each line corresponds to the temperature at the coordinate-specified area as

it was measured at a certain point in time. The time of measurement is hardwired in the name

of the file, e.g. a file named datafile20080903 12PM.txt is supposed to contain measurements

taken at 12pm of the 3rd September of 2008. Suppose that the contents of this file are:

25.130 35.325 30.2

25.100 35.161 28.9

25.180 35.333 29.3

We may have several such files (all having the same format though) each one containing

measurements at different locations and times.

2.2.1 Preserving Structure

In order to preserve the structure of the datafile20080903 12PM.txt we could make use

of the EAST (Enhanced Ada Subse T)[26] language. Each data description record (DDR),

according to that language, consists of two packages, one for the logical description and one

for physical description of the data. These two packages are mandatory even if the content of

the physical part is empty. The first package includes a logical description of all the described

8

components, their size in bits as well as their location within the set of the described data. The

physical part includes a representation of some basic types defined in the logical description

and are dependent on the machine that generates these data: the organization of arrays (i.e.

first-index-first, last-index-first) and the bit organization on the medium (high-order-first or

low-order-first for big-endian or little endian representation accordingly). Figure 2.3 shows

an example of a DDR describing datafile.txt. We defined three different types one for each

column of a data file (longitude, latitude , temperature), since each column represents a different

kind of data. More precisely the distinction of longitude and latitude is only made because of

their different upper and lower limits.

package logical_datafileX_description is

type HORIZONTAL_COORDINATE is range -90.00 .. 90.00

for HORIZONTAL_COORDINATE’size 64; --bits

type VERTICAL_COORDINATE is range -180.00 .. 180.00

for VERTICAL_COORDINATE’size 64;

type TEMPERATURE_TYPE is range -100.0 .. 200.0

for TEMPERATURE_TYPE’size 16;

type MEASUREMENT_TUPLE is record

LONGITUDE:VERTICAL_COORDINATE

LATITUDE:HORIZONTAL_COORDINATE

MEASURED_TEMPERATURE:TEMPERATURE_TYPE

end record;

for MEASUREMENT_TUPLE’size use 144;

type MEASUREMENT_BLOCK is array(1..1000) of MEASUREMENT_TUPLE;

for MEASUREMENT_BLOCK’size use 144000;

SOURCE_DATA:MEASUREMENT_BLOCK

end logical_datafileX_description;

package physical_datafileX_description is

end physical_datafileX_description;

Figure 2.3: An example of an EAST description

2.2.2 Preserving Semantics

We could define semantic descriptions for the entities (longitude, latitude and temperature)

of the file datafileX.txt aiming at preserving the meaning (clarifying the interpretation) of

9

the terms ”longitude” ”latitude” and ”temperature”.

We could use the DEDSL (Data Entity Dictionary Specification Language)[25] language.

Figure 2.4 shows an example of a DEDSL description for datafileX.txt according to the

implementation of DEDSL using XML.

Note that if we have another file with the same kind of information, we could reuse the same

semantic descriptions, so semantic descriptions can be considered as reusable models. These

models can contain abstract data descriptions to which concrete descriptions may refer.

2.2.3 Packaging

Now suppose that we want to preserve and archive a number of datafiles with such measure-

ments. Packaging formats could be used for preparing a package that contains the data files

plus their EAST and DEDSL descriptions. We could satisfy such packaging requirements using

XFDU (XML Formated Data Unit (XFDU) [11, 28] which is a standard file format developed

by CCSDS (Consultative Committee for Space Data Systems) for packaging and conveying sci-

entific data, aiming at facilitating information transfer and archiving. The benefits of adopting

a packaging approach (like that of XFDU) is that we can also add various information about the

components of the package. For example suppose we would like to include information about the

user that took the temperatures for each file, as well as the GPS (Global Positioning System)

and the thermometer characteristics or the satellite information (if the samplings were made

from space). We can easily add the above information using XFDU since we just have to add

the necessary information at the package. The major benefit from the use of XFDU is that

we can package together heterogenous modules (java programs, datafiles, GPS info, provenance

data) and deliver them to the user, or archive them, as a single (ideally self-describing) unit.

As another example, suppose we have a software application, e.g. a java program, that

calculates the daily, weekly and monthly average temperatures of various locations. To make

such aggregate calculations the program needs a number of files containing the data (datafiles).

For example in order to calculate the daily average temperatures for each location for the day

3rd September of 2008 we need all data files of the form datafile20080903 ∗ ∗ ∗ ∗.txt. For

delivering this program to a user, as an application that contains past measurements, we have

to provide her with the required data files. In this case, the XFDU package should contain both

the java.code and the files containing the data. Figure 2.5 shows an example of such a package

(for reasons of brevity we depict only two data files), while Figure 2.6 illustrates the structure

10

<?xml version="1.0" encoding=="UTF-8"?>

<DATA_ENTITY_DICTIONARY>

<DICTIONARY_IDENTIFICATION>

<DICTIONARY_NAME CASE_SENSITIVITY="NOT_CASE_SENSITIVE">datafileX Dictionary

</DICTIONARY_NAME>

</DICTIONARY_IDENTIFICATION>

<DATA_ENTITY_DEFINITION CLASS="DATA_FIELD" NAME="LONGITUDE">

<DEFINITIONAL_PART>

<DEFINITION>

It represents the longitude for some certain coordinates. Longitudes east of

Greenwich shall be designated by the use of plus (+) symbol while longitudes

west of Greenwich shall be designated with the use of minus (-) symbol.

</DEFINITION>

<SHORT_DEFINITION>Longitude</SHORT_DEFINITION>

<UNITS>deg</UNITS>

</DEFINITIONAL_PART>

<REPRESENTATIONAL_PART DATA_TYPE="REAL">

<RANGE MIN="-180.00" MAX="+180.00"/>

</REPRESENTATIONAL_PART>

</DATA_ENTITY_DEFINITION>

<DATA_ENTITY_DEFINITION CLASS="DATA_FIELD" NAME="LATITUDE">

<DEFINITIONAL_PART>

<DEFINIITION>

It represents the latitude for some certain coordinates. Latitudes north of the Equator

shall be designated by the use of plus (+) symbol while latitudes south of the Equator

will be designated by the use of minus (-) symbol.

</DEFINITION>

<SHORT_DEFINITION>Latitude</SHORT_DEFINITION>

<UNITS>deg</UNITS>

</DEFINITIONAL_PART>

<REPRESENTATIONAL_PART DATA_TYPE="REAL">

<RANGE MIN="-90.00" MAX="+90.00"/>

</REPRESENTATIONAL_PART>

</DATA_ENTITY_DEFINITION>

<DATA_ENTITY_DEFINITION CLASS="DATA_FIELD" NAME="TEMPERATURE">

<DEFINITIONAL_PART>

<DEFINITION>

It represent the temperature in the area with

the specific coordinates.

</DEFINITION>

<SHORT_DEFINITION>Temperature</SHORT_DEFINITION>

<UNITS>Celsius degrees</UNITS>

</DEFINITIONAL_PART>

<REPRESENTATIONAL_PART DATA_TYPE="REAL">

<RANGE MIN="-100.0" MAX="200.0"/>

</REPRESENTATIONAL_PART>

</DATA_ENTITY_DEFINITION>

</DATA_ENTITY_DICTIONARY>

Figure 2.4: An example of a DEDSL description

11

of such a package.

<?xml vesrion="1.0" encoding="UTF-8"?>

<xfdu:XFDU xmlns:xfdu="http://www.ccsds.org">

<packageHeader ID="id"/>

<informationPackageMap ID="id">

<xfdu:contentUnit ID="file:/avgCalculator.java">

<dataObjectPointer dataObjectId="dataObjectAC"/>

<xfdu:contentUnit ID="file:/data">

<dataObjectPointer dataObjectID="dataObject20080903_12PM"/>

<dataObjectPointer dataObjectID="dataObject20080903_12AM"/>

</xfdu:contentUnit>

</xfdu:contentUnit>

</informationPackageMap>

<dataObjectSection>

<dataObject size="5620" ID="dataObjectAC">

<byteStream size="5620" mimeType="text/plain">

<fileLocation href="file:/avgCalculator.java"/>

</byteStream>

</dataObject>

<dataObject size="122108" ID="dataObject20080903_12PM">

<byteStream size="122108" mimeType="text/plain">

<fileLocation href="file:/data/datafile20080903_12PM.txt"/>

</byteStream>

</dataObject>

<dataObject size="134554" ID="dataObject20080903_12AM">

<byteStream size="134554" mimeType="text/plain">

<fileLocation href="file:/data/datafile20080903_12AM.txt"/>

</byteStream>

</dataObject>

</dataObjectSection>

</xfdu:XFDU>

Figure 2.5: An example of a XFDU package

2.2.4 Modeling using Semantic Web Languges

Semantic Web (SW) languages could be used in order to preserve these data files. The

adoption of SW languages (like RDF/S) have an additional benefit. A top/upper level ontology

could be used to describe (syntactically and semantically) the form of the data and other files

could instantiate this ontology. These instantiations are actually the data themselves. When

creating a new data file there is no need to create its DEDSL or EAST description every time,

but in contrary to write the data with the syntax specified by the ontology. Moreover whenever

more data types are needed to be preserved the ontology can be easily extended. For example,

past data files can contain only the longitude, the latitude and the temperature, while current

ones may contain also the name of each location, or the thermometer used for the measurement.

12

avgCalculator

datafile20080903_12PM datafile20080903_12AM

GPS
HTCP3300
INFO

USER
Marketakis
INFO

GPS
HTCP3300
INFO

USER
Tzitzikas
INFO

package avgTemp

Figure 2.6: Structure Organization for a XFDU package

In such cases two different kinds of DEDSL/EAST descriptions have to be created and used. In

the SW approach, we just have to extend the ontology. Figure 2.7 shows an indicative ontology

for our running example expressed in RDF/S XML. Other ontologies of wider scope could be

used as well (e.g. CIDOC CRM [21]).

<?xml version=’1.0’?> <rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3c.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3c.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Sample"/>

<rdf:Property rdf:ID="Longitude">

<rdfs:domain rdf:resource="#Sample"/>

<rdfs:range rdf:resources="&rdfs;Literal"/>

</rdf/Property>

<rdf:Property rdf:ID="Latitude">

<rdfs:domain rdf:resource="#Sample"/>

<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

<rdf:Property rdf:ID="Temperature">

<rdfs:domain rdf:resource="#Sample"/>

<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdfs:Property>

</rdf:RDF>

Figure 2.7: Example of an ontology for measurements expressed in RDF/S

Another benefit of the SW languages is that the data and their descriptions are tightly

coupled. When using EAST/DEDSL the descriptions are extracted from the form of the actual

data while the file containing the data and the file describing them are two distinct files. Due to

this shortcoming, packaging formats are important. On the other hand in RDF a data file would

itself define the data type of each data element in the file. To make this more obvious let’s take

13

a line from our running example. The line 25.130 35.325 30.2 does not offer the knowledge

of what 25.130 might be, it could be either the longitude, the latitude or the temperature. On

the other hand this information using RDF could be

<temperature:Sample

rdf:about="sampingId20080903_12PM_35.233_25.343>

<temperature:Longitude= "25.130"/>

<temperature:Latitude= "35.325"/>

<temperature:Temperature= "30.2"/>

</temperature:Sample>

This example shows clearly that one can understand easily what is the purpose of each

variable without the existence of another file that describes the data (like in EAST/DEDSL).

14

Chapter 3

Preservation of Intelligibility of

Digital Objects

Digital preservation can be described as the set of actions that are necessary to ensure

the long-term maintenance of digital objects and the continued accessibility of their content.

Among others the long-term accessibility includes the task of ensuring that digital objects remain

intelligible. Intelligibility refers to the ability of humans to understand what a digital object is,

how they can use it, what is the conceptualization of the object. Therefore the preservation of

intelligibility might require additional information, that sufficiently document a digital object

and allows one to understand and interpret it properly.

In this chapter we identify the several aspects of digital objects as well as what kind of

information (and how much of it) do we need in order to ensure that a digital object remains

intelligible. We reduce the problem of deciding intelligibility to dependency management be-

tween digital objects. We discuss some OAIS related concepts and result in the proposal of

a formal model for the preservation of intelligibility of digital objects on the basis of desig-

nated community knowledge and we identify a set of basic intelligibility-related services based

on this model. Furthermore we provide the guidelines for the modeling and implementation of

the model. Finally we describe the design and implementation of the GapMgr tool that realizes

these notions, and report our experiences from the application of this model in the context of

CASPAR project.

15

3.1 On Digital Objects and Dependencies

We live in a digital world. Everyone nowadays work and communicate using computers. We

communicate digitally using e-mails and voice platforms, watch photographs in digital form, use

computers for complex computations and experiments. Moreover information that previously

existed in analog form (i.e. paper) is digitized. The amount of digital objects that libraries and

archives maintain constantly increases. It is therefore urgent to ensure that these digital objects

will remain functional, usable and intelligible in future. But what should we preserve and how?

To answer this question we must first define what a digital object is.

A Digital object is an object composed of a set of bit sequences. At the bit stream layer

there is no qualitative difference between digital objects. However in upper layers we identify

several types of digital objects. They can be classified to simple or composite, static or dynamic,

rendered or non-rendered etc. Since we are interested in preserving the intelligibility of digital

objects we can distinguish them in two broad categories based on the different interpretations

of their content, to information objects and computational objects. Information objects contain

the knowledge about something in a data structure that allows their exchangeability. Examples

of information objects are documents, data-products, images, ontologies. The content of infor-

mation objects can many times be described straightforwardly in analog form, i.e. the contents

of a document are the same in reader’s eyes in digital form and printed on a paper. Computa-

tional objects on the other hand are actually sets of instructions for a computer. These objects

use computational resources to do various tasks. Typical examples of computational objects are

software applications.

Information objects are absolutely useless if we cannot understand their content. So infor-

mation objects may require extra information that allows one to understand them. This extra

information is expressed using other information objects. For example in order to understand

the concepts of an ontology we must also have available any other concept from any other ontol-

ogy it uses. As another example consider scientific data products. These products are usually

aggregations of other (even heterogeneous) primitive data. The provenance information of these

data products can be preserved using scientific workflows [9]. The key advantage of scientific

workflows is that they record data (and process) dependencies during workflow runs. For ex-

ample Figure 3.1 shows a workflow that generates two data products. In this figure rectangles

represent data and the edges are used to capture derivative data and express the dependability

of the final products from the initial and intermediate results. Capturing these dependencies

16

Figure 3.1: The generation of two data products as a workflow

allow the understandability, reproducibility and validity of data products.

Information objects are typically organized as files (or collections of files). It is not possible

however to identify the contents of a file if we do not have the software that was used to create

it. Indeed information objects use complex structures to encode information and embed extra

information that is meaningful only to the software application that created them. For example

a MS-Word document embeds special formatting information about the layout, the structure,

the fonts etc. This information is not identifiable from another text editor, i.e. Notepad. As a

result information objects have become dependent from software.

Software applications in turn typically use computational resources to perform a task, for

example a java program that does complex mathematic calculations. The above program does

not explicitly use these resources (i.e. it does not define memory addresses to store numbers),

but rather exploit the functionalities of other programs that handles these issues. Further-

more software reusability allows one to reuse a software program and exploit its functionalities.

Although software re-use is becoming a common practice, this policy results to dependencies

17

Figure 3.2: The dependencies of mspaint software application

between software components. These dependencies are interpreted as the reliance of a software

component on others to support a specific functionality. In other words a software application

cannot even function if the applications it depends on are not available, i.e. we cannot run the

above java program if we haven’t installed a Java Virtual Machine.

It is becoming clear that digital objects are actually complex data structures that either

contain information about something or use computational resources to do various tasks. These

objects depend on a plethora of other resources whose record is of great importance for the

preservation of their intelligibility. Additionally these dependencies can have several different

interpretations. In [38, 14] dependencies between information objects are exploited for ensuring

consistency and validity. In [9] dependencies are used over data products, through scientific

workflows. Such dependencies apart from being useful for understanding and validating data

can also aid the reproducibility of data products. [2] proposes an extended framework for file

systems that allow users define dependency links between files. The semantics of these links are

defined by users through key-value pairs. Finally many dependency management approaches for

software components [5, 15, 46, 47, 48] have been described in the literature. The interpretation

of these dependencies vary including the safety of installation or de-installation, the ability to

18

perform a task, the selection of the most appropriate component, the consequences in software

components after a specific component’s service is called.

3.1.1 OAIS - Preserving the Understandability

According to OAIS Data Objects are considered to be either physical objects (objects with

physically observable properties) or digital objects. Every Data Object along with some extra

information about the object forms an Information Object. Information is defined as any piece

of knowledge that is exchangeable and can be expressed by some type of data. For example the

information in a Greek novel book is expressed as the characters that are combined to create

text. The information carried out in a text file in digital form (in a CD-ROM) is expressed

by the bits it contains which, when they are combined with extra information that interprets

them (i.e. mapping tables and rules) will convert them to more meaningful representations (i.e.

characters). This extra information that maps a Data Object into more meaningful concepts

is called Representation Information (RI). In brief, the RI of a digital object should comprise

information about the Structure, the Semantics and the needed Algorithms for interpreting and

managing a digital object. It follows that intelligibility is closely related to RI.

Every Information Object needs a RI object that interprets it. This relationship (interpreted

using) is actually a specialized form of dependency between Information Objects. The semantics

of this dependency is to explain in a human-understandable manner how a data object can be

interpreted. For example if a data object is a digital image then its RI will describe how the

content of the image can be rendered on a computer screen. Since RI is intended for humans

the above information must be in a human-understandable form. It does not address the issue

of explicitly denoting that an information object (i.e. an image) needs a specific application

that recognizes it (i.e. an image viewer). It’s a responsibility of an OAIS to find (or create new)

software conforming to the given Representation Information for this information object.

The notion of interpretation as stated by OAIS is more restricted than the general notion

of dependency, described in the previous section. Dependencies can be exploited for capturing

the required information for digital objects not only in terms of their intelligibility, but also in

terms of validity, reproducibility or functionality (if it is a software application). Furthermore

the interpretation of digital objects using human-understandable information may not be always

feasible.

For example a file in FITS format is understandable only from persons that know how to

19

FITS FILE

FITS
Documentation

FITS
S/W

FITS
Dictionary

XML
Specification

PDF
Specification

Figure 3.3: The Representation Network of a FITS file

handle this format. Someone that does not understand this file needs additional Representation

Information. Figure 3.3 shows such a representation network for FITS file. Rectangles are used

to denote RI objects and edges are used to denote dependencies of the form interpretedUsing.

Consequently the extra information that is required by someone that does not know anything

about FITS files would be information about the software that is needed and the concepts and

notations that are used from FITS files. More specifically the RI for FITS software describes

which are the algorithms that are used and recognize FITS files. So it is actually a description

of the application in human understandable form. Additionally the FITS Documentation and

FITS Dictionary are expressed in PDF and XML respectively. So we must provide extra RI

that interprets them.

3.2 A Formal Model for the Intelligibility of Digital Objects

3.2.1 A Core Model for Digital Objects and Dependencies

We introduce a core model for the intelligibility of digital objects based on dependencies.

The basic notions of the model are the notions of Module and Dependency. As we described in

Section 3.1 digital objects are dependent from a plethora of other resources. Recall that these

resources can be described as objects containing information and objects using other resources.

We use the very general notion of module to model these resources. A module can be any

digital object, either information or computational object. There is no standard way to define

a module, so we can have modules of various levels of abstraction, a module can be a collection

20

of documents, or alternatively every document in the collection may be a module.

In order to ensure the intelligibility of digital objects we must first identify which are the

permissible actions with these objects. This is very important due to the heterogeneity of

digital objects and the information they convey. For example assuming a file HelloWorld.java,

some indicative actions we can perform with it is to compile it and read it. To this end we

introduce the notion of tasks; A task is any action that can be performed with modules. Once

we have identified the tasks, it is important, for the preservation of intelligibility, to preserve

how these tasks are performed. So we have to define which are the necessary resources (in terms

of modules) for the performability of a task using the notion of dependencies. The reliance of

a module on others for the performability of a task is denoted using dependencies between

modules. For example for the task of compiling the previous file we could define that it depends

on the availability of a java compiler and any other classes, libraries it requires (i.e. import

statements). Therefore a rich dependency graph is created over the set of modules. In the

sequel we use the following notations; we define T as the set of all modules and the binary

relation > on T is used for representing dependencies. A relationship t > t′ (t, t′ ∈ T) means

that t depends on t′.

The interpretations of modules and dependencies are very general and can capture a plethora

of cases. Additionally the determination of dependencies based on tasks will lead to the cre-

ation of several dependencies, with different interpretations. In order to distinguish the various

interpretations of dependencies we enrich the notion of dependencies with dependency types.

We require every dependency to be assigned with at least one type that denotes which is the

objective of the dependency. For example the software dependencies in Figure 3.2 (Section 3.1)

denote dependencies of a software application if we want to run it. Therefore these dependencies

should be assigned an appropriate type (i.e. run). Complementarily we can organize depen-

dency types hierarchically. The motivation of such a taxonomy of types is the need for enabling

deductions of the form “if we can do task A then certainly we can do task B”. For example if

we can edit a file then certainly we can read it. Therefore let D be the set of all dependency

types, two types d, d′ ∈ D then d ⊑ d′ if d is a subtype of d′, i.e. edit ⊑ read.

Module types are defined in a similar manner. These types can be exploited to specialize

the very general notion of module to more concrete elements. For example a module containing

the source code of a program in java could be defined as SoftwareSourceCode. However every

module that contains source code can be defined also as a module containing text. Therefore

21

Module

_depends

Software
SourceCode

Software
Application

_compile
Compiler

Module

_depends

Software
SourceCode

Software
Application

_compile
Compiler

Figure 3.4: Restricting the domain and range of dependencies

the above type is actually a subtype of TextFile. So again we can organize module types as an

hierarchy of types. If C is the set of all modules and c, c′ ∈ C then c ⊑ c′ denotes the subtype

relation in C.

Since the number of dependency types may increase, it is beneficial to organize them fol-

lowing an object-oriented approach. More specifically we can use module types and specify

the domain and range of each dependency type. For example consider the dependency type

compile denoting the dependencies regarding the compilation of a file. Clearly the domain

of this dependency type must be a module denoting source code files while the range must be

a compiler. This scenario is shown in Figure 3.4. Thick arrows are used to denote subtype

relationships.

Our model allows the representation of dependencies of various interpretations. Just indica-

tively we can model all the dependencies of digital objects as presented at Section 3.1. For ex-

ample in Figure 3.1 a data workflow example is illustrated. This workflow defines the derivation

of data product from its initial data to allow the understandability, validity and reproducibility

of the final data product. In our model data can be modeled as modules and dependencies can

be exploited to model the derivation edges, in order to preserve the above tasks. Similarly our

model allows a straightforward modeling of a representation network of OAIS (Figure 3.3), since

the notion interpretedUsing is just a specialized form of dependency. Additionally a module can

have several dependencies of various types. For example Figure 3.5 illustrates the dependencies

of a file in FITS format. Modules are represented as boxes and arrows between them are used

to denote dependencies (the starting module depend on the ending module) of different types.

The file mars.fits can be read only with an appropriate application which is modeled with

22

mars.fits

FITS
Documentation

FITS
S/W

FITS
Dictionary

XML
Viewer

JVMPDF Reader

_read

_function_render _render

_understand_understand

mars.fits

FITS
Documentation

FITS
S/W

FITS
Dictionary

XML
Viewer

JVMPDF Reader

_read

_function_render _render

_understand_understand

Figure 3.5: Modeling the dependencies of a FITS file

the FITS S/W module. This in turn requires the availability of Java Virtual Machine in order

to function. If our aim is to understand the concepts of the file the we must have available

the FITS Documentation and FITS Dictionary. These files are in PDF and XML format and

therefore require the existence of the appropriate application that renders their contents. Such

a dependency graph is richer than an OAIS-representation network (recall Figure 3.3), since it

allows the definition of dependencies of various interpretations.

3.2.1.1 Conjunctive versus Disjunctive Dependencies

The dependencies (and their types) are determined by the task that must be performed

with modules. More specifically for a given module we identify which are the dependencies of

the module in order to perform a specific task with it. However there are usually more than

one ways to perform a task. Consider for example the file HelloWorld.java. For ensuring its

readability, a text editor is required, i.e. NotePad. However this file can also be read using other

text editors (i.e. VI). Therefore the dependencies regarding the readability of the file should be

that HelloWorld.java depends on NotePad OR VI. Dependencies are considered so far to have

conjunctive dependencies, so it is not possible to model the above scenario. We must address

the problem of determining dependencies also in a disjunctive manner.

The disjunctive nature of dependencies was first approached at [41] using the concept of

generalized modules, a set of modules that were interpreted disjunctively. The management

of these modules was rather complex, so in the context of this work we found an extended

model by allowing disjunctive dependencies using Horn rules. The extended model apart from

simplifying the disjunctive semantics of dependencies is also more expressible and flexible, as it

23

allows defining properties of dependencies straightforwardly.

Suppose that we want to preserve the digital objects of a user’s laptop. The user’s sys-

tem contains the files HelloWorld.java, HelloWorld.cc and the software components javac,

NotePad, VI and JVM. We want to preserve the ability to edit, read, compile and run these files.

To this end we are using facts and rules. The digital objects of the system are modeled using

facts while rules are employed in order to represent tasks and dependencies. Moreover we can use

rules to represent module and dependency type hierarchies (i.e. JavaSourceCode ⊑ TextFile,

edit ⊑ read). Below we provide the set of facts and rules that hold for the above example in

a human readable form.

1. HelloWorld.java is a JavaSourceFile

2. HelloWorld.cc is a C++SourceFile

3. NotePad is a TextEditor

4. VI is a TextEditor

5. javac is a JavaCompiler

6. JVM is a JavaVirtualMachine

7. Every JavaSourceFile is also a TextFile

8. Every C++SourceFile is also a TextFile

9. A TextFile is Editable if there is a TextEditor

10. A JavaSourceFile is JavaCompilable if there is a JavaCompiler

11. A C++SourceFile is C++Compilable if there is a C++Compiler

12. A file is Readable if it is Editable

13. A file is Compilable if it is JavaCompilable

14. A file is Compilable if it is C++Compilable

Lines 1-6 are actually facts describing the digital objects while lines 7-14 are rules denot-

ing various tasks and how they can be carried out. More precisely the rules 7,8 are used to

denote an hierarchy of module types (JavaSourceFile ⊑ TextFile and C++SourceFile ⊑

24

TextFile) and the rules 12-14 are used to define an hierarchy of tasks (Editable ⊑ Readable,

JavaCompilable ⊑ Compilable and C++Compilable ⊑ Compilable). Finally the rules 9-11 are

used to express which are the tasks that can be performed and which are the dependencies of

those tasks (i.e. the readability of a TextFile depends on the availability of a TextEditor).

Using such facts and rules we model the modules and their dependencies based on the tasks that

can be performed. For example in order to determine the compilability of HelloWorld.java we

must use the rules 1,5,10,13. In order to read the content of the same files we must use the rules

1,3,7,9,12. Alternatively (since there are 2 text editors) we can perform the same task using the

rules 1,4,7,9,12.

Below we provide the formal definition of modules, dependencies, the semantics of these

dependencies, as well as various properties of these concepts. We will use the terminology and

syntax used in Datalog to address these issues.

Modules - Module Type Hierarchies Modules are expressed as facts. Since we allow a

very general interpretation of what a module may be there is no distinction between information

objects and software components. We define all these objects as modules of an appropriate type.

For example the digital objects of the previous example are defined as follows:

JavaSourceFile(‘HelloWorld.java’).

C++SourceFile(‘HelloWorld.cc’).

TextEditor(‘NotePad’).

TextEditor(‘VI’).

JavaCompiler(‘javac’).

JavaVirtualMachine(‘JVM’).

A Module can be classified to one or more modules types. Additionally these types can be orga-

nized hierarchically. Such taxonomies can be represented with appropriate rules. For example

the source files for Java and C++ are also TextFiles, so we use the following rules:

TextFile(X) :- JavaSourceFile(X).

TextFile(X) :- C++SourceFile(X).

We can also capture several features of digital objects using predicates (not necessarily unary),

i.e. ReadOnly(‘HelloWorld.java’).

LastModifDate(‘HelloWorld.java’, ‘2009-10-18’).

25

Task - Dependencies - Dependency Type Hierarchies Tasks and their dependencies

are modeled using rules. For every task we use two predicates; one (which is usually unary) to

denote the task and another one (of arity equal or greater than 2) for denoting its dependencies.

Consider the following example:

IsEditable(X) :- Editable(X,Y).

Editable(X,Y) :- TextFile(X), TextEditor(Y).

The first rule denotes that an object X is editable if there is any Y such that X is editable by

Y. The second rule defines a dependency between two modules for this task. More precisely it

defines that every TextFile depends on a TextEditor in order to edit its contents. Notice that if

there are more than one text editors available (as here) then the above dependency is interpreted

disjunctively (i.e. every TextFile depends on any of the two TextEditors). Relations of higher

arity can be employed according to the requirements e.g.

IsRunnable(X) :- Runnable(X,Y,Z).

Runnable(X,Y,Z) :- JavaSourceFile(X), Compilable(X,Y), JavaVirtualMachine(Z).

Furthermore we can express hierarchies of types using rules. The motivation is the need for

enabling deductions of the form “if we can do task A then we can do task B”. For example if

we can edit a file then certainly we can read it. This is expressed with the following rule:

Read(X) :- Edit(X). Alternatively, or complementarily we can express such deductions at the

dependency level:

Readable(X,Y) :- Editable(X,Y). Finally we can express the properties of dependencies (e.g.

transitivity) using rules. For example if the following two facts hold:

Runnable(‘HelloWorld.class’, ‘JavaVirtualMachine’).

Runnable(‘JavaVirtualMachine’, ‘Windows’).

then we might want to infer that the HelloWorld.class is also runnable under Windows. In

order to define the dependencies of this task as transitive we must add the following rule:

Runnable(X,Z) :- Runnable(X,Y) , Runnable(Y,Z). Other properties (i.e. symmetry) that

dependencies may have are defined analogously.

3.2.1.2 Synopsis

Synopsizing we provide the formal definitions for modeling digital objects and their depen-

dencies for the preservation of intelligibility.

26

• A Module can be any digital object (i.e. a document, a software application etc.) and

may have one or more module types.

• The reliance of a module on others for the performability of a task is modeled using

dependencies between modules.

Therefore the performability of a task determines which are the dependencies. In some cases

a module may require all the modules it depends on while in other cases only some of these

modules may be sufficient. In the first case dependencies have conjunctive semantics and the

task can be performed only if all the dependencies are available while in the second case they

have disjunctive semantics and the task can be performed in more than one ways (a text file

can be read using NotePad OR VI).

Modules and dependencies form a dependency graph. The graph is global in the sense that

it contains all the modules that have been recorded. Dependencies are represented as edges that

connect the nodes-modules of the graph. Since the dependencies of a module are always the

same the adoption of a global dependency graph is adequate. For example if we want to retrieve

the dependencies of a module for the performability of a task we must find the module in the

dependency graph and resolve its dependencies.

Axiom 1 Modules and their dependencies form a dependency graph G = (T,>). Every module

in the graph has a unique identifier and its dependencies are always the same.

3.2.2 Formalizing Designated Community Knowledge

So far dependencies have been recognized as the key notion for preserving the intelligibil-

ity of digital objects. However since nothing is self-explaining we will result in long chain of

dependent modules. So an important rising question is: how many dependencies do we need

to record? OAIS address this issue by exploiting the knowledge that is assumed to be known

from a community. According to OAIS a person, a system or a community of users can be said

to have a Knowledge Base which allows them to understand received information (recall that

OAIS aims at the human understandability of data objects). For example a person who has a

Knowledge Base that includes the understanding of Greek language will be able to understand

a Greek text.

We can use a similar approach and therefore limit the long chain of dependencies that have

to be recorded, on the basis of the knowledge that is assumed to be known from a designated

27

community. A Designated Community is an identified group of users (or systems) that are able

to understand a particular set of information. DC Knowledge is the information that is assumed

to be known from the users of that community. The Knowledge Base of OAIS only makes

assumptions about the community knowledge, i.e. Java programmers know how to program in

JAVA. However in our work we allow making these assumptions explicit by assigning to the

users of a community the modules that are known from them. To this end we introduce the

notion of DC Profiles.

Definition 1 A DC Profile T (u) is a set of modules that are assumed to be known from the

users u of a Designated Community.

The above notion implies that the users of a community know a set of modules, in the sense

that they know what tasks to perform with these modules. However the performability of these

tasks is represented with dependencies. However according to Axiom 1 the dependencies of a

module are always the same. So the knowledge of a module from a user implies, through the

dependency graph, the knowledge of its dependencies as well, and therefore the knowledge of

performing various tasks with the module. We discuss the consequences of not making this

assumption later in Section 3.2.5.

Figure 3.6 shows the dependency graph for two digital objects, the first being a document

in PDF format (handbook.pdf) and the second a file in FITS format (mars.fits). Moreover

two DC profiles over these modules are defined. The first (in blue) is a DC profile for the

community of astronomers and contains the modules T (u1) ={FITS Documentation, FITS S/W,

FITS Dictionary} and the other (in red) is defined for the community of ordinary users and

contains the modules T (u2) ={PDF Reader, XML Viewer}. So for example every astronomer

(every user having DC profile u1) understands the module FITS S/W, in the sense that she

knows how to use this software application.

The knowledge of a module from a user means that the user is able to perform all the tasks

with the module. Therefore she can understand its dependencies. For example astronomers

know the module FITS S/W denoting the software application for FITS files. They know how

to run this application, so they know the dependency FITS S/W > JVM. So if we want to find all

the modules that are understandable from the users of a DC profile, then we must resolve all the

direct and indirect dependencies of their known modules (T (u)). For example the modules that

are understandable from astronomers are {FITS Documentation, FITS S/W, FITS Dictionary,

PDF Reader, JVM, XML Viewer}, however their DC profile is a subset of the above modules.

28

mars.fits

FITS
Documentation

FITS
S/W

FITS
Dictionary

XML
Viewer

JVM

PDF Reader

handbook.pdf

u1:Astronomers
Profiles

u2:Ordinary Users
Profile

mars.fits

FITS
Documentation

FITS
S/W

FITS
Dictionary

XML
Viewer

JVM

PDF Reader

handbook.pdf

u1:Astronomers
Profiles

u2:Ordinary Users
Profile

Figure 3.6: DC Profiles Example

This approach allows us to reduce the size of DC profiles by keeping only the maximal modules

(maximal with respect to the dependency relation) of every DC profile. Therefore we can remove

from the DC profile modules whose knowledge is implied from the knowledge of an “upper”

module and the dependency graph. For example if the astronomers profile contained also the

module JVM then we could safely remove it since its knowledge from astronomers is guaranteed

from the knowledge of FITS S/W.

3.2.3 Intelligibility-related Preservation Services

3.2.3.1 Deciding Intelligibility

Assume the following scenario: There are two users u1, u2 who want to reproduce the music

of an mp3 file. The user u1 successfully reproduces the file while u2 does not recognize it and

requests its dependencies. The dependency that has been recorded is that the mp3 file depends

on the availability of a mp3-compliant player, say Winamp (regarding reproducibility). The user

is informed about this dependency and installs the application. However she claims that the file

cannot be reproduced. This occurs because the application in turn has some other dependencies

which are not available to the user, i.e. Winamp > Lame mp3. After the installation of this

dependency, user u2 is able to reproduce the file. So the ability to perform a task depends

on the knowledge that is assumed to be known, as well as on the dependencies of the module.

However these dependencies might not be enough to ensure the performability of the task (as

shown above) and therefore we must resolve the dependencies transitively.

29

In general we define intelligibility as the ability to perform several tasks with a module.

In order to decide the intelligibility of a module from a user we must find all the necessary

modules by traversing the dependency graph and recording the encountered modules, and then

compare them with the modules of the DC profile of a user. However the disjunctive nature

of dependencies complicates this decision. Disjunctive dependencies are used to denote the

different ways to perform a task. This is translated in several paths at the dependency graph

and we must find at least one such path that is intelligible by a user. The problem becomes even

more complicated due to the properties (e.g. transitivity) that dependencies may have (which

can be specified using rules as described in Section 3.2.1.1). On the other hand the path that

is obtained from the dependency graph for the performability of a task when dependencies are

conjunctive is always unique. Below we describe the different approaches that are used to decide

the intelligibility of an object for disjunctive and conjunctive dependencies.

Conjunctive Dependencies

If dependencies are interpreted conjunctively then this means that the module requires the

existence of all its dependencies for the performability of a task. To this end we must resolve

all the dependencies transitively, since a module t will depend on t′, this in turn will depend on

t′′ etc. Consequently we introduce the notions of required modules and closure.

• The set of modules that a module t requires in order to be intelligible is the set

Nr+(t) = {t′|t >+ t′}.

• The closure of a module t, is the set of the required modules plus module t.

Nr∗(t) = {t} ∪Nr+(t).

The notation >+ is used to denote that we resolve dependencies transitively. So in order

to retrieve the set Nr+(t) we must traverse the dependency graph starting from module t and

recording every module we encounter. For example the set Nr+(mars.fits) in Figure 3.6 will

contain the modules {FITS Documentation, FITS S/W, FITS Dictionary, PDF Reader, JVM,

XML Viewer}. This is the full set of modules that are required for making the module mars.fits

intelligible.

In order to decide the intelligibility of a module t with respect to DC profile of a user u we

must examine if the user of that profile knows the modules that are needed for the intelligibility

of t. To this end we define that:

30

Definition 2 A module t is intelligible by a user u, having DC profile T (u) iff its required

modules are intelligible from the user, formally Nr+(t) ⊆ Nr∗(T (u))

Recall that according to Axiom 1, the users having profile T (u), will understand the modules

contained in the profile, as well as all their required modules. In other words they can understand

the set Nr∗(T (u)).

For example the module mars.fits is intelligible by astronomers (users having the DC pro-

file u1) since they already understand all the modules that are required for making mars.fits

intelligible. Also the module handbook.pdf is intelligible by users having DC profiles u1, u2.

Nr+(mars.fits) ⊆ Nr∗(T (u1))

Nr+(handbook.pdf) ⊆ Nr∗(T (u2))

Nr+(handbook.pdf) ⊆ Nr∗(T (u1))

Nr+(mars.fits) * Nr∗(T (u2))

Disjunctive Dependencies

However the above approach will give incorrect results when the dependencies are disjunctive.

Disjunctive dependencies are used to denote the different ways to perform a task which leads

to multiple paths of required modules for the performability of the task. Therefore the set of

required modules in this case will not be unique. Consider for example the dependencies that

are shown in Figure 3.7. The dependencies in this example are interpreted disjunctively. So

the module o depends on either the module t1, or t2. In this case we have two possible sets for

Nr+(o); Nr+(o) = {t1, t3} and Nr+(o) = {t2, t4}.

In the case of disjunctive dependencies we model modules as facts, and tasks and their

dependencies using rules (Section 3.2.1.1). The dependency graph, like the occasion of the

conjunctive dependencies, will be the same for different users. It will contain the tasks, the

dependencies and the taxonomies of tasks and modules. Different users will have different

modules that are available to them. For example Figure 3.8 shows a proposed architecture of a

system based on facts and rules. In the upper layer the boxes contain information available to

all the users regarding the tasks, their dependencies and any taxonomies of tasks and modules.

The lower layer contains the modules that are available to each user. Every box corresponds to a

user i.e. James has a file HelloWorld.java in his laptop and also has installed the applications

Notepad and VI. If a user wants to perform a task with a module then she can use the facts of

31

o

t1 t2

t3 t4

OR

Figure 3.7: The disjunctive dependencies of a digital object o

TextFile(X) :- JavaSourceFile(X).

IsReadable(X) :- IsEditable(X).

IsEditable(X) :- Edit (X,Y).
Edit (X,Y) :- TextFile(X), TextEditor(Y).
IsCompilable(X) :- Compile(X,Y).
Compile(X) :- JavaSourceFile(X), JavaCompiler(Y).

James’s Profile
JavaSourceFile(‘HelloWorld.java’).
TextEditor(‘NotePad’).
TextEditor(‘VI’).

Helens’s Profile
JavaSourceFile(‘HelloWorld.java’).
JavaCompiler(‘javac’).

Tasks –
Dependencies –
Properties

Task Taxonomy

Module Taxonomy

Figure 3.8: A Partitioning of facts and rules

her box and also exploit the rules from the the boxes of the upper layer.

Suppose now that James wants to edit the module HelloWorld.java. To this end he must

use a set of rules allowing him to deduce if he is able to perform this task. So the problem of

deciding the intelligibility of a module relies on Datalog query answering over the set of modules

that are available to the user. More specifically we send a Datalog query regarding the task we

want to perform with a module and check if the answer of the query contains that module. If the

module is not in the answer then the task cannot be performed and some additional modules are

required. For example in order to check the editability of HelloWorld.java James will send the

Datalog query IsEditable(X). The answer will contain the above module denoting that James

32

can successfully perform the task. In fact he can edit it using any of the two different text

editors that are available to him. Suppose now that he wants to compile this file and therefore

sends a query of the form IsCompilable(X). However the answer of this query is empty since

James does not have a compiler for performing the task. Similarly Helen can only compile

HelloWorld.java and not edit it.

3.2.3.2 Discovering Intelligibility Gaps

If a module is not intelligible from the users of a DC profile, then we have an Intelligibility Gap

and we must provide extra modules to the users of that community in order to understand the

module. More specifically the intelligibility gap will contain only those modules that are required

for the user to understand the module. This policy enables the selection of only the missing

modules instead of the selecting all the required modules and hence avoiding redundancies.

However the disjunctive nature of dependencies makes the computation of intelligibility gap

complicated because of the multiple paths that exist in the dependency graph. So we distinguish

the cases of conjunctive and disjunctive dependencies for the computation of intelligibility gap.

Conjunctive Dependencies

If the dependencies have conjunctive semantics then a task can be performed only if all its

required modules are available. If any of these modules is missing then the module is not

intelligible from the user. So if a module t is not intelligible by a user u, then intelligibility gap

is defined as follows:

Definition 3 The intelligibility gap between a module t and a user u with DC profile T (u) is

defined as the smallest set of extra modules that are required to make it intelligible. Formally

Gap(t, u) = Nr+(t) \ Nr∗(T (u))

For example in Figure 3.6 the module mars.fits is not intelligible from ordinary users (users

with DC profile u2). Therefore its intelligibility gap will be:

Gap(mars.fits, u2) = {FITS Documentation, FITS SW, FITS Dictionary, JVM}

Notice that the modules that are already known from u2 (PDF Reader, XML Viewer) are not

included in the gap. If a module is already intelligible from a user, the intelligibility gap will be

an empty set denoting that there is no need to provide extra information about the module in

order to be understandable from the user. (i.e. Gap(mars.fits, u1) = ∅).

33

Suppose now that we have a module and we want to perform a task with it, i.e. read it.

If we fail to read it, there will be an intelligibility gap, whose modules might be more than

those we are in need of. This happens because the above definition of intelligibility gap does

not consider the different interpretations of dependencies. Consequently we enrich the above

notion with dependency types in order to retrieve the exact set of modules that are missing for

the performability of A specific task.

As a motivating example suppose that we have the file HelloWorld.java, shown in figure

3.9. This file depends on the modules javac and Notepad representing the tasks of compiling

and editing it correspondingly. Furthermore a DC profile u is specified containing the module

Notepad. Suppose that a user, having DC Profile u, wants to edit the file HelloWorld.java.

The editability of this file requires only the module Notepad. However if the user requests for

the intelligibility gap (Gap(HelloWorld.java, u)) it will contain the module javac even if it is

not required for the editability of the module.

So we must traverse the dependencies of a specific type. However dependency types are

organized hierarchically and therefore we must also include all the subtypes of the given type.

Additionally the user might request the dependencies for the performability of more than one

tasks, by issuing several dependency types. Given a set of dependency types W , we define:

t >W t′ iff (a) t > t′ and (b) types(t > t′) ∩W ∗ ̸= ∅

where types(t > t′) is used to denote the types of the given dependency and W ∗ is the set of all

possible subtypes of the given set of types, W ∗ = ∪d∈W ({d} ∪ {d′ | d ⊑ d′}).

So we require that at least one type of the dependency t > t′ must exist in the set W or it

must be a subtype of one type in W . This is because (a) a dependency might be used for the

performability of more than one tasks (and therefore is assigned more than one types), but we

are only interested in performing a single task, and (b) we want to perform all the tasks that

are denoted by W , so we must get all the dependencies that are due to any of these tasks, which

is actually the union of all the dependencies for every task denoted in W. The intelligibility gap

between a module t and a user u with respect to a set of dependency types W is defined as

Gap(t, u,W) = { t′ | t >+
W t′} \ Nr∗(T (u))

Below we describe the intelligibility gaps between the module HelloWorld.java and the DC

profile u for the compilation and editability of the file.

Gap(HelloWorld.java, u, { edit}) = ∅

34

HelloWorld.class JVM
_run

HelloWorld.java

javac

Notepad

_compile

_edit
u: Ordinary users

profile

Figure 3.9: Dependency Types and Intelligibility Gap

Gap(HelloWorld.java, u, { compile}) = {javac}

Gap(HelloWorld.java, u, { edit, compile}) = {javac}

Disjunctive Dependencies

If the dependencies are interpreted disjunctively and a task cannot be carried out, there can

be more than one ways to compute the intelligibility gap. This is due to the several paths

that can be followed at the dependency graph for the performability of the task. To this end

we must find the possible explanations (the possible modules) whose availability would entail

a consequence (the performability of the task). For example assume that James, from Figure

3.8, wants to compile the file HelloWorld.java. Since he cannot compile it, he wants to know

how to do it. Therefore we must find and deliver him the possible facts that will allow him to

perform the task.

In order to find the possible explanations of a consequence we can use abduction [23, 8, 12].

Abductive reasoning allows inferring an atom as an explanation of a given consequence. There

are several models and formalizations of abduction. Below we describe how the intelligibility

gap can be computed using logic-based abduction. Logic-based abduction can be described

as follows: Given a logical theory T formalizing a particular application domain, a set M of

predicates describing some manifestations (observations or symptoms), and a set H of predicates

containing possible individual hypotheses, find an explanation for M, that is, a suitable set

S ⊆ H such that S ∪ T is consistent and logically entails M . Consider for example that

James (from Figure 3.8) wants to compile the file HelloWorld.java. He cannot compile it

and therefore he wants to find the possible ways of compiling it. In this case the set T would

contain all the tasks and their dependencies, as well as the taxonomies of modules and tasks

35

(the upper part of Figure 3.8). The set M would contain the task that cannot be performed (i.e.

IsCompilable(X)). Finally the set H would contain all the modules that exist and are possible

explanations for the performability of the task (i.e. all modules in the lower part of Figure

3.8). Then JavaCompiler(’javac’) will be an abductive explanation, denoting the necessity

of this module for the compilability of the file. Additionally if there are more than one possible

explanations then logic-based abduction would result all of them. Finally one can define criteria

for picking an explanation as “the best explanation” rather than returning all of them.

3.2.3.3 Profile-Aware Packages

The availability of dependencies and community profiles allows deriving packages, either

for archiving or for dissemination, that are profile-aware. For instance OAIS [20] distinguishes

packages to AIPs (Archive Information Packages), which are Information Packages consisting of

Content Information and the associated Preservation Description Information (PDI) and DIPs

(Dissemination Information Packages), that are derived from one or more AIPs as a response to

a request of an OAIS. The availability of explicitly stated dependencies and community profiles,

enables the derivation of packages that contain exactly those dependencies that are needed

so that the packages are intelligible by a particular DC profile and are redundancy-free. For

example in Figure 3.6 if we want to preserve the file Mars.fits for astronomers (users with DC

profile u1) then we do not have to record any dependencies since the file is already intelligible

by the community. If on the other hand we want to preserve this module for the community

of ordinary users (users with DC profile u2), then we must also record the modules that are

required for this community in order to understand the module.

Definition 4 The (dissemination or archiving) package of a module t with respect to a user or

community u, denoted by, Pack(t, u), is defined as:

Pack(t, u) = (t, Gap(t, u))

Figure 3.10 shows the dependencies of a digital object o1 and three DC profiles. The depen-

dencies in the example are conjunctive. The packages for each different DC profile are shown

below:

Pack(o1, DC1) = (o1, {t1, t3})

Pack(o1, DC2) = (o1, {t1, t2, t4})

Pack(o1, DC3) = (o1, {t1, t2, t3, t4, t5, t6})

36

t1

t2 t3

t4 t5 t6

t8 t7

o1

DC1 ={t2}
DC2 ={t3,t5}

Object = o1
DCprofile = DC1
deps = {t1,t3}

Object = o1
DCprofile = DC1
deps = {t1,t3}

Object = o1
DCprofile = DC2
deps = {t1,t2,t4}

Object = o1
DCprofile = DC2
deps = {t1,t2,t4}

DC3 ={t7,t8}

Object = o1
DCprofile = DC3
deps = {t1,t2,t3,t4,t5,t6}

Object = o1
DCprofile = DC3
deps = {t1,t2,t3,t4,t5,t6}

AIP of o1 wrt DC1 AIP of o1 wrt DC2 AIP of o1 wrt DC3

Figure 3.10: Exploiting DC Profiles for defining the “right” AIPs

We have to note at this point that there is not any qualitative difference between DIPs and

AIPs from our perspective. The only difference is that AIPs are formed with respect to the

profile decided for the archive, which we can reasonably assume that it is usually richer than

user profiles. For example in Figure 3.10 three different AIPs for module o1 are shown for three

different DC Profiles. The DIPs of module o1 for the profiles DC1, DC2 and DC3 are actually

the corresponding AIPs without the line that indicates the profile of each package.

Additionally Community knowledge evolves and consequently DC profiles may evolve over

time. In that case we can reconstruct the AIPs according to the latest DC profiles. Such an

example is illustrated in Figure 3.11. The left part of the figure shows a DC profile over a

dependency graph and at the right part it is a newer, enriched version of the profile. As a

consequence the new AIP will be smaller than the original version.

3.2.3.4 Dependency Management and Ingestion Quality Control

The notion intelligibility gap allows reducing the amount of dependencies that have to be

archived/delivered on the basis DC profiles. Another aspect of the problem concerns the inges-

tion of information. Specifically, one rising question is whether we could provide a mechanism

37

t1

t2 t3

t4 t5 t6

t8 t7

o1

DC2 ={t3,t5}

Object = o1

DCprofile = DC2
deps = {t1,t2,t4}

Object = o1
DCprofile = DC2

deps = {t1,t2,t4}

AIP of o1 wrt DC2

Object = o1

DCprofile = DC2
deps = {t1}

Object = o1
DCprofile = DC2

deps = {t1}

AIP of o1 wrt DC2’

t1

t2 t3

t4 t5 t6

t8 t7

o1

DC2 ={t3,t5}

Figure 3.11: Revising AIPs after DC profile changes

(during ingestion or curation) for identifying the representation information that is required or

missing. This requirement can be tackled in several ways: (a) we require each module to be

classified (directly or indirectly) to a particular class, so we define certain facets and require

classification with respect to these (furthermore some of the attributes of these classes could

be mandatory), (b) we define some dependency types as mandatory and provide notification

services returning all those objects which do not have any dependency of that type, (c) we re-

quire that the dependencies of the objects should (directly or indirectly) point to one of several

certain profiles. Below we elaborate on policy (c).

Definition 5 An module t is related with a profile u, denoted by t 7→ u,

if Nr∗(t) ∩Nr∗(T (u)) ̸= ∅.

This means that the direct/indirect dependencies of a module t lead to one or more elements of

the profile u. At the application level, for each object t we can show all related and unrelated

profiles, defined as:

RelProf(t) = { u ∈ U | t 7→ u} and

UnRelProf(t) = { u ∈ U | t ̸7→ u} respectively.

Note that Gap(t, u) is empty if either t does not have any recorded dependency or if t has

dependencies but they are known by the profile u. The computation of the related profiles

allows the curators to distinguish these two cases (RelProf(t) = ∅ in the first and

38

RelProf(t) ̸= ∅ in the second). If u ∈ RelProf(t) then this is just an indication that t has been

described with respect to profile u, but it does not guarantee that its description is complete

with respect to that profile.

If dependencies are interpreted disjunctively, the set of related profiles can be found similarly.

Specifically to identify if a module is related with a profile we must compute the intelligibility

gap with respect to that profile and with respect to an empty profile (a profile that contains no

facts at all), gap1 and gap2 correspondingly. Since dependencies are disjunctive there might exist

more than one intelligibility gaps, so let gap1 and gap2 be the union of all possible intelligibility

gaps. If the two sets contain the same modules (the same facts), i.e. gap1 = gap2, then

the module will not be related with the profile. On the contrary if gap1 is a subset of gap2,

this means that the profile contains some facts that are used to decide the intelligibility of the

module and therefore the module is related with that profile. Finally we do the same for every

profile that exists to find all the related and unrelated profiles.

videoClip

WPlayer Helix

WindowsOS LinuxOS

_reproduce _reproduce

_run _run

u

OR

Figure 3.12: Identifying related profiles when dependencies are disjunctive

Let’s clarify this issue with the following example; Figure 3.12 shows the disjunctive depen-

dencies of a digital video file regarding the ability to reproduce it. Suppose that we want to find

if that module is related with the profile u which contains the module WindowsOS. To this end

we must compute the union of all intelligibility gaps with respect to u and with respect to an

empty profile, gap1 and gap2 correspondingly. Since there are two ways to reproduce the file,

there will be two intelligibility gaps whose unions will contain:

gap1 = {WPlayer, Helix, LinuxOS}

gap2 = {WPlayer, WindowsOS, Helix, LinuxOS}

Here gap1 ⊂ gap2 which implies that videoClip 7→ u.

39

 act IntelligibilityServ ices

Act.1 Identify Tasks

Act.2 M odel Tasks as
Dependencies

Act.3 Capture
Dependencies

Act.4 Model DC
Know ledge

Act.5 Use
Intelligibility-related

Serv ices

Act.6 Ev aluate Serv ices

[M issing
Dependencies]

[NO][YES]

Figure 3.13: Methodological steps for exploiting intelligibility-related services

3.2.4 Methodology for Exploiting Intelligibility-related Services

Below we describe a set of activities that could be followed by one organization (or digi-

tal archivist/curator) for advancing its archive with intelligibility-related services. Figure 3.13

shows an activity diagram describing the procedure that could be followed. In brief the activ-

ities concern the identification of tasks, the capturing of dependencies of digital objects, the

description of community knowledge, the exploitation of intelligibility-related services, the eval-

uation of the services and the curation of the repository if needed. Additionally we provide an

example clarifying how an archivist can preserve a set of 2D and 3D images for the communities

of DigitalImaging and Ordinary users.

Act. 1 Identification of tasks.

40

The identification of the tasks that can be performed with the modules of an

archive is very important since these tasks will determine which are the depen-

dencies of the modules. For the set of digital images the most obvious task is to

render them on screen. Furthermore given that there are two different types of

images we can specialize the task to the subtasks 2Drendering and 3Drendering.

Act. 2 Model tasks as dependencies.

The identified tasks of the previous activity can be modeled using dependency

types. Moreover if there are tasks that can be organized hierarchically then this

should be reflected to the definition of dependencies. For the tasks that were

identified from the previous activity we define the following dependency types:

render render2D, render3D and we would define two subtype relationships:

render2D ⊑ render and

render3D ⊑ render.

We can also determine hierarchies of modules appropriately, by defining module

types, i.e. 2DImage ⊑ Image.

Act. 3 Capture the dependencies of digital objects.

This can be done manually, automatically or semi-automatically. Tools like the

one presented in Chapter 5 can aid this task. For example if we want to render

a 2D image then we must have an Image Viewer and if we want to render a

3D image we must have the 3D Studio application. So some indicative depen-

dencies that will be recorded are:

landscape.jpeg >render2D Image Viewer

Illusion.3ds >render3D 3D Studio etc.

Act. 4 Modeling community knowledge.

This activity enables the selection of those modules that are assumed to be

known from communities of users. To this end we define two profiles; A Dig-

italImaging profile containing the modules {Image Viewer, 3D Studio}, and

an Ordinary profile containing the module {Image Viewer}. The former is

a profile referring to users that are familiar with digital imaging technologies

and the later for everyday users. The activities of modeling the community

knowledge (Act.4) and capturing the dependencies of digital objects (Act. 3)

41

can be performed in parallel. For example this would allow the reduction of

the dependencies that should be captured, i.e. we will not further analyze the

dependencies of Image Viewer because it is already known from both profiles.

Act. 5 Exploit the intelligibility-related services according to the needs.

For instance the intelligibility-related services can be articulated with moni-

toring and notification services. For example, which modules are going to be

affected if we remove the 3D Studio from our system? These modules are:

{t|t >3D Studio}

or which are the missing modules, if an ordinary user u wants to render the 3D

image Illusion.3ds. These modules are:

Gap(Illusion.3ds, u, render) or

Gap(Illusion.3ds, u, render3D)

Act. 6 Evaluate the services in real tasks and curate accordingly the repos-

itory.

For instance, in case the model fails, i.e. in case the gap is empty but the

consumer is unable to understand the delivered module, this is due to depen-

dencies which have not been recorded. For example assume that an ordinary

user wants to render a 3D image. To this end we deliver her the intelligibility

gap which contains only the module 3D Studio. However the user claims that

the image cannot be rendered. It is because there is an additional dependency

that not been recorded, i.e. the matlib library is required to render 3D model

correctly. So a corrective action would be to add this dependency (using the

corresponding activity, Act. 3). Synopsizing, empirical testing is a useful guide

for defining and enriching the graph of dependencies

3.2.5 Relaxing Community Knowledge Assumptions

DC profiles are defined as sets of modules that are assumed to be known from the users of

a Designated Community. According to Axiom 1 the users of a profile will also understand the

dependencies of a module and therefore they will be able to perform all the tasks that can be

performed. However users may know how to perform certain tasks with a module rather than

performing all of them. For example assume the case of java class files. Many users that are

familiar with java class files know how to run them (they know the module denoting the java

42

mars.fits
FITS
S/W JVM

u
JAD

WINDOWS
_read _run

_decompile

_run

_run

mars.fits
FITS
S/W JVM

u
JAD

WINDOWS
_read _run

_decompile

_run

_run

Figure 3.14: Modeling DC profiles without making any assumptions

class files and they understand its dependencies regarding its runability, i.e. the module JVM),

but many of them do not know how to decompile them.

In order to capture such cases, we must define DC profiles without making any assumptions

about the knowledge they convey, (as implied from Axiom 1). No assumptions about the modules

of a profile means that the only modules that are understandable from the user u of the profile

are those in the set T (u). Additionally the only tasks that can be performed are those whose

modules and their dependencies exist in the DC profile. For example Figure 3.14 shows some of

the dependencies of a file in FITS format. The users of profile u know how to run the module

FITS S/W since all the modules it requires exist in T (u). However they cannot decompile it,

even if they know the module FITS S/W, since we cannot make the assumption that a user u

will also understand JAD and its dependencies.

However such an alteration on DC profiles would result in changing some of the definitions

and intelligibility-related services that include profiles, since the set of all the modules that are

understandable to the users of a profile is T (u) (instead of Nr∗(T (u))). Therefore the way of

deciding the intelligibility and computing the intelligibility gap should change as follows:

Deciding Intelligibility: Nr+(t) ⊆ T (u)

Intelligibility Gap: Nr+(t) \ T (u)

Another consequence is that we cannot reduce the size of DC profiles be keeping only the

maximal elements since no assumptions about the knowledge are permitted.

In the case where dependencies are disjunctive, we do not make any assumptions about

the knowledge that is assumed to be known, since the properties of various tasks and their

dependencies are denoted explicitly. In this case the performability of a task is modeled using 2

intentional predicates. The first is used for denoting the task i.e.

IsEditable(X) :- Editable(X,Y).

43

and the second for denoting which are the dependencies of this task i.e.

Editable(X,Y) :- TextFile(X), TextEditor(Y).

DC profiles contain these modules that are available to the users (i.e. TextEditor(‘NotePad’).).

So in order to examine if a task can be performed with a module we rely on specific module types

as they have been recorded in the dependencies of the task, i.e. in order to read a TextFile X

then Y must be a TextEditor. However users may know how to perform such a task without

necessarily classifying their modules to certain module types or they can perform it in a different

way than the one that is recorded.

Such dependencies can be captured by enriching DC profiles with extensionally predicates

(with arity greater than 2) that denotes the knowledge of a user to perform a task in a particular

way, and associating these predicates with the predicates regarding the performarbility of the

task. For example for the task of editing a file we will define three predicates:

IsEditable(X) :- Editable(X,Y).

Editable(X,Y) :- TextFile(X), TextEditor(Y).

Editable(X,Y) :- EditableBy(X,Y).

The predicates IsEditable and Editable are intentional while the predicate EditableBy is exten-

sional. This means that a user who can edit a text file with a module which is not classified as

a TextEditor, and wants to define this explicitly, could use the following fact in his profile

EditableBy(‘readme.txt’, ‘myProgr.exe’).

3.3 Modeling and Implementation Frameworks

3.3.1 Conjunctive Dependencies using Semantic Web languages

Semantic web languages can be exploited for the creation of a standard format for input,

output and exchange of information regarding modules, dependencies and DC profiles. To

this end we created an ontology (expressed in RDFS). Figure 3.15 sketches the backbone of

this ontology. We shall hereafter refer to this ontology with the name COD (Core Ontology

for representing Dependencies). This ontology contains only the notion of DC Profile and

Module and consists of only two RDF Classes and five RDF Properties (and it does not define

any module or dependency type). It can be used as a standard format for representing and

exchanging information regarding modules, dependencies and DC profiles. Moreover it can

guide the specification of the message types between the software components of a preservation

44

Module DC Profile

Literal Literal Literal

knows ◄

depends

has_idhas_id has_name

Module DC Profile

Literal Literal Literal

knows ◄

depends

has_idhas_id has_name

Figure 3.15: The Core Ontology for representing Dependencies (COD)

information system.

The adoption of Semantic Web languages also allows the specialization of COD ontology

according to the needs. Suppose for example we want to preserve the tasks that can be performed

with the objects of Figure 3.9, specifically edit, compile, run. These tasks are represented

as dependency types, or in other words as special forms of dependencies. To this end we propose

specializing the dependency relation, by exploiting “subPropertyOf” of RDF/S. This approach

is beneficial since: (a) a digital preservation system whose intelligibility services are based on

COD will continue to function properly, even if its data layer instantiates specializations of COD

and (b) the set of tasks that can be performed cannot be assumed a priori, so the ability to

extend COD with more dependency types offers extra flexibility.

Additionally COD could be related with other ontologies that may have narrower, wider, over-

lapping or orthogonal scope. For example someone could define that the dependency relation of

COD corresponds to a certain relationship, or path of relationships, over an existing conceptual

model (or ontology). For example the data dependencies that are used to capture the derivation

of a data product in order to preserve its understandability, could be modeled according to OPM

ontology [32] using wasDerivedFrom relationships, or according to the CIDOC CRM Ontology

(Chapter 4) using paths of the form:

S22 was derivative created by → C3 Formal Derivation→ S21 used as derivation source.

The adoption of an additional ontology allows capturing metadata that cannot be captured only

with COD. For example, assume that we want to use COD for expressing dependencies but we

also want to capture provenance information according to CIDOC CRM Digital ontology. To

gain this functionality we should merge appropriately these ontologies. For instance if we want

45

every Module to be considered as a C1 Digital Object, then we would define that Module is a

subClassOf C1 Digital Object. Alternatively one could define every instance of Module also

as an instance of C1 Digital Object. The ability of multiple classification and inheritance of

Semantic Web languages gives this flexibility. The upper part of Figure 3.16 shows a portion of

the merged ontologies. Yellow rectangles represent classes according to CIDOC CRM Digital on-

tology and the blue ones describe classes from COD ontology. Thick arrows represent subclassOf

relationships between classes and simple labeled arrows represent properties. The lower part of

the figure demonstrates how information about the dependencies and the provenance of digital

files can be described. Notice that the modules HelloWorld.java and javac are connected in

two ways: (a) through the compile dependency, (b) through the “provenance path”

Module("HelloWorld.java")→ S21 was derivation source for →

C3 Formal Derivation ("Compilation")→ P16 used specific object→ Module("javac")1

Note that an implementation policy could be to represent explicitly only (b), while (a) could

be deduced by an appropriate query. Furthermore the derivation history of modules (i.e.

HelloWorld.class was derived from HelloWorld.java using the module javac with specific

parameters etc.) can be retrieved by querying the instances appropriately. More information

about modeling provenance and query templates can be found at Chapter 4

3.3.2 Implementation Approaches for Disjunctive Dependencies

The model based on disjunctive dependencies is founded using Horn rules. Therefore we could

use a rule language for implementing it. Below we describe three implementations approaches;

Using Prolog, SWRL, and a DBMS that supports recursion.

Prolog is a declarative logic programming language, where a program is a set of Horn clauses

describing the data and the relations between them. A computation is initiated by running a

query over these relations. So the proposed approach can be straightforwardly expressed in

Prolog. Furthermore and regarding abduction there are several approaches that either extend

Prolog [7] or augment it [6] and propose a new Programming Language.

The Semantic Web Rule Language (SWRL) [17] is a combination of OWL DL and

OWL Lite [10] with the Unary/Binary Datalog RuleML2. SWRL provides the ability to write

1The property S21 was derivation source for that is used in the “provenance path” is a reverse property of the
property S21 used as derivation source that is shown in Figure 3.16. These properties have the same interpretation
but inverse domain and range.

2http://ruleml.org

46

Module
HelloWorld.java

Module
NotePad

Module
javac

Module
JVM

Module
HelloWorld.class

C3 Formal Derivation
Compilation

C1 Digital Object
-Xms256m –Xmx512m

_compile

_edit

_run

S21 used as
derivation source

S22 created
derivative

S13 used parameters

P16 used
specific object

C1 Digital Object

C3 Formal Derivation

Module

C10 Software Execution

S2 used as source
S13 used as parameters

S21 used as derivation source
S22 created derivative

depends

C7 Digital Machine EventS10 had input
S11 had output

S
ch

em
as

R
es

o
u

rc
es

Figure 3.16: Extending COD for capturing provenance

Horn-like rules expressed in terms of OWL concepts to infer new knowledge from existing OWL

KB. For instance, each type predicate can be expressed as a class. Each profile can be expressed

as an OWL class whose instances are the modules available to that profile (we exploit the

multiple classification of SW languages). Module type hierarchies can be expressed through

subclassOf relationships between the corresponding classes. All rules regarding performability

and the hierarchical organization of tasks can be expressed as SWRL rules.

In a DBMS-approach all facts can be stored in a relational database, while Recursive SQL

can be used for expressing the rules. Specifically, each type predicate can be expressed as a

relational table with tuples the modules of that type. Each profile can be expressed as an

additional relational table, whose tuples will be the modules known by that profile. All rules

regarding task performability, hierarchical organosis of tasks, and the module type hierarchies,

can be expressed as datalog queries. Note that there are many commercial SQL servers that

support the SQL:1999 syntax regarding recursive SQL (e.g. Microsoft SQL Server 2005, Oracle

9i, IBM DB2).

The following table (Table 3.1) synopsizes the various implementation approaches and de-

scribes how the elements of the model can be implemented. The table does not contain any

47

What DB-approach Semantic Web-
approach

ModuleType predicates relational table class

Facts regarding Modules
(and their types)

tuples class instances

DC Profile relational table class

DC Profiles Contents tuples class instances

Task predicates IDB predicates predicates appearing in
rules

Task Type Hierarchy datalog rules, or isa if an
ORDBMS is used

subclassOf

Performability datalog queries (recur-
sive SQL)

rules

Table 3.1: Implementation Approaches for Disjunctive Dependencies

information about the Prolog approach since the terminology we used for founding the model

(Section 3.2.1.1) is the same with Prolog, i.e. Facts about modules are represented as facts in

Prolog, rules that are used for dependencies are also rules in Prolog etc.

3.4 Implementation - GapMgr Tool

In this section we describe the implementation of the dependency management services based

on the model we described in Section 3.2. Specifically we define the query and update services

for modules, dependencies and profiles. The dependencies in the model are defined as transitive

and are interpreted conjunctively. We introduce the architecture and the functionalities of

a dependency management tool, GapMgr. Additionally we evaluate the services using several

synthetic data sets and report the application results from CASPAR [1] project.

3.4.1 Intelligibility (Dependency) Management Services

The basic intelligibility-related services include the identification of dependencies between

modules, the decision about the intelligibility of modules by profiles and the computation of

intelligibility gaps. Since modules and dependencies can be typed we also must include them

in the specification of the services. In addition we foresee the need to include several profiles

for the decision of intelligibility since the knowledge of a user may be expressed using various

profiles. For example a user that knows how to program in Java and also knows the concepts

48

and software used by astronomers (recall FITS files), will be associated with two Profiles; the

JavaProgrammersProfile and AstronomersProfile. The basic query services are defined in

the following table (Table 3.2).

Return Value Service Definition

Boolean depends(Module t, Module t′, DepTypes[] W) t
?

>W t′

Module[] RequiredModules(Module t, DepTypes[] W) Nr+W (t) = { t′ | t >+
W t′}

Module[] Closure(Module[] S, DepTypes[] W) Nr∗W = ∪t∈S({t} ∪Nr+W (t))
Module[] KnownModules(Profile[] U) Nr∗(T (U)) = ∪u∈UNr∗(T (u))

Boolean isIntelligible(Module t, Profile[] U, DepTypes[] W) Nr+W (t)
?
⊆ Nr∗(T (U))

Module[] Gap(Module t, Profile[] U , DepTypes[] W) Gap(t, U,W) = Nr+W (t)\Nr∗(T (U))

Table 3.2: Basic Query Services

All the services contain the notion of dependency types. When multiple dependency types are

defined we require at least one of the dependency types must exist in the resolved dependencies.

Of course these services also function without the provision of any dependency type. Additionally

module types can be employed for filtering the results of the above modules.

Apart from issuing queries a dependency management system must also maintain its de-

scriptions, since the set of modules, dependencies and profiles may change over time. Table

3.3 introduces some basic change services for updating the dependency graph and the modules

that are known from profiles. Every service is defined by its pre and post conditions. The

post-conditions describe not only the conditions that must be true in the dependency graph but

also the side-effects of these services on profiles. The addition of a dependency must ensure

the acyclicity of the dependency graph for the specified types. On the other hand the dele-

tion of a dependency may “break” the defined profiles. To avoid such cases before executing

delDependency(t, t′) we have to find those profiles that contain t or a broader module (since we

are storing only the maximal elements in profiles). If U is the set of all profiles then the sought

set of profiles is {u ∈ U |t ∈ Nr∗(T (u))}. If u is a profile in the above set, we add to it the

modules Nr(t). This means that for a revised profile u it will hold that T (u) ← T (u) ∪Nr(t).

After that we remove the dependency t > t′ and apply the maximality constraint to reduce the

size of the affected profiles. For example the deletion of the dependency t13 > t15 in figure 3.17

will cause side effects to the profiles u1 and u3. To curate profile u3 we need to add to it the

modules in Nr(t13). Finally the revised profile will contain T (u3) = {t8, t9, t13, t15}.

Similarly the removal of a module (delModule(t)) is decomposed in two different change oper-

ations; the removal of all dependencies that involve t, and deletion of the module from every

49

t18
t13

t17t16

t4 t5
t8 t9

t6
t2 t3

t1

t14
t12t10 t11

t7
T(u2)

T(u1)

t15
T(u3)

T(u4)

t19 t20 t:Modules
u:Profiles

t18
t13

t17t16

t4 t5
t8 t9

t6
t2 t3

t1

t14
t12t10 t11

t7
T(u2)

T(u1)

t15
T(u3)

T(u4)

t19 t20 t:Modules
u:Profiles

Figure 3.17: Example of Modules, Dependencies and Profiles

profile it is contained. Finally we remove t.

The operation upgradeModule(t) is used to create a new module tnew standing as a newer ver-

sion of module t. This operation is actually a shortcut which can be configured. For example,

if we assume that new versions are backwards compatible, then the new module tnew will have

the same descriptions (i.e. name, dependencies), but a revised version number. For example if

we issue upgradeModule(t14), then we will get a new module t′14 which also depends on t16 and

t17.

Finally there are operations for the curation of profiles ensuring the maximality constraint about

profiles’ known modules.

3.4.2 Implementation Settings and Experimental Evaluation

Here we detail the functionality and architecture of a tool named GapMgr that realizes all

services described previously. It comprises:

(a) GapMgr API. This is a programmatic interface written in Java. It provides the concepts

for defining digital objects and their dependencies, as well as the assumed knowledge on

the basis of profiles.

50

Change Operations on Dependencies

Ret. Value Operation Pre-
condition

Post-Condition

Boolean addDependency
(t, t′: Module, W : Dep-
Types[])

t, t′ ∈ T ,
W ⊆ D

For each w ∈W it holds:
t >w t′ and >w is acyclic

Boolean delDependency
(t,t′:Module, W : Dep-
Types[])

t >W t′ For each w ∈W it holds:
t ̸>w t′

For each u ∈ U , if t ∈ Nr∗(T (u)) then
T (u)← max>(T (u) ∪Nr(t))

Boolean delModule(t: Module) t ∈ T All dependencies that involve t are re-
moved (by issuing delDependency oper-
ations)
For each u ∈ U, T (u)← T (u)\{t}
t ̸∈ T

Module upgradeModule
(t: Module)

t ∈ T a new Module tnew is created such that:
for each w ∈W

if t >w t′ then tnew >w t′

Change Operations on Profiles

Ret. Value Operation Pre-
condition

Post-Condition

void appendKnownModules
(u:Profile, S: Module[])

S ⊆ T T (u)← max>(T (u) ∪ S)

Boolean delModule
(u:Profile, t: Module)

t ∈
Nr∗(T (u))

T (u)← max>((T (u) ∪Nr(t))− {t})

Table 3.3: Basic Change Services

51

(b) Two different implementations of the API. The first is a main memory implementation.

The persistence layer is a plain file-system based. The second is an implementation over

the SWKM (Semantic Web Knowledge Middleware)3. Here modules, dependencies and

profiles are stored in the SWKM repository. SWKM offer a wide and scalable suite of basic

services for validating, storing, querying, updating and exporting descriptive metadata

expressed in RDF/S. All services are based on a common knowledge repository enabling

the consistency of its contents. It offers advanced evolution services (declarative update

languages, comparison services and versioning). In this setting all computations are done

by sending queries (in RQL[24] and RUL[29]) to the repository through the SWKM WS

client. The main memory requirements are low in this case.

(c) An end-user Web-based application developed over GWT (Google Web Toolkit)4. It has a

modular design and it can work with both implementations of the API. Figure 3.18 shows

the Use Case Diagram of this application.

The overall architecture of GapMgr is shown in the figure below (Figure 3.19). It depicts how

the various components (GapMgr, SWKM, glassfish server, etc) are wired together.

Some indicative screendumps are shown in Figures 3.20 and 3.21; The former for defining

dependencies and the latter for computing intelligibility-aware packages. It can be considered

as a semantic registry for preservation.

3http://athena.ics.forth.gr:9090/SWKM/
4http://code.google.com/webtoolkit/

52

uc GapManagerRev ised GapManager System

End User
Curator/Archiv ist

Add/Delete/Edit ModulesAdd/Delete/Edit Dependencies
Select/Search/Browse Modules

Add/Delete/Edit Profile

Select/Search/Browse ProfilesCompute Closure Compute Gap

Import/Export Modules and Dependencies

Get Intelligible Package

Add/Delete Known Modules
Select Dependency Type«include»«include» «include»

«include» «include» «include»«include»

«include»
«include»«include»

Figure 3.18: The Use Case Diagram of GapMgr

53

deployment GapManager

serv er

GapMa nager

SwkmMiddlewareWS

GWT-Client

import

export

query

update

GapMa nagerPersistent
Storage

MainMemory

SWStorage

glassfish

GWT_Serv er

SWKM
Client

Web Browser

«RPC»

«HTTP/SOAP»

Figure 3.19: GapMgr Architecture

54

Typology of
dependencies

Typology of
modules

dependencies

Figure 3.20: The GUI of GapMgr: Defining dependencies

55

Selection of
Modules

Selection of
Profiles

Intelligibility
Gap

Related
Profiles

Figure 3.21: The GUI of GapMgr: Computation of the intelligibility gap

56

3.4.2.1 Experimental Evaluation

Synthetic Data Sets

In order to evaluate the efficiency of the various implementations, we have created several large

synthetic data sets. Specifically we have devised a generator that takes as input two parameters:

the number of modules N to be created, and the “density” of the dependency graph (two options

are available sparse and dense). The generator proceeds as follows: At first it creates N modules.

Then it creates random dependencies among these modules. If “sparse” then it creates N logN

dependencies, otherwise (i.e. if ”dense”) it creates 2N logN dependencies. Subsequently logN

profiles are defined (we also have another option that creates N2 profiles). To each of these

profiles a random set of modules is associated in the range of [1 . . .
√
N].

The average depth of the obtained dependency graph as well as the average size of the closure

of a module are shown in Table 3.4. This graph is rather defined as the “worst-case scenario”

since the dependency graphs for real data are usually “smaller”, in the sense that the depth of a

closure path will be smaller. Indeed in the subsequent section (Section 3.4.2.2), where we discuss

the applicability of GapMgr in real datasets, the average depth of a closure is approximately 3

and its size is much smaller.

N 103 104 105

Average depth 9 10 10

Average closure size 261 2174 17227

Max depth 23 24 25

Max closure size 675 5930 50838

Table 3.4: Dependency Graph Depth

Observing Table 3.4 one can easily see that the average depth of the graph remains the same

as the number of the contained modules increases but on the other hand the average size of its

closure is increased. This means that as the number of modules grows the dependency graph

becomes broader rather than deeper. This is due to the adopted generation method.

Measured Tasks (Description and Algorithms)

We measured the time (and memory) requirements for the following tasks:

• Computation of closure

(i.e. Closure(t) or Closure(S))

57

We traverse the dependency graph and collect all dependent modules starting from t or S.

The complexity of this task depends on the number of modules but mainly on the density

of the dependency graph (the more dense the graph is, the more modules the closure will

contain and the more time and memory consuming this task is).

• Computation of gaps (i.e. Gap(t, u))

Computing the gap between one module t and one profile u is more complex than just

computing the closure of a module. This is because finding the gap contains internally the

process of getting the closures of all modules that a profile contains. The complexity of

this task depends on the density of the dependency graph and on the number of modules

that the profiles have.

• Deciding intelligibility (i.e. isIntelligible(t, u))

To decide whether a module t is intelligible by one profile u we have to compute the closure

of all modules that a specified profile knows. If the module t or its direct dependencies

exist in the closure set, then this module is intelligible by the profile.

• Deciding dependency (i.e. depends(t, t′))

To decide whether a module t depends on another module t′ we have to check whether

there is a direct or indirect dependency between them. This is true if t′ is member of the

closure of t (i.e. if t′ ∈ Nr+(t)). Instead of computing the entire closure of t, we can

compute it gradually (i.e. traverse the dependency graph starting from t) so that to be

able terminate whenever t′ is going to be added to the closure. It follows that this task is

faster than the computation of closure.

• Adding a dependency

Before adding a dependency t > t′ we have to guarantee that this addition will not create

a cycle. To this end we first check whether t′ >+ t and if this holds we reject the request.

Therefore the cost of this task is roughly equal to the cost of depends(t, t′).

• Deletion of module

Before deleting a module we must first remove all the dependencies where t is involved.

We also have to ”curate” the profiles, i.e. find the profiles u where t ∈ Nr∗(T (u)) and

replace that element with the modules Nr(t). Finally we delete module t.

58

• Module upgrade

A new module is created with the same dependencies with the specified module. Specifi-

cally the newly created module has exactly the same direct dependencies (Nr(t′) = Nr(t))

with the specified one.

Evaluation Results

Table 3.5 shows the time measurements for the computation of various tasks for different

numbers of modules using the main memory API of GapMgr. This approach stores modules,

dependencies and profiles in main memory.

Services Time(ms)

N = 103 N = 104 N = 105

getClosure(t) 2 51 820

depends(t,t’) 1 33 426

addDependency(t,t’) 1 33 411

getDirectDependencies(t) 0 0 0

getDirectDependents(t) 0 0 0

isIntelligible(t,u) 8 212 4631

deleteModule(t) 0 1 1

Gap(t,u) 13 223 5412

upgradeModule(t) 1 2 2

Table 3.5: GapMgr Evaluation using Main Memory API

If the number of modules is low (i.e. 1000) the tasks are performed very fast. As the total

number of modules increases the total cost also increases. We can distinguish the various tasks

to some broad categories: (1) Single simple query tasks, (2) Multiple simple query tasks, (3)

Single complex query tasks, and (4) Multiple complex query tasks.

Single simple query tasks are those that can be dispatched using only a simple query to get

their results. These tasks require the minimum time to execute. Take for example the tasks

getDirectDependencies(t) and getDirectDependents(t) that take constant time even when the

total number of modules is quite big. Multiple simple query tasks consist of subtasks that fall

in the previous category. deleteModule(t) is an example of such a task since it internally uses

other subtasks as we have already seen (i.e. delDependency).

Complex query tasks on the other hand are those whose execution is more time-demanding.

To dispatch a complex query we need to traverse the dependency graph (rather than just query

59

the graph). The extra overhead of these tasks strongly depend on the depth and size of the

dependency graph. For example a single complex query task is the computation of the closure,

getClosure(t) which leads at resolving the dependencies between modules transitively for the

whole depth of the graph. Other tasks categorized here are depends(t,t’), addDependency(t,t’).

Finally multiple complex query tasks are those that contain multiple calls to tasks of the previous

category. For example the gap computation (gap(t,u)) is such a task, since it consists of the

computation of the closure of module t and the closure of every module of u. isIntelligible(t,u)

is categorized here since it is similar to gap computation.

In the main memory implementation of the API, all modules, dependencies and profiles are

loaded in main memory. This approach has proved efficient, however if the volume of data

increases then they may not fit in memory. The implementation over SWKM overcomes such

limitations, as all data are stored in the SWKM repository and all services are implemented by

appropriate calls to the declarative query and update language (RQL and RUL respectively).

However, and regarding efficiency, this approach has the overhead of parsing the results of the

queries which are delivered in RDF/XML format. For big results, the delay is unacceptably

long. For instance, the execution of a query whose answer comprises 2300 modules takes about

5 sec to compute and get (through the Web Service), while the results parsing takes around

50 sec. The problem could be alleviated by extending the implementation of RQL so that to

support result sets and cursors. Moreover a solution to speedup queries, is the adoption of grid

computing approaches (or computer clusters) that rely on combining many computer resources

to process large datasets.For instance at [37] they report results of querying over 300 million

tripes using Openlink Virtuoso5.

3.4.2.2 Application Results from CASPAR

In order to see whether COD can be used (as it is or by extending it) for capturing several

different types of modules and dependencies (from various different domains) we applied it for

expressing the contents of various existing collections. So far we have successfully loaded the

following:

• File Formats and Software Products

PRONOM [39] is an online registry of technical information. Specifically it provides infor-

mation about the file formats, software products and other technical components required

5http://www.openlinksw.com/virtuoso/

60

to support long-term access to electronic records and other digital objects of cultural,

historical or business value. Currently around 850 records are listed. All have been

extracted and loaded to GapMgr. However only a few dependencies are defined between

these formats.

• Modules and Dependencies from the CASPAR project

We have imported several modules along with their dependencies in the context of the

CASPAR project. In addition, we defined several profiles for the various communities

involved. The resulting data set contains modules from the cultural domain (UNESCO

sites) and contemporary arts domain (mainly coming from CNRS, INA6, University of

Leeds, and CIANT). Furthermore, there are (more than 1200) modules exported from a

Registry of formats from the scientific domain.

Additionally several web applications have been deployed and are used from several partners

of the CASPAR project including including University of Leeds 7, CNRS 8, CIANT 9, European

Space Agency (ESA-ESRIN) 10, British Atmospheric Data Centre 11. Online versions of the

web applications of GapMgr can be found at:

http://developers.casparpreserves.eu:8080/CasparGui/

http://139.91.183.30:3025/GapManagerGWT SWKM/

3.5 Related Approaches

Dependencies are ubiquitous and dependency management is an important requirement that

is subject of current research in several (old and new emerged) areas: from Software Engineering

(at [46], [47], [48], [5], [4]), to Ontology Engineering (at [22], [38]). Specifically, in software

engineering the various build tools (e.g. make, gnumake, nmake, jam, ant) are definitely related

(they allow defining dependencies and those tasks required to be performed in order to build a

software project). In ontology engineering an analogous problem is how to reflect a change of an

ontology to the dependent ontologies (i.e. to those that reuse or extend parts of it), which may

be stored in different sites. Another related problem is that of schema evolution problem, i.e.

6Institut National de l’Audiovisuel, France
7http://www.leeds.ac.uk/
8Centre National de la Recherche Scientifique, France
9International Centre for Art and New Technologies, Prague, Czech Republic

10http://www.esa.int/esaMI/ESRIN SITE/
11http://badc.nerc.ac.uk/

61

the problem of reflecting schema changes to the underlying instances. Actually this problem is

related to the evolution of modules and dependencies.

Table 3.6 list and describes in brief a number of dependency management approaches that

have been described in the literature.

Work Modules Objective of the De-
pendency

Types of Dependencies (be-
tween modules)

Reason why dependen-
cies are recorded

[5] Software com-
ponents

To install or uninstall a
composite component

Mandatory, optional, nega-
tive.

To reason on istallabil-
ity, deinstallability

[15] Software com-
ponents

Achieve goals, satisfy
soft goals, complete
tasks, provide and con-
sume resources

Goal, task, resource, soft goal To aid the selection of
the most appropriate
component

[47] Software com-
ponents

One goal is the abil-
ity to compile/run and
another is to express
which component af-
fects the behaviour of
other components.

The dependencies of a com-
ponent are categorized to
(a) Internal (i.e. intra-
component), and (b) External
(inter-component). The inter-
nal ones are further catego-
rized to (a1) implementation-
based and (a2) operation-
based. The external ones are
further distinguished to (b1)
hardware, (b2) software (i.e.
required interfaces), and (b3)
causal.

To support the pro-
cess of evolution and
testing in component-
based systems.

[38] Ontologies
management

Considers the depen-
dencies recorded in
the ontology represen-
tations (reuse/extend
inter-ontology relation-
ships).

IsA, Reference To aid the development
of ontologies in particu-
lar when changes occur,
i.e. to address ques-
tions of the form: if an
ontology changes what
should happen in the
dependent ontologies?

Maven Software com-
ponents

software engineering compile, provided, runtime,
test, system, import

build, compile, and the
like

Table 3.6: Dependency Management in other Domains

As we can see there is much heterogeneity on the types of modules, the objectives of the

dependencies, the types of dependencies and on the dependency management services. Proba-

bly in each preservation application domain we have to model the corresponding modules and

dependency types and identify the needed services. It does not seem that we could have one

single modeling for all cases. This observation justifies the selection of SW languages (due to

the extensibility they offer).

Below we discuss in brief some of the works that are mentioned in Table 3.6. [15] defines

four types of dependencies (goal, soft goal, task, resource). Furthermore it describes six system

properties derivable from soft goals, namely, diversity, vulnerability, packaging, self-containment,

62

uniformity, and connectivity. These properties are then used as criteria to select the best software

architecture. Furthermore it defines light components (i.e. components that could be replaced

by others serving a similar purpose) and heavy ones (i.e. components on which other components

strictly depend on). For example an email server can be considered as a heavy component, while

an email client as a light one.

[47] proposes a technique to analyze dependencies in large component-based systems. The

main idea is to describe the dependencies of each component using XML and analyzing the

influence of those dependencies in a CBS (Component-based system). In order to identify

chains of dependencies, pomsets are used. A pomset description can express what can take place

after a particular component’s service call takes place.

[5] concentrates on two main attributes of the dependability problem: (a) the success of the

deployment of a software component, and (b) the safety of the system. Deployment success

guarantees that once a component (that consists of multiple and depending entities) is deployed

it will work correctly. The main idea beyond safety is to preserve the correctness of the function-

alities of the system after its deployment. To ensure this the installation process is divided into

two steps, each treated as a different problem: the installability problem and the post-installation

effects. This is accomplished by building a tool with formal foundations for each problem and

thus ensuring the success and safety of deployment. It is based on a dependency description

language where the concepts of dependency and predicate are defined. The condition of the

availability of each service is expressed in first order predicate language.

[38] elaborated on the dependencies between ontologies and distinguishes dependencies to

super-sub and referring-to dependencies. Then it investigates the effects of an update operation

at a dependency. Finally it discusses the management of ontologies from various perspectives

(version control, updating and reusing).

3.6 On Preserving the Dependency Graph

The objective of the proposed model is the preservation of intelligibility of digital objects in

a way compliant to the OAIS standard. So according to OAIS if we want to preserve an object

(either digital or physical) for some particular Designated Community the main task we have to

do is to package this object with additional Representation Information that allow interpreting

the object. Now suppose that one adopts the approach proposed in this Chapter, i.e. objects

63

DO3

RepI

+ DO2

RepI
nfo

+

DO1

DO2

DO3

DO1

RI

+

DC Profiles

Packages of Digital Objects and their RepInfo
 + DC Profiles

Digital Objects

Figure 3.22: The contribution of OAIS for preserving the Intelligibility of Digital Objects

and their dependencies are recorded, the assumptions regarding the DC knowledge are expressed

explicitly, and the contents of the package of an object (regarding Representation Information)

are defined on the basis of object’s dependencies and DC knowledge (i.e. based on intelligibility

gap).

Suppose T is the set of the original digital objects that we want to preserve for a Designated

Community C. By adopting our approach we result to a set PA of packages (one for each

element of T). In this case, there is no need to preserve the dependency graph that was used for

deriving the contents of the packages. The only assumption is that C knows the OAIS approach

and the packaging structure adopted. We cannot escape from this assumption. If on the other

hand we want to be able to “adapt” the packages in PA for a different community C ′ then we

have to preserve the dependency graph since this is required for producing Gap(t, C ′) for each

t in T .

Let’s now discuss the case where we want to preserve the dependency graph. We could

follow a similar approach. In this case the dependency graph could be modeled as a module and

the next step would be to identify what representation information (and how much) would be

necessary for its preservation. This depends on the Designated Community. If the Designated

Community is aware of the model (i.e. of the OAIS approach and the approach presented in

this thesis) then there is no need to add any additional information since the dependency graph

is already intelligible from that community. If on the other hand the community is unaware of

these concepts, then Representation Information would be an object that documents sufficiently

64

these concepts (e.g. we could consider the PDF version of i.e. this thesis).

3.7 Summary

In this chapter we described a model for the preservation of intelligibility of digital objects.

We described what are digital objects, what dependencies exist between them and how these

dependencies affect the intelligibility of digital objects. We also discussed some OAIS-related

concepts for the preservation of digital objects and how they are related with dependency man-

agement.

To this end we proposed the creation of a model based on the notions of module and de-

pendency. The purpose of the model is the creation of a dependency graph for digital objects.

Dependencies are used to represent which modules are required for the performability of various

tasks. Additionally we proposed the modeling of the knowledge that is assumed to be known

from designated communities, by associating to the users of those communities, the modules

from the dependency graph that are known to them. Subsequently we defined a set of basic

intelligibility-related services.

Besides we clarified the different interpretations that dependencies may have (conjunctive or

disjunctive) and we described modeling and implementation frameworks for every case. Finally

we described the design and implementation of GapMgr and we evaluated the applicability of the

tool using experimental and real data.

We claim that the model is applicable to several domains, since it uses the very general

notions of module and dependency. Furthermore the model is extensible and one can define

specific module and dependency types according to his needs. This is really important since

there is a plethora of different module types that exist and the set of tasks that can be performed

on these modules cannot be fixed in advance. Regarding intelligibility-related services they can

be exploited for: (a) enabling a disciplined method for deciding what metadata to include in a

package, since it allows deriving packages that are intelligible for a certain community and the

assumed knowledge of that community is explicitly specified, and (b) supporting the curation

of existing packages, since the services could aid protecting archives from obsolescence risks and

changes in the knowledge of the community.

65

66

Chapter 4

Provenance: Modeling and Querying

Provenance is the origin or the source and the history of the ownership of an object. Prove-

nance information is well understood in the context of art where it refers to the documented

history of an art object. Provenance can be of great importance in the context of digital world.

The provenance information of digital objects refers to the documentation of the processes that

led to the creation of a digital object. Moreover provenance information provides a great docu-

mentation for scientific products since it allows scientists to understand the product, ensure its

validity and also allow its reproducibility.

Therefore provenance information for digital objects has to be properly recorded and archived.

To this end we need conceptual models able to capture provenance information. The availability

of such models can enable the exchange and integration of provenance data and can guide the

design of provenance services. This chapter discusses the problem of modeling provenance and

how it relates to the conceptualization of CIDOC CRM ontology. To this end an extension of

CIDOC CRM is presented that is able to capture the modeling and query requirements regarding

the provenance of digital objects.

4.1 Introduction to Provenance

According to Oxford English Dictionary1 provenance is defined as (i) the fact of coming from

some particular source or quarter; origin, derivation. (ii) the history or pedigree of a work of

art, manuscript, rare book, etc.; concretely, a record of the ultimate derivation and passage of

an item through its various owners. We want to further clarify the concept of provenance by

1http://www.oed.com/

67

interpreting it in an event-based manner. So provenance can be described from the events that

occurred during the existence of a object. Examples of such events are the creation of an objet,

the alteration of an object, the change of custody of an object etc.

The provenance of works of fine art, antiques and antiquities often assumes great importance.

Documented evidence of provenance for an object can help to establish that it has not been

altered and is not a forgery or a reproduction. Knowledge of provenance can help to assign the

work to a known artist and a documented history can be of use in helping to prove ownership.

The quality of provenance of an important work of art can make a considerable difference to

its selling price in the market; this is affected by the degree of certainty of the provenance, the

status of past owners as collectors, and in many cases by the strength of evidence that an object

has not been illegally excavated or exported from another country. The provenance of a work of

art may be recorded in various forms depending on context or the amount that is known, from

a single name to an entry in a full scholarly catalogue several thousand words long.

Digital objects on the other hand change more frequently, are unlimitedly copied, are used

as derivatives to produce new objects and are altered from several users. Additionally their

creation and management requires complex processes that are usually not documented. For

example Figure 4.1 shows an image describing the ozone concentration in the atmosphere derived

from the ESA ERS-2 satellite. Some indicative questions regarding the provenance of this data

product are: How this image has been derived? Who created this image and when? How it was

created, with what processing algorithms, sensors etc?

Especially scientific research is generally held to be of good provenance when it is documented

in detail. As vast amounts of scientific data are produced daily, their management is of prominent

importance for e-science. Their provenance is more than necessary for documenting scientific

results since it allows scientists to: (a) interpret, reproduce and validate a resulted product, (b)

understand the derivation process, (c) identify which were the sources that led to the derivation

of the product and (d) track who were the responsible users. So provenance captures of plethora

of information about digital objects. In fact provenance may be as important (or even more) as

the results.

In the context of scientific workflows[9, 16] provenance is a record of the derivation of a set of

results. There are two distinct forms of provenance: prospective and retrospective. Prospective

provenance captures a computational task’s specification and corresponds to the steps that must

be followed to generate a data product or class of data products. Retrospective provenance

68

Figure 4.1: Global Ozone Monitoring Experiment (GOME) Image

captures the steps executed as well as information about the environment used to derive a

specific data product. In other words prospective provenance is a recipe for the derivation

of a data product while retrospective provenance is a detailed log of a computational task’s

execution. Also an important component of provenance is information about causality, which

is the dependency relationships among data products and the processes that generate them.

Causality can be inferred from both prospective and retrospective provenance and captures the

sequence of steps which together with input data and parameters caused the creation of a data

product.

4.1.1 Provenance and OAIS

The OAIS model[20] understands Provenance Information as a specific type of Context

Information that documents the history of the Content Information. i.e. it tells the origin or

source of the Content Information, any changes that may have taken place since it was originated,

and who has had custody of it since it was originated. Examples of provenance information are

the principal investigator who recorded the data, and the information concerning its storage,

handling, and migration.

The middle column of Table 4.1 shows examples of OAIS Provenance (as listed in the stan-

dard) for various types of content information. The right column comments each row with

respect to CIDOC CRM, while a more detailed discussion is given in the subsequent section.

69

Table 4.1: OAIS and CIDOC CRM Provenance
Content Infor-
mation Type

OAIS Provenance CIDOC CRM Provenance

Space Science Instrument description Context of observation/experiment
Data Processing history By whom, Derivation chain

Sensor description Context of observation/experiment
Instrument Context of observation/experiment
Instrument mode Context of observation/experiment
Decommutation map Context of observation/experiment
Software interface specification Context of observation/experiment

Digital Library
Collections

For scanned collections:
Metadata about the digitisation process
Pointer to master version

For scanned collections:
Context of digitisation process
Derivation chain

For born-digital publications:
Pointer to the digital original
Metadata about the preservation process
Change history
Pointers to earlier versions of the collection

item

For born-digital publications:
Derivation chain
Context of preservation process
Derivation chain
Derivation chain

Software Revision history Derivation Chain
Package License holder By whom

Registration By whom
Copyright By whom

However OAIS does not propose any particular conceptual model or ontology. Moreover, it

suggests that Preservation Description Information (PDI) should contain provenance informa-

tion documenting the history of the data object (as illustrated in Figure 4.2). Again provenance,

is just a box and no conceptual model is specified.

Preservation Description Information

Figure 4.2: OAIS PDI Preservation Description Information

70

4.2 CIDOC CRM Extension for Digital Objects

CIDOC Conceptual Reference Model (ISO 21127) [21] is a core ontology of 80 classes and

132 relations describing the underlying semantics of over a hundred database schemata and

structures from all museum disciplines, archives and libraries. It provides definitions and a

formal structure for describing the implicit and explicit concepts and relationships used in cul-

tural heritage documentation. CIDOC CRM is intended to promote a shared understanding of

cultural heritage information by providing a common and extensible semantic framework that

any cultural heritage information can be mapped to. CIDOC CRM is the result of long-term

interdisciplinary work and agreement. It has been derived by integrating (in a bottom-up man-

ner) hundreds of metadata schemas and is stable (almost no change the last 10 years). We

could say that the basic design principles are (a) empirical bottom-up knowledge engineering

and (b) object-oriented modeling. As regards the latter, CIDOC CRM has a rich structure of

“intermediate” classes and relations, which apart from being very useful for building query ser-

vices (enabling queries at various levels of abstraction and granularity), it makes its extension

to other domains easier and reduces the risk of over-generalization/specialization. In essence,

it is a generic model for recording the “what has happened” in human scale. It can generate

huge, meaningful networks of knowledge by a simple abstraction: history as meetings of people,

things and information. Figure 4.3 depicts the main concepts of CIDOC CRM.

3

participate in

E39 Actors

E55 Types

E28 Conceptual Objects

E18 Physical Thing

E2 Temporal Entities

affect / refer to

refer to / refine

location

at

E53 PlacesE52 Time-Spans

Figure 4.3: The main concepts of CIDOC CRM

71

Regarding the modeling methodology, we have taken as empirical evidence existing data

structures from different domains, and analyzed the data structure elements for their underlying

common conceptualization necessary to answer questions about the dependency of scientific data

on tools, methods and relevant environmental factors of their creation, so that the data quality

can be assessed and primary and secondary data can be reused or reprocessed for scientific

purposes. The empirical evidence comes from scientific imaging for various purposes, satellite

data, medical laboratory tests, physics experiments. In some scientific laboratories, there is not

yet an established good practice with respect to complete provenance metadata, or the metadata

are highly specific to a particular device. In these cases, our model allows for generalizing and

complementing existing metadata creation practices. Top-down approaches, such as OPM [32],

suffer from overgeneralization. For instance, due to neglecting the difference between material

and immaterial items, OPM cannot describe errors introduced by failures of individual devices,

such as dust on a sensor or partial data loss on a DVD.

Regarding the application of CIDOC CRM for scientific data, the idea is that scientific

data and metadata can be considered as historical records. Scientific observation and machine-

supported processing is initiated on behalf of and controlled by human activity. Things, data,

people, times and places are causally related by events. Other relations are either deductions

from events or found by observation. In brief, the basic properties that we wish to support

regarding the extension and application of CIDOC CRM on digital objects are:

• Full interpretability of scientific or cultural data with respect to their meaning and qual-

ity, in particular all intended and unintended factors possibly influencing the outcome

(environmental and hardware effects).

• Ability to reprocess primary or half-processed data with different parameters or different

algorithms, in particular re-calibration.

• Ability to trace all dependencies for digital preservation, such as imminent obsolescence

of software to display, process or migrate data. In addition, ability to clean reproducible

intermediate results, to infer from processing steps features preserved between input and

output, such as the motif of a digital image under a contrast readjustment (“get all images

of this building”).

• Ability to search for comparable data sets for integrated evaluation, such as for climate

change studies.

72

Regarding provenance-related query services, in the context of CIDOC CRM they can be

considered as queries that can take as input an object and answer questions of the form:

• Context

– by whom (either creator or responsible for creation)

– of observation/experiment

– of digitization

• Derivation chain

The current version of CIDOC CRM (version 5.0.1) can support queries regarding the creator

or the responsible for creation of an object (“by whom” type of queries) and examples are

provided later on. However, the other two types of provenance queries (“context” and “derivation

chain” queries) are not directly supported by the current version. For this reason below we

describe an extension of CIDOC CRM ontology for capturing such cases. We will refer to this

extension with the name CRMdig.

4.2.1 Overview of the Extension

Figure 4.4 depicts an overview of the extensions as visualized by StarLion [42]. The diagram

shows the new classes (in blue) and the directly referred objects from CIDOC CRM (in yellow).

CIDOC CRM and CRMdig adopt the following naming conventions:

• EXX Name denote Entities of CIDOC CRM

• PXX Name denote Properties of CIDOC CRM

• CXX Name denote Entities of CRMdig

• SXX Name denote Properties of CRMdig

We have to note that the notion of a digital machine event, digital measurement and formal

derivation are very generic, and the essence of e-science. The notion of digitization is specific to

certain processes, and assists reasoning about “depicted objects”. Similar specializations may

be created to reason about other measurement devices.

73

Figure 4.4: CIDOC CRM Digital (CRMdig)

4.2.2 Detailed Description of the New Classes

Below we give a detailed description of the classes of CRMdig. We have defined four new

specializations of material and immaterial items and six new specializations of events:

• C1 Digital Object, which comprises identifiable immaterial items, that can be repre-

sented as sets of bit sequences, such as data sets, e-texts, images, audio or video items,

software, etc., and are documented as single units. Any aggregation of instances of C1

Digital Object into a whole treated as single unit is also regarded as an instance of C1

Digital Object. This means that for instance, the content of a DVD, an XML file on it,

and an element of this file, are regarded as distinct instances of C1 Digital Object, mu-

tually related by the P106 is composed of (forms part of) CIDOC CRM property.

A C1 Digital Object does not depend on a specific physical carrier, and it can exist on

one or more carriers simultaneously.

• C2 Digitization Process, which comprises events that result in the creation of instances

of C9 Data Object that represent the appearance and/or form of an instance of E18

Physical Thing such as paper documents, statues, buildings, paintings, etc. A particular

case is the analogue-to-digital conversion of audiovisual material. This class represents the

transition from a material thing to an immaterial representation of it. The characteristic

subsequent processing steps on digital objects are regarded as instances of C3 Formal

74

Derivation.

• C3 Formal Derivation, which comprises events that result in the creation of a C1 Dig-

ital Object from another one following a deterministic algorithm, such that the resulting

instance of digital object shares representative properties with the original object. In other

words, this class describes the transition from an immaterial object referred to by property

S21 used as derivation source (was derivation source for) to another immaterial

object referred to by property S22 created derivative (was derivative created by)

preserving the representation of some things but in a different form. Characteristic exam-

ples are colour corrections, contrast changes and resizing of images.

• C7 Digital Machine Event, which comprises events that happen on physical digital

devices following a human activity that intentionally caused its immediate or delayed

initiation and results in the creation of a new instance of C1 Digital Object on behalf

of the human actor. The input of a C7 Digital Machine Event may be parameter

settings and/or data to be processed. Some C7 Digital Machine Events may form part

of a wider E65 Creation event. In this case, all machine output of the partial events is

regarded as creation of the overall activity.

• C8 Digital Device, which comprises identifiable material items such as computers, scan-

ners, cameras, etc. that have the capability to process or produce instances of C1 Digital

Object.

• C9 Data Object, which comprises instances of C1 Digital Object that are the di-

rect result of a digital measurement or a formal derivative of it, containing quantitative

properties of some physical things or other constellations of matter.

• C10 Software Execution, which comprises events by which a digital device runs a

software program or a series of computing operations on a digital object as a single task,

which is completely determined by its digital input, the software and the generic properties

of the device.

• C11 Digital Measurement Event, which comprises actions measuring physical prop-

erties using a digital device, that are determined by a systematic procedure and creates

an instance of C9 Data Object, which is stored on an instance of C13 Digital Infor-

mation Carrier. In contrast to instances of C10 Software Execution, environmental

75

factors have an intended influence on the outcome of an instance of C11 Digital Mea-

surement Event. Measurement devices may include running distinct software, such as

the RAW to JPEG conversion in digital cameras. In this case, the event is regarded as

instance of both classes, C10 Software Execution and C11 Digital Measurement

Event.

• C12 Data Transfer Event, which comprises events that transfer a digital object from

one digital carrier to another. Normally, the digital object remains the same. If in general

or by observation the transfer implies or has implied some data corruption, the change

of the digital objects may be documented distinguishing input and output rather than

instantiating the property S14 transferred (was transferred by).

• C13 Digital Information Carrier, which comprises all instances of E84 Information

Carrier that are explicitly designed to be used as persistent digital physical carriers of

instances of C1 Digital Object. A C13 Digital Information Carrier may or may

not contain information, e.g., an empty diskette.

4.2.3 Indicative Examples

4.2.3.1 The Provenance of GOME dataset

To introduce the basic concepts of CRMdig, we adopt a real world scenario coming from ESA

(European Space Agency). The GOME (Global Ozone Monitoring Experiment) dataset, consists

of data captured from a sensor on board the ESA ERS-2 (European Remote Sensing) satellite.

In general the Satellite (having various properties like name, id) is placed in a particular Orbit

(e.g. geosynchronous) and is equipped with a number of Sensors. The captured measurements

are sent to a ground earth acquisition station (e.g. at the Kiruna Station), transfered to an

Archiving Facility (at ESA-ESRIN) for long term preservation and to a Processing Facility (at

DLR - German Aerospace Center) for various data transformations that yield various kinds of

Products. Data sets are distinguished according to their processing level to: Level 0 (raw data),

Level 1 (radiances/reflectances), Level 2 (geophysical data as trace gas amounts), and Level 3

(a mosaic composed by several level 2 data with interpolation of data values to fill the satellite

gaps). Figure 4.5 illustrates the trail of the GOME data.

Below we describe how this scenario is modeled according to CRMdig. Figure 4.6 shows how

data capturing, transmission, processing and archiving events are modelled with CRMdig, together

76

ESA-ESRIN Device

Kiruna

01010101010101010…

DLR PAF Device

Figure 4.5: The trail of GOME data scenario

C8 Digital Device
ERS-2

C8 Digital Device
ERS-2

S12 happened on device
(was device for)

C8 Digital Device
L1b-L1c processor

C8 Digital Device
L1b-L1c processor

S15 measured thing of type
(was type of thing measured by)

P46 is composed of
(forms part of)

C8 Digital Device
Kiruna Station

C8 Digital Device
Kiruna Station

C8 Digital Device
ESA-ESRIN

C8 Digital Device
DLR PAF

C8 Digital Device
DLR PAF

C1 Digital Object
GOME product (e.g. Total Ozone Column)

C1 Digital Object
GOME product (e.g. Total Ozone Column)

C11 Digital Measurement Event
Data capture

C11 Digital Measurement Event
Data capture

C9 Data Object
GOME RAW DATA (Level 0)

C9 Data Object
GOME RAW DATA (Level 0)P94 has created

(was created by)

P46 is composed of
(forms part of)

C12 Data Transfer Event
Satellite Data Transmission

C12 Data Transfer Event
Satellite Data Transmission

C10 Software Execution
GOME processing

C10 Software Execution
GOME processing

S12 happened on device
(was device for)S10 had input

(was input of)

S11 had output
(was output of)

P46 is composed of
(forms part of)

GOME

C8 Digital Device
GOME

C8 Digital Device

S12 happened on device
(was device for)

C8 Digital Device
DLT Robot Archive
C8 Digital Device
DLT Robot Archive

C12 Data Transfer Event
GOME data Archiving

C12 Data Transfer Event
GOME data Archiving

P46 is composed of
(forms part of)

E55 Type
ORBIT

E55 Type
ORBIT

P3.1 has type E62 String
POLAR (Circular, eliosynchronous) orbit

E62 String
POLAR (Circular, eliosynchronous) orbit

P3 has note

S14 transferred
(was transferred by)

E55 Type
Atmospheric ozone

E55 Type
Atmospheric ozone

S15 has sender
(was sender for) S16 has receiver

(was receiver for)

S16 has receiver
(was receiver for)

S14 transferred
(was transferred by)

Figure 4.6: The trail of GOME data scenario modeled with CRMdig

77

with their related products. We adopt a graphical language similar to UML Object Diagrams.

The ESA ERS-2 Satellite is modelled as a C8 Digital Device whose orbit is recorded in a

E62 String of E55 Type “ORBIT” through the P3 has note property and is related through

the P46 is composed of (forms part of) relationship with Sensors which are also C8 Digital

Device instances. The data capturing event is modelled as a C11 Digital Measurement

Event which relates to a Sensor through the S12 happened on device (was device for) property

and records what it measures through the S15 measured thing of type (was type of thing measured

by) property. The result of the data capturing event is the creation of a GOME RAW DATA

(Level 0) data set, modelled as a C9 Data Object and linked to the data capturing event

through the P94 has created (was created by) property.

The ESA ERS-2 Satellite data transmission to the Kiruna Station is modelled as a C12

Data Transfer Event. The data transmission relates to the ESA ERS-2 Satellite through

the S15 has sender (was sender for) property, to the GOME RAW DATA (Level 0) data set

through the S14 transferred (was transferred by) property and to the Kiruna Station through the

S16 has receiver (was receiver for) property. The Kiruna Station is modelled as a C8 Digital

Device which is P46 composed of (forms part of) two devices the DLR PAF Device and ESA-

ESRIN Device which are also modeled as C8 Digital Devices. The DLR PAF is P46 composed

of (forms part of) the L1b-L1c processor (C8 Digital Device) and the ESA -ESRIN is P46

composed of (forms part of) the DLT Robot Archive (C8 Digital Device) respectively.

GOME processing is modelled as a C10 Software Execution which receives as input,

through the S10 had input (was input of) property, the GOME RAW DATA (Level 0) data

set and produces the L0 GOME product (e.g. Total Ozone Column) C1 Digital Object (S11

had output (was output of) property). GOME data archiving is an event modelled as a C12

Data Transfer Event that relates to the DLT Robot Archive through the S16 has receiver

(was receiver for) property and to the GOME RAW DATA (Level 0) data set through the S14

transferred (was transferred by) property.

Figure 4.7 shows how the transformation of L0→ L1→ L2 products can be modeled using

CRMdig.

4.2.3.2 Conversion

Here we describe how we can model activities that result in the creation of a digital object

from another one, following a deterministic algorithm, as Formal Derivations. Formal Derivation

78

C1 Digital Object

L0 data (SAFE format) of 24/07/07
S21 used as derivation source

(was derivation source for)

C1 Digital Object

L1 data of 24/07/07

C3 Formal Derivation

L0-1 data processing

C1 Digital Object

L2 data of 24/07/07

C3 Formal Derivation

L1-2 data processing

S22 created derivative

(was derivative created by)

S22 created derivative

(was derivative created by)

S21 used as derivation source

(was derivation source for)

E28 Conceptual Object

GDP01 (GOME Level 0-1 data processor)

P16 used specific object

(was used for)

E28 Conceptual Object

GDP4.0 (actual Level 1-2 data processor)

P16 used specific object

(was used for)

E28 Conceptual Object

DMS (Data Management System)

P16 used specific object

(was used for)

C1 Digital Object

L0 data (EGOC format) of 24/07/07

C3 Formal Derivation

EGOC-SAFE format conversion

S21 used as derivation source

(was derivation source for)

S22 created derivative

(was derivative created by)

Figure 4.7: Modeling the data processing levels of GOME

represents the transition from an immaterial object to another immaterial object. The resulting

instance of digital object shares representative properties with the original object and can be

mechanically reproduced.

For instance, suppose we have a converter called JPG2PNG and consider three photographs

Crete.jpg, Crete.png and CreteSmall.png. The latter two derived from the first photograph

by using the converter. CreteSmall.png has lower resolution. Figure 4.8 and Figure 4.9

illustrates how the above scenario can be modeled using CRMdig. In the first case the converter

is used to produce Crete.png from Crete.jpg and then Adobe Photoshop application is used

to reduce the resolution of Crete.png and produce CreteSmall.png. In the second case both

Crete.png and CreteSmall.png are produced from Crete.jpg by using the converter with

different parameters.

In both cases, the photographs are instances of C1 Digital Object. The class E55 Type

is used to denote the format of each photograph (see Figure 4.8) while classes E54 Dimension

and E60 Number are used to model the resolution of each photograph. In general these classes

may be used in order to model digital object parameters and their respective values.

The conversion event is an instance of C3 Formal Derivation which through the link

P33 used specific technique (was used by) points to the specific algorithm used for the

conversion (instance of class E29 Design or Procedure). In this example the parameters with

which the converter was called are not modeled as separate entities but are implied in the name

79

1

C1 Digital Object
CreteSmall.png

C1 Digital Object
CreteSmall.png

C1 Digital Object
Crete.jpg

C1 Digital Object
Crete.jpg

S21 used as derivation source
(was derivation source for)

C1 Digital Object
Crete.png

C1 Digital Object
Crete.png

C3 Formal Derivation
JPG2PNG conversion

C3 Formal Derivation
Reduce png resolution

S22 created derivative
(was derivative created by)

E29 Design or Procedure
JPG2PNG Algorithm X

P33 used specific technique
(was used by)

P32 used general technique
(was technique of)

E55 Type
JPG2PNG
E55 Type
JPG2PNG

E55 Type
Software
E55 Type
Software

P16 used specific object
(was used for)

E28 Conceptual Object
Adobe Photoshop CS2

E28 Conceptual Object
Adobe Photoshop CS2

P2 has type
(is type of)

P2 has type
(is type of)

E55 Type
JPG

E55 Type
JPG

P2 has type
(is type of)

E55 Type
PNG

E55 Type
PNG

P2 has type
(is type of)

P2 has type
(is type of)

C1 Digital Object
color depth=24
resolution = 600

compression level = 5

C1 Digital Object
color depth=24
resolution = 600

compression level = 5

S13 used parameters
(parameters for)

S21 used as derivation source
(was derivation source for)

S22 created derivative
(was derivative created by)

E55 Type
Parameter List

E55 Type
Parameter List

P2 has type
(is type of)

Figure 4.8: JPG2PNG Converter

C1 Digital Object

Crete.jpg
S21 used as derivation source

(was derivation source for)

C1 Digital Object

Crete.png

C3 Formal Derivation

JPG2PNG conversion

C1 Digital Object

CreteSmall.png

C3 Formal Derivation

JPG2PNG conversion low res

S22 created derivative
(was derivative created by)

S22 created derivative
(was derivative created by)

S21 used as derivation source
(was derivation source for)

E29 Design or Procedure

JPG2PNG Algorithm X

E54 Dimension

CreteSmall.png Resolution

P43 has dimension
(is dimension of)

P90 has value

E60 Number

300

E54 Dimension

Crete.png Resolution

P43 has dimension
(is dimension of)

P90 has value

E60 Number

600

P33 used specific technique
(was used by)

E62 String

color depth=24
resolution = 600

compression level = 5

E55 Type

Parameter List

P3.1 has type

E62 String

color depth=24
resolution = 300

compression level = 5

P3 has note

P3.1 has type

P3 has note

Figure 4.9: JPG2PNG Converter

80

of the E29 Design or Procedure instance. Since E29 Design or Procedure can be linked

with other E29 Design or Procedure through P69 is associated with, we can associate the

specific call of a converter with the generic converter. C3 Formal Derivation is linked to E55

Type through P32 used general technique (was technique of) and denotes the generic

type of the conversion. In Figure 4.9 we can see how the different parameter list is modeled

through the use of property P3 has note that points to an instance of class E62 String.

4.2.3.3 Emulation

Another example of formal Derivation is emulation. Figure 4.10 shows an example of model-

ing the Handy emulator. To play Atari Lynx games on a Windows-based PC by using the Handy

emulator the file LYNXBOOT.IMG is needed as well as Lynx game ROMs. A specific instance of

the Handy emulator is an instance of class E29 Design or Procedure. The emulation activity

is an instance of C3 Formal Derivation which has the property S21 used as derivation

source pointing to the file LYNXBOOT.IMG which is an instance of C1 Digital Object. The

result of the emulation is an instance of E29 Design or Procedure. Issues regarding the prin-

ciples of designing emulators or the reasoning on the properties of emulations, e.g. the Universal

Virtual Computer (UVC) [27, 45], go beyond the scope of our work.

C1 Digital Object

Lynxboot.img

S21 used as derivation source

(was derivation source for)

C3 Formal Derivation

Lynx emulation

S22 created derivative

(was derivative created by)

E29 Design or Procedure

"Handy" Atari Lynx Emulator

P16 used specific object

(was used for)

E29 Design or Procedure

playing Atari Lynx games on Windows PC

Figure 4.10: Modeling Emulation

4.3 Provenance Queries over CRMdig

Queries regarding provenance, could be based on paths of CRMdig. We can identify the

following query requirements:

• Get the creator of an object

81

• Get the earlier versions of an item

• Get the events that changed the custody of an item

• Get the master version of an object

• Get the scanner/resolution of a digital object

Table 4.2 provides an indicative list of such queries. They can be considered as general purpose

query templates that can be refined according to needs. Each template has a name, it takes as

input a type-restricted resource (e.g. an instance of E28 Conceptual Object), and returns

as output a number of typed resources (of course, as in any object oriented system, the type

of the actual input/output parameters can be a subtype of the one specified in the template).

For each template the path over the semantic graph that should be followed for computing the

answer is specified in the form of a sequence consisting of consecutive “edges” of the form:

SourceClassName→ PropertyName→ TargetClassName

Some of these templates are recursive. For instance, consider template number 5:

{

E29 Design or Procedure→ P94B was created by → E65 Creation→

P15F was influenced by → E29 Design or Procedure

}∗ repeat until P15F was influenced by is null

This query comprises an expression that takes as input an instance of E29 and returns

another instance(s) of E29 (those influenced by) and this is continued recursively until there is

no other P15F property that could be followed.

Figures 4.11 and 4.12 present the CRMdig graphs for the query templates 1 and 6 respectively.

4.4 Related Work on Modeling Provenance

A related model for provenance is Open Provenance Model (OPM) [32]. In brief OPM allows

characterizing what caused things to be i.e. how things depended on others and resulted in a

specific state. The ontology that is defined by OPM is minimal and it consists of 3 classes:

Artifact, which is an immutable piece of state, Process, describing the actions that resulted

to the existence of an artifact and Agent, that are contextual entities acting as a catalyst of

82

Table 4.2: Provenance Query templates over CRMdig

Description Input Output Path
1 Get the

Creator of a
Digital Object

A Digital Object
Instance of
E28 Conceptual Object

Instance of
E82 Actor Appellation

E28 Conceptual Object →
P94B was created by → E65 Creation →
P14F carried out by(P14.1 in the role of →
E55 Type = Developer) → E39 Actor →
P131F is identified by →
E82 Actor Appellation

2 Get the
Scanner used
to capture a
Digital Image

A Digital Image
Instance of
C1 Digital Object

Instance of
C8 Digital Device

C1 Digital Object →
S11B was output of →
C7 Digital Machine Event →
S12F happened on device →
C8 Digital Device

3 Get the
Resolution of a
Digital Object

A Digital Object
Instance of
E73 Information Object
(Digital Image)

Instance of
E60 Number

E73 Information Object →
P39B was measured by →
C2 Digitization Process →
P40F observed dimension →
E54 Dimension → P90F has value →
E60 Number

4 Get the
Master Version
of a Digital
Object

A Digital Object
Instance of
E73 Information Object
(Digital Image)

Instance of
E18 Physical Thing

E73 Information Object →
P94B was created by →
C2 Digitization Process → S1F digitized →
E18 Physical Thing

5 Get Earlier
Versions of a
Digital
Derivative

A Digital
Derivative Instance of
E29 Design or Procedure

List of Instances of
E29 Design or Procedure

{E29 Design or Procedure →
P94B was created by → E65 Creation →
P15F was influenced by →
E29 Design or Procedure} ∗
repeat until P15F was influenced by is null

6 Get the
custody history
of an Object

An Object Instance of
E84 Information Carrier

List of Instances of
E82 Actor Appellation

E84 Information Carrier →
P50F has current keeper →
{E39 Actor →
P29B received custody through →
E10 Transfer of Custody →
P28F custody surrendered by → E39 Actor} ∗
repeat until P29B received custody through is null
→ P131F is identified by →
E82 Actor Appellation

1

P16.1 mode of use

P130 shows features of
(features are also found on)

P94 has created
(was created by)

P12 occurred in the presence of
(was present at)

P131 is identified by
(identifies)

P14.1 in the role of

P108 has produced
(was produced by) E24 Physical Man-Made Thing

E19 Physical Object

E39 Actor

E12 Production

E65 Creation

E70 Thing

E82 Actor Appellation

E55 Type

E55 Type

E28 Conceptual Object

P14 carried out by
(performed)

P16 used specific object
(was used for)

Figure 4.11: Sample query 1 - Find creator/producer

83

1

P29custody received by
(received custody through)

E39 Actor
Vincent van Gogh Foundation

P28 custody surrendered by
(surrendered custody through)

E39 Actor
Vincent Willem van Gogh

P29custody received by
(received custody through)

P28 custody surrendered by
(surrendered custody through)

P28 custody surrendered by
(surrendered custody through)

P29custody received by
(received custody through)

P50 has current keeper
(is current keeper of)

P30 transferred custody of
(custody transferred through)

E10 Transfer of Custody
The custody passing to Theo's widow

E10 Transfer of Custody

The custody passing to the van Gogh
Foundation

E39 Actor
Theo van Gogh

E39 Actor
Johanna van Gogh-Bonger

E10 Transfer of Custody
The custody passing to Johanna's son

E84 Information Carrier

Figure 4.12: Sample query 6 - Change of custody chain

a process. Moreover 5 associations between these classes are defined (used, wasGeneratedBy,

wasControlledBy, wasTriggeredBy, wasDerivedFrom). OPM does not make any distinction be-

tween digital and physical objects and their provenance is represented by an annotated causality

graph.

According to OPM, a process is considered as the set of actions performed on or caused by

artifacts and resulting in new artifacts. Processes are connected with artifacts using used and

wasGeneratedBy edges. By connecting a process to several artifacts by used edges, we are not

just stating the individual inputs to the process. We are asserting that a causal dependency

expressing that the process could take place and complete only because all these artifacts were

available. Therefore we cannot model the participation of artifacts in the derivation history of

an object without implying causality. On the other hand CIDOC CRM Digital contains a set

of properties for modeling the participation of objects or persons in the derivation history of an

object, without necessarily implying causality. For example for modeling the participation of a

person in the derivation of an object without a specific role the property P11 had participant

(participated in) can be used. If a person had an active participation (i.e. he was the responsible

person for the digitization of an artifact) then the more concrete property P14 carried out by

(performed) can be used. The same pattern occurs with the participation of objects where the

properties P12 occurred in the presence of (was present at) and P16 used specific object (was used

84

for) can be used for modeling active and passive participation correspondingly. Therefore OPM

does not capture non causal relationships. In order to capture such extra information, which is

typically required for interoperability purposes, OPM uses annotations. An annotation instance

will contain the annotable entity and a non-empty list of property-value pairs describing several

properties of the entity. However the modeling of this extra information according to CIDOC

CRM (using its rich structure of classes and properties), compared to OPM annotations, offers

more expressibility and also enables the efficient querying of related information. Additionally

the information that must be recorded might be related to several artifacts of an OPM graph.

However annotations cannot be related, so the annotations of an OPM graph may contain

redundant information.

It follows that, from the perspective of representation adequacy, provenance information

recorded according to CRMdig can be mapped to an OPM-based view, but not the other way

around. The main vision of OPM is to provide a vision of data flowing across systems. CRMdig

allows modeling the derivation history of a digital object, as well as several information regarding

the context of the derivation (i.e. digital devices that were used, responsible users, etc.). The

class C3 Formal Derivation defined in CRMdig describes the transition of an immaterial object

to another immaterial object. Therefore this class is adequate for capturing the data simulation

that is derived from programs or workflows. In addition this class is also a subclass of class

E5 Event. The ontology assumed by OPM does not explicitly model the concept of Event.

Events are important since they enable the integration of information that concern an object

(i.e. where an Event take place). For example the event of taking a photo comprehends various

information about the conditions under which the photograph was taken, i.e. when, where, with

what instruments, with what participants, for which reasons, etc., rather than focusing only

on the process of capturing the image. Nevertheless, we should say that the way OPM treats

processes resembles events (however the corresponding ontological structure of OPM is not rich).

In addition, OPM proposes a number of inference rules. Some of these are equivalent to the

inferences due to the specialization relationships of CIDOC CRM extension. Some other could

be expressed over the CIDOC CRM ontology by adopting an appropriate Rule Language. As

an example, [31] describes an extension of the original CIDOC CRM for Interactive Multimedia

Performances (IMP) enriched with temporal rules.

For example Figure 4.13 shows the derivation history of a digital object. Specifically a

provenance graph according to OPM is shown. Ellipses are used to denote artifacts, rectangles

85

Government Office
Regions csv file

unzip

zip file

wasGeneratedBy

Alice

Government Office
Regions rdf file

Government Office
Regions DataSet

transform

select

wasGeneratedBy

wasGeneratedBy

regions xsltused

used

used

used

wasDerivedFrom

wasDerivedFrom

wasDerivedFrom

type: application/zip
location: http://www.ons.gov.uk/...

type: text/csv
location: cache/government-office.csv

type: application/sxl+rdf
location: cache/GOR_DEC_2008.rdf

type: http://rdfs.org/ns/void#Dataset
Homepage: http://statistics.data.gov...

type: http://www.w3.org.1999/XSL/Transform
location: cache/region.xsl

Government Office
Regions csv file

unzip

zip file

wasGeneratedBy

Alice

Government Office
Regions rdf file

Government Office
Regions DataSet

transform

select

wasGeneratedBy

wasGeneratedBy

regions xsltused

used

used

used

wasDerivedFrom

wasDerivedFrom

wasDerivedFrom

type: application/zip
location: http://www.ons.gov.uk/...

type: text/csv
location: cache/government-office.csv

type: application/sxl+rdf
location: cache/GOR_DEC_2008.rdf

type: http://rdfs.org/ns/void#Dataset
Homepage: http://statistics.data.gov...

type: http://www.w3.org.1999/XSL/Transform
location: cache/region.xsl

Figure 4.13: Provenance graph according to OPM

denote processes and the diamond for denoting the responsible users. Edges are used to denote

the casual dependencies between OPM nodes. Any additional information is modeled using

annotations (i.e. the location of the artifacts). Figure 4.14 shows how the OPM graph of Figure

4.13 can be modeled using CRMdig. OPM processes are modeled as instances of C3 Formal

Derivation and are connected with the used and derivative objects using the properties S21

used as derivation source and S22 created derivative respectively. Furthermore the information

that is modeled using OPM annotations is modeled the appropriate classes of CIDOC CRM and

CRMdig.

4.5 Summary

In this section we described an extension of CIDOC CRM ontology, called CRMdig, which

is able to capture the modeling and query requirements regarding the provenance of digital

objects. We also discussed the relationship with OAIS and described the representation of this

ontology using RDF/S. Finally some indicative examples and query patterns were provided.

The proposed model has higher general coverage and deeper specialization than OPM and is

86

C9 Data Object
zip file

C9 Data Object
Gov.Off.Reg. csv

C9 Data Object
Gov.Off.Reg. rdf

C9 Data Object
Gov.Off.Reg. Dataset

C9 Data Object
region xslt

C3 Formal Derivation
unzip

C3 Formal Derivation
transform

C3 Formal Derivation
select

E55 Type
Application/zip

E62 String
http://www.ons.gov.uk/...

E55 Type
text/csv

E62 String
cache/government-office.csv

E55 Type
Application/xsl_rdf

E62 String
cache/GOR_DEC_2008.rdf

E55 Type
http://rdfs.org/ns/void#Dataset

E62 String
http://statistics.data.gov...

E62 String
cache/region.xsl

P2 has type

P2 has type

P2 has type

P2 has type

P3 has note

P3 has note

P3 has note

P3 has note

E55 Type
location

E55 Type
http://www.w3.org.1999/XSL/Transform

P2 has type

P3 has note

S21 used as derivative source

S21 used as derivative source

S21 used as derivative source
S21 used as derivative source

S22 created derivative

S22 created derivative

S22 created derivative

E21 Person
Alice

P14 carried out by

P14 carried out by

C9 Data Object
zip file
C9 Data Object
zip file

C9 Data Object
Gov.Off.Reg. csv
C9 Data Object
Gov.Off.Reg. csv

C9 Data Object
Gov.Off.Reg. rdf
C9 Data Object
Gov.Off.Reg. rdf

C9 Data Object
Gov.Off.Reg. Dataset
C9 Data Object
Gov.Off.Reg. Dataset

C9 Data Object
region xslt
C9 Data Object
region xslt

C3 Formal Derivation
unzip
C3 Formal Derivation
unzip

C3 Formal Derivation
transform
C3 Formal Derivation
transform

C3 Formal Derivation
select
C3 Formal Derivation
select

E55 Type
Application/zip

E55 Type
Application/zip

E62 String
http://www.ons.gov.uk/...

E62 String
http://www.ons.gov.uk/...

E55 Type
text/csv

E55 Type
text/csv

E62 String
cache/government-office.csv

E62 String
cache/government-office.csv

E55 Type
Application/xsl_rdf

E55 Type
Application/xsl_rdf

E62 String
cache/GOR_DEC_2008.rdf

E62 String
cache/GOR_DEC_2008.rdf

E55 Type
http://rdfs.org/ns/void#Dataset

E55 Type
http://rdfs.org/ns/void#Dataset

E62 String
http://statistics.data.gov...

E62 String
http://statistics.data.gov...

E62 String
cache/region.xsl

E62 String
cache/region.xsl

P2 has type

P2 has type

P2 has type

P2 has type

P3 has note

P3 has note

P3 has note

P3 has note

E55 Type
location

E55 Type
location

E55 Type
http://www.w3.org.1999/XSL/Transform

E55 Type
http://www.w3.org.1999/XSL/Transform

P2 has type

P3 has note

S21 used as derivative source

S21 used as derivative source

S21 used as derivative source
S21 used as derivative source

S22 created derivative

S22 created derivative

S22 created derivative

E21 Person
Alice
E21 Person
Alice

P14 carried out by

P14 carried out by

Figure 4.14: Provenance graph according to CRMdig

87

applicable to all e-science domains.

88

Chapter 5

Automating the Ingestion and

Transformation of Metadata

5.1 Introduction

The preservation of digital objects is a topic of prominent importance for archives and digital

libraries. However the creation and maintenance of metadata is a laborious task that does not

always pay off immediately. For this reason there is a need for tools that automate as much as

possible the creation and curation of preservation metadata. Our objective is to bypass the strict

(often manual) ingestion process while at the same being compatible with it. According to the

traditional approach, the ingestion phase starts with assigning identifiers to the objects and then

extracting/creating metadata for these objects. These metadata can be expressed using various

metadata schemas and formats (like DIDL, METS, etc) and usually the update/movement of a

metadata record is prohibited. We want to relax these constraints and automate the process of

metadata extraction and management.

We propose an approach where some of the metadata are extracted automatically and pe-

riodic re-scans are used for keeping them up-to-date. The user is able to view the extracted

metadata and add additional knowledge. PreservationScanner (PreScan for short) is a tool we

have developed for the problem at hand. PreScan is quite similar in spirit with the crawlers

of Web search engines. In our case we scan the file system, we extract the embedded meta-

data and build an index. In contrast to web search engine crawlers we want to: (a) support

more advanced extraction services, (b) allow the manual enrichment of metadata, (c) use more

expressive representation frameworks for keeping and exploiting the metadata (i.e. metadata

89

schemas expressed in Semantic Web languages), (d) offer rescanning services that do not start

from scratch but exploit the previous status of the index, and (e) associate the extracted meta-

data with other sources of knowledge (i.e. registries of formats). The latter is important since

the intelligibility of a digital object depends on the availability of other digital objects. To this

end we propose linking objects with external sources and providing dependency management

services for identifying obsolescence risks.

5.2 Metadata and Preservation Requirements

Metadata can be described as “structured, encoded data that describe characteristics of

information-bearing entities to aid in the identification, discovery, assessment, and manage-

ment of the described entities” 1. Table 5.1 shows some examples of what can be considered as

metadata.

Table 5.1: Examples of Metadata

Type Metadata

Book title, author, date of publication, subject, ISBN, dimensions, number
of pages, text language

Photographs date and time of capture, details of the camera settings (focal length,
aperture, exposure), coordinates (geotagging)∗

Audio files album name, song title, genre, year, composer, contributing artist,
track number and album art

Relational
Databases

Database catalog storing information about the names of tables and
columns, the domains of values in columns, number of rows, etc

Software For example, in Java, the class file format contains metadata used by
the Java compiler and the Java virtual machine to dynamically link
classes and to support reflection.

Web Pages Meta-tags, general purpose descriptions expressed using Semantic Web
languages.

∗: Many digital cameras record metadata in exchangeable image file format (EXIF)

Metadata can be stored either internally, i.e. in the same file as the data, or externally, i.e.

in a separate file. The former are usually called embedded, the latter detached. The detached

metadata are usually stored in a special repository. Both approaches have advantages and

disadvantages. One benefit of the embedded metadata is that they are transferred with the

data and thus their access and manipulation is straightforward. However embedded metadata

can create redundancies and this approach does not allow holding and managing all metadata

1American Library Association, Task Force on Metadata Summary Report, June 1999

90

together. On the other hand, if the metadata are detached, then this means that they are stored

in a special repository. This approach has less redundancies, we can support efficient metadata

search, and we can manipulate them efficiently, e.g. we can perform bulk metadata updates.

However, the way metadata are linked to data should be treated with care as inconsistencies

may arise. Overall, to manage a corpus of digital objects requires tackling several issues and

problems. From our experience and analysis, we have identified the following basic requirements:

• Automatic Scanning of file systems

We need systems that can operate like the crawlers of Web search engines, i.e. scan the

desired parts of the file system (or network) according to a given configuration (regarding

desired folders, extensions of files, etc).

• Automatic Format Identification and Extraction of Embedded Metadata

It is useful to extract the embedded metadata so that to make them visible to the curators.

Since several formats contain embedded metadata we need to extract them easily. Various

format identification tools and metadata extractors have been developed and can be used

for this purpose (e.g. JHOVE2, meta-extractor3, Droid4).

• Support for Human-entered/edited Metadata

Users (or curators) should be able to add extra metadata to an already scanned file (apart

from the automatically extracted). For example one might want to add extra metadata

about provenance, digital rights, or the context of the objects.

• Periodic Re-Scannings without loosing the human-provided metadata

As the contents of the files change frequently we need to update their metadata in a flexible

manner. To this purpose, periodic re-scannings are useful for ensuring the freshness of the

metadata. However the human-provided metadata should be preserved.

• Referential Integrity services

If a file/folder is moved to another location we would like to identify such changes in order

to reflect them to its detached metadata. This is important also for ensuring that the

human-entered metadata will be preserved.

2http://hul.harvard.edu/jhove
3http://meta-extractor.sourceforge.net
4http://droid.sourceforge.net/wiki/index.php

91

• Dependency Management and Intelligibility-preservation services

A digital object might depend directly or indirectly on other modules. A module can be

either a hardware/software component, a file format etc. Therefore we need to record such

dependencies in order to facilitate tasks like: (a) the identification of the objects that are in

danger in case a module (e.g. a software component or a format) is becoming obsolete (or

has been vanished), (b) the decision of what metadata need to be captured and stored for

a designated community, and (c) the reduction of the metadata that have to be archived,

or delivered (as a response to queries) to the users of that community.

• Exploitation of Existing Registries

External registries (like Pronom [39], GDFR [33], Registry of CASPAR) that contain

information about file formats and versions of software for each one of them, should be

exploited.

• Usability and Control of the Whole Process

The functionalities must be performed in a simple and easy to use manner with the support

of graphical user interfaces.

5.3 PreScan Tool

PreservationScanner, for short PreScan, is a system that we have developed based on the

previously described requirements. PreScan consists of four main components: the scanner,

a component responsible for scanning file systems, the metadata extractor, a component for

extracting the embedded metadata of the scanned files, the repository manager, a component

for storing and managing these metadata, the metadata representation editor which is

responsible for changing the RDF representations of metadata and the controller, a component

that controls the entire process and metadata life-cycle. The overall architecture of the system

is shown in Figure 5.1. We have adopted a modular design with well-defined interfaces in order

to be able to extend or replace a component easily. For instance, we can easily switch to another

metadata extractor or use different repository storage approaches (as we discuss later on).

5.3.1 Controller

The tool starts like an AntiVirus program, i.e. it starts scanning all files and subfolders that

originate from a certain folder (that is specified by the user). At the first scan a metadata record

92

 cmp PresScanner

Scanner Metadata Extractor

Repository Manager

Controller

Metadata
Representation Editor

Figure 5.1: The Component diagram of PreScan

is created for each encountered file and stored through the Repository Manager. After the end

of the scan the user can browse the repository and add extra metadata or edit the extracted

ones. The difficult task is to keep the repository consistent while the file system changes. Recall

that files are deleted, renamed or change positions and new files are created. PreScan uses the

full pathname of a file as its identity. Let us consider the case where a file is renamed. For sure

we would not like to delete the old metadata record of that file and create a new one since we

would lose all metadata that could have been entered manually by the user. If at each scanning

we keep a copy image of the entire filesystem then at each subsequent scan we can compare the

contents of each encountered file with the contents of the copied files of the previous scan in

order to identify file name/position changes. However to keep a copy of the entire file system

would be space consuming and the comparison would be unacceptably slow. To overcome this

problem we compute and store the md5 checksum of the contents of every scanned file inside its

metadata record, which is typically expressed as a fixed size hexadecimal number (32 digits). If

a file does not change over time, then its md5 will remain intact. Obviously the md5 of a file

should be updated whenever a file changes. We deal with file movements in a similar way.

The re-scanning process consists of two phases: the scanning phase and the integration phase.

At the first phase the algorithm scans the filesystem. At the second phase (integration phase)

the system tries to identify file additions, modifications and deletions based on the contents

signatures (in our case md5), and asks from the user to verify the identified events.

Figure 5.2 sketches the algorithm of rescan. At first we retrieve the list of scanned files

and for every file we encounter we compare it with the list of the previously scanned files to

decide weather this file existed during the previous scan or it is a new file. If a file existed in

93

the previous scan and has been changed since the last scan, we extract its new metadata and

update the repository appropriately. PendingList is used for keeping the files that were not

present at the previous scan (obviously these files are not associated with any metadata record).

Let sf be such a file. This means that either: (a) sf is a new file, or (b) sf was moved from

another folder, or (c) sf is an old file that has been renamed and PreScan cannot recognize

it. In contrary, ObsoleteList keeps metadata records that no longer correspond to a file which

means that either the specified file has been removed or the file has been moved to another

location. At a final step we recognize file movements and removals by comparing the content of

the files in the PendingList and ObsoleteList lists.

Algorithm ReScan()
Input: Rep, Scanner, Extractor
Output: updated repository

1. PendingList = ObsoleteList = ∅
2. PreviousFiles = Rep.getAllFiles(ScannerConf)
3. CurFiles = Scanner.getScannedFiles(ScannerConf)
4. for each file f in CurFiles
5. if f ∈ PreviousFiles //f existed in the previous scan
6. if f .lastModified > Rep.getLastModified(f .path) //f has changed
7. m=Extractor.extractMetadata(f .path)
8. Rep.update(f .path,m)
9. else //f is a “new” file
10. PendingList = PendingList ∪{f}
11. end for
12. ObsoleteList = PreviousFiles \ CurrFiles
13. for each file f in PendingList
14. m=Extractor.extractMetadata(f.path)
15. of = ObsoleteList.getMatched(f .content) // e.g. through MD5
16. if (of==null) then // nothing matched
17. Rep.add(f ,m)
18. PendingList = PendingList \ {f}
19. else
20. If UserVerifiesMapping(f , of) then
21. Rep.updateMetadata(of , f ,m)
22. PendingList = PendingList \ {f}
23. ObsoleteList = ObsoleteList \ {of}
24. end for
25. Rep.DeleteOldRecords(ObsoleteList)

Figure 5.2: The algorithm of PreScan

We have developed a GUI to aid users in establishing mappings between the elements of the

pending and the obsolete list. Figure 5.3 shows an indicative screendump. The upper part of the

94

Figure 5.3: The GUI for managing mappings

window contains the new files that were found during the re-scanning and the bottom part all

possible mappings from files that were moved/renamed. In this particular case we have 4 new

files, 1 file movement and 1 file that was renamed.

5.3.2 Metadata Extractor

For every file PreScan extracts and keeps its filetype, path, owner, last modification date

and size. Moreover we extract and keep fileformat-specific embedded metadata. PreScan uses

JHOVE as a format detector and metadata extractor. It recognizes several formats (AIIF,

ASCII, BYTESTREAM, GIF, HTML, JPEG, JPEG 2000, PDF, TIFF, UTF-8, WAVE, XML)

and Table 5.2 shows some of the extracted metadata while Figure 5.4 shows a part of the JHOVE

XML output schema. The element repInfo contains a subelement property that contains name-

value pairs with technical information about a file (i.e. for images it will contain ColorSpace

information, ExposureMode information, resolution etc).

5.3.3 Repository Manager

The Repository Manager is responsible for storing and updating the metadata records. The

metadata record of a file includes both the extracted and the human-provided metadata. There

are more than one choices regarding where these metadata are stored. The options that are

currently supported are listed below (they are not mutually exclusive):

• (SF) For each scanned file its metadata record is created and stored in a Specific Folder

specified by the user.

95

Table 5.2: Recognized Formats and Extracted Metadata from JHOVE

Format Extracted Metadata

ALL Formats ScanDate, FilePath, LastModificationDate, Size, Format, Status, Module, MimeType
AIFF AudioDataEncoding, ByteOrder, FirstSampleOffset, Hours, Minutes,Seconds, Sam-

ple, NumberOfSamples
ASCII LineEndings
GIF GraphicRenderingBlocks, LogicalScreenWidth, LogicalScreenHeight, ColorResolu-

tion, BackGroundColorIndex, PixelAspectRatio, CompressionScheme, Transparen-
cyFlag, ImageWidth, ImageLength, BitsPerSample

HTML PrimaryLanguage, OtherLanguages, Title, MetaTags (name, HttpEquiv, Content),
Frames (name, Title, LongDesc, Src), Links, Scripts, Images(Alt, Longdesc, Src,
Height, Width) , Citations, DefinedTerms, Abbreviations(Text, Title), Entities, Uni-
codeEntityBlocks

JPEG CompressionType, ScanerManufacturer, ScannerModuleName, ImageWidth, Image-
Length, BitsPerSample, SamplesPerPixel, PixelAspectRatioX, PixelAspectRatioY,
Precision, ColorSpace, PixelXdimension, PixelYdimension, DateTimeOriginal, Date-
TimeDigitized, ExposureTime, LigthSource, Flash, FileSource, SceneType, Satura-
tion, Sharpness

JPEG 2000 Brand, MinorVersion, Compatibility, precedence, XSize, YSize, BitsPerSample, Sam-
plesPerPoxel, Creator

PDF PageLayout, PageMode, Creator, Producer, CreationDate, Fonts
TIFF ByteOrder, CompresiionScheme, SamplingFrequency, XSamplingFrequency, YSam-

plingFrequency, ImageWidth, ImageLength, BitsPerSample, SamplesPerPixel
UTF-8 LineEndings, Additional Control Characters, NumberOfCharacters, UnicodeCode-

Blocks
WAVE SchemaVersion, AudioDataEncoding, FrameCount, TimeBase, videoField, Counting-

Mode, Hours, Minutes, Seconds,Frames, SampleRate, NumberOfSamples, NumChan-
nels

XML Version, Encoding, StandAlone, DTD,(publicID, SystemID, InternalSubset)
Schemas,(Schema (namespaceURI, SchemaLocation)) Root, NameSpaces, (NameS-
pace (Prefix, URI)) Notations, (Notation (Name, PublicID, SystemID)) Character-
References, Entities, (Entity (Name, Type, Value, PublicID, SystemID, Notation))
ProcessingInstructions, (ProcessingInstruction (Target, Data)) Comments (Com-
ment)

Figure 5.4: A fragment of the JHOVE output XML schema

96

• (OF) For each scanned file its metadata record is created and stored in the same folder

with the Original scanned file.

• (KB) The contents of the metadata records of scanned files are stored in a Semantic Web-

based Knowledge Base. In that case the Repository Manager also offers querying services.

The extracted metadata of a digital file that are stored using the repository manager and

can be later viewed or enriched by the user. For example assume that PreScan scans a file

named forth20090115.jpg. It extracts various metadata about that file (e.g. image resolution,

date, information about the digital camera captured this photo etc.) and stores them in the

repository. Later on the user can enrich these metadata by adding human provided metadata

such as a description for that photograph (e.g. ”FORTH cake event in 15-01-2009”). Now

suppose that this file is moved to another location. At the next scan, PreScan will identify this

change and will update its metadata record with the new file location. Therefore the (user-

provided) metadata for that file will not get lost. In case the KB option has been adopted, the

user can also search for a file by querying the repository according to the extracted information.

For example we could search for a photograph with description about ”FORTH cake event” or

photographs taken by a specific digital camera, etc.

Metadata are extracted from JHOVE and are stored in XML format. These files can be stored

in a XML database and then queried using XQuery. Instead of having an XML-based framework

an alternative approach is to define an ontology that allows expressing all the extracted metadata

and can exploit the inheritance semantics of RDF/S.

To this end we decided to exploit the CIDOC CRM and its extensions. Figure 5.5 shows the

general architecture of ontologies that we propose. On top we have the CIDOC CRM [21] on-

tology that offers the basic conceptual modeling, in the middle layer there is the CRMdig ontology

which is adequate for capturing the semantics of digital objects as well as their provenance, and

at the bottom layer we have COD ontology that is used for expressing dependencies. Finally we

have any domain specific extensions. The instance layer will contain the automatically extracted

metadata, the manually provided metadata and the COD-based descriptions.

This view enables the integration of different information about digital objects (i.e. prove-

nance, dependencies). For example the COD-based description can capture information about

the file formats and software modules. In this way information about the scanned files can

be linked with the descriptions of these formats. Specifically every scanned file is defined as a

module (is assigned a unique module identifier), and dependencies regarding the file format and

97

CIDOC CRM

Other domain specific
specializations

metadata
layer

CIDOC CRM DIGITAL
COD (Core Ontology for Dependencies)

Automatically
Extracted
Metadata

Manually
provided
Metadata

COD descriptions
(registry of

formats and
dependencies)

schema
layer

Figure 5.5: Architecture of Semantic Web Ontologies and Metadata

the appropriate software are defined automatically based on their type (i.e. PreScan.jpeg >

JPEG, PreScan.jpeg >render Image Viewer), but the user can easily add more dependencies

or edit the existing ones using GapMgr (Section 3.4.2).

Regarding the transformation from XML to RDF, PreScan parses the XML metadata records

(the output of JHOVE + human provided metadata) and produces instances according to

CIDOC CRM and its extensions. More precisely we have predefined a set of XSLT transfor-

mations that maps metadata to ontological instances according to the above ontologies. Every

different file type is defined as a subclass of C1 Digital Object which is the class for rep-

resenting digital objects from CRMdig (Chapter 4). Table 5.3 describes how various metadata

are transformed to ontological instances according to CIDOC CRM and its extension. For

each metadata the path over the semantic graph denotes how it is modeled. For example the

md5 checksum of a file will be an instance of E41 Appellation and will be associated with an

instance of digital object (representing the file) through the P1F is identified by property.

5.3.4 Metadata Representation Editor

However someone may find out that a path (in the semantic web graph) that is used for

representing a metadata could be represented using another path (from the same or from another

ontology). Additionally someone may create his own ontology and therefore define the RDF

98

Table 5.3: Metadata According to CIDOC CRM

FileType Metadata Path

All Scan Date C1 Digital Object → S2B was source for → C10 Software Execution →
P4F has time span → E52 Time-Span → P80F end is qualified by

All Last Modification
Date

C1 Digital Object → S11B was output of →
C26 Digital Machine Modification Event → P4F has time− span →
E52 Time-Span → P80F end is qualified by

All File Size C1 Digital Object → P43F has dimension → E54 Dimension →
(P91 has unit → E58 Measurement unit = "bytes") →
P90F has value → E60 Number

All MD5 Checksum C1 Digital Object → P1F is identified by → E41 Appellation

Image Height C1 Digital Object → P43F has dimension → E54 Dimension →
(P91F has unit → E58 Measurement unit = "pixels") →
P90F has value

Sound Duration (sec.) C1 Digital Object → P43F has dimension → E54 Dimension →
(P91F has unit → E58 Measurement unit = "seconds") →
P90F has value

HTML Links C1 Digital Object → P148F has component →
E73 Information Object → (P3F has note = “anchorText”) →
(P67F refers to → E73 Information Object)

HTML Title C1 Digital Object → P102F has title → E35 Title

representations according to it. For this purpose we implemented a small tool (embedded in

PreScan) that aid users changing the RDF representations of metadata. Indicatively Figure 5.6

shows the metadata editor window for editing the representation of the file size of HTML files.

The right part contains the current representation in a text window which allow users add or

delete RDF code. The left part of the window is used to aid users with the process of editing.

More specifically the upper frame contains all the classes of the selected ontology (here the

selected ontology is CIDOC CRM) and the lower frame contains the available properties. The

selection of a class from the upper part will restrict the set of available properties by showing

only the available ones (direct and inherited properties). Apart from the predefined ontologies

that are embedded in metadata editor the user can also define a RDF representation from

another ontology following the same procedure as above. RDF representations can be checked

for validity using the validation mechanism of the SWKM-MainMemoryModel2 5. The RDF

export functionality will eventually transform metadata according to the new representations.

5.3.5 Evaluation of PreScan

Regarding efficiency, the extraction of the embedded metadata depends on the type and

the size of the file. In general, the bigger the size of a file is, the more time it takes to be

5http://athena.ics.forth.gr:9090/SWKM

99

Figure 5.6: Editing the RDF representation of metadata

100

scanned. Unknown filetypes (i.e. filetypes that are not recognized by JHOVE) are identified as

BYTESTREAM modules and only the basic metadata (1st row in Table 5.2) are extracted.

We performed some experiments over various datasets. Table 5.4 summarizes the results of

the evaluation. For every dataset we report the total time for the scanning process as well as

the time for every subtask (extract and store times). Additionally we report the time for the

transformation of metadata records to CIDOC CRM instances. For every dataset we also report

the number of the different files comparing to the total files of the set. The experiments were

done in a 32-bit system with INTEL Core 2 Duo processor at 2.00 GHz, using 2 GB of RAM

running Windows 7. The average size of a file in each dataset was approximately 800 KB.

Table 5.4: Time Performance of the Scanning process
DataSets Time (sec)

Files Type Extract Store Total RDF Transform

10

html/xml 2

0.75 0.1 0.86 1.23

wave/aiff 2
ascii/utf8 1
jpeg/gif 3
pdf 1
unknown 1

102

html/xml 19

7.3 0.35 7.7 3.52

wave/aiff 11
ascii/utf8 7
jpeg/gif 36
pdf 8
unknown 19

103

html/xml 201

72.5 4.02 78.34 11.66

wave/aiff 115
ascii/utf8 56
jpeg/gif 251
pdf 103
unknown 274

104

html/xml 2123

814 (∼ 13.5 min) 29 845 (∼ 14.1 min) 107

wave/aiff 1096
ascii/utf8 922
jpeg/gif 4629
pdf 594
unknown 636

105

html/xml 34069

10256(∼ 2 hr. 51 min) 335(∼ 5.5 min) 10773(∼ 3 hr) 449(∼ 7.5 min)

wave/aiff 1027
ascii/utf8 25467
jpeg/gif 13478
pdf 1240
unknown 24539

As we can the more time-consuming task is the metadata extraction. During the extraction

of the embedded metadata the MD5 checksum of every file is also computed. Clearly this task

is independent from the repository mode (Section 5.3.3). However the storage time depends

on the repository mode adopted. Here we have used the SF option and stored the metadata

records as XML documents. We have noticed that the entire process takes about 3 hours for

101

100 thousand files (about 80 GB).

5.4 Related Approaches

There are only few related works. For instance, the work presented in [19, 18] scans the

filesystem, extracts the type of the digital files and detects those files having obsolete types.

Its functionality relies on three registries: a software version registry, a format registry, and a

recommended format registry.

Another approach based on migration is described in [13]. It adopts a SOA (Service-Oriented

Architecture) for enabling the combination of different format detectors and registries to sup-

port automatic migration. The key difference with our work is that we extract the embedded

metadata, we link them with data that enable dependency management services and we focus

on supporting the entire life-cycle of metadata (i.e. the automatic identification of file removals

and movements).

[36, 35] presents an approach for web page preservation. It aims at enabling the web server

as a just-in-time metadata-extractor/generator. The archivist (or client) receives the metadata

of a web page at dissemination time (as an XML-formatted response), and of course this adds

an extra overhead for the web-server. That work pre-supposes that all digital files are placed in

a web server and that the extended web-server has been installed.

Empirical Walker [3] is probably the most similar tool with PreScan. It also scans the file

system, it determines file formats, it analyzes file contents calculates checksums, and associates

external metadata. It also adopts JHOVE as metadata extractor. Regarding file format iden-

tification, Empirical Walker first assigns a MIME-type to every file according to a mapping

table (that maps file extensions to MIME-types) and in a later phase it uses JHOVE to validate

the associated MIME-types and extract more technical metadata (only for those files that are

supported from JHOVE). However associating MIME-types based only on the file-extensions is

error-prone because file extensions are often unreliable or missing. Furthermore, and in compar-

ison to our work, we allow the addition of user-provided metadata we can output the resulting

metadata in various ways and formats also exploiting the expressive power of Semantic Web lan-

guages. Specifically the resulted metadata can be access or edited: (a) through the developed

GUI, (b) in txt format (in a human readable format), (c) in XML which is directly output from

JHOVE and (d) through a SW repository.

102

Metadata Miner Catalogue6 is a commercial software tool that lists files and folders summary

information, extracts file properties and their metadata and create reports in various formats

(including XML, HTML and RDF according to Dublin Core schema). Furthermore it identifies

several file formats but does not recognize the specific version of that format. For example it will

recognize a .doc file as a Microsoft Word document but cannot identify whether it is a Microsoft

Word 6 document or a Microsoft Word 2003 document. Additionally its free version allows the

listing of only ten files per folder and extracts some of the available metadata.

TripFS [34] is a Java-based server software that crawls the file system starting from a given

directory, extracts a limited set of low-level metadata (i.e. name, size, owner, creation date,

etc.), export them as RDF descriptions, links file resources to other relevant data sources (i.e.

it links a paper in PDF with the DBLP collection) and exposes these data sets according to

Linked Data principles. Moreover it identifies file movements and deletions. However it does

not allow the manual addition of metadata. Additionally after a file movement is identified the

mapping with its description is done using a set of heuristics without any confirmation by the

user, which may lead to inconsistencies.

Table 5.5: Comparing PreScan with related systems

PreScan EW Droid ME MMC TripFS

ReScan with preservation
of manual metadata

X

Identification of file move-
ments

X X

Mapping Confirmation by
the user

X

Export to RDF X X X
Exploitation of format reg-
istries

X(Pronom
+ Depen-
dencies)

X(Pronom)

Format identification X X X Xn1 Xn1 X
Compliance with depen-
dency management

X Xn2

n1: Identifies format but no details about the particular version.
n2: Structural dependencies are extracted (however no details are available).

Table 5.5 compares our work (PreScan) with other tools like Empirical Walker (EW),

DROID, Metadata Extractor (ME), Metadata Miner Catalogue (MMC) and TripFS. Notice

that PreScan is the only tool that allows file system re-scans that protect the human-provided

6http://peccatte.karefil.com/software/Catalogue/MetadataMiner.htm

103

metadata, and identifies file movements.

5.5 Summary

In this chapter we described the design and implementation of PreScan, a tool for automating

the ingestion, maintenance and transformation of metadata of digital files. PreScan scans a

filesystem, extracts the embedded metadata of files, binds them with manually provided, and

supports processes for ensuring the freshness of the metadata repository without loosing the

human provided metadata. Besides it transforms metadata to ontological descriptions according

to CIDOC CRM and its extensions and also supports the efficient alteration of the ontological

representation that is used. The architecture of ontologies that is used from the Semantic Web-

based repository ensures interoperability and enables the provenance information exchange and

dependency management services that assist the preservation of intelligibility of digital objects.

The latest version of PreScan (Beta 1.1) is available for download and use 7.

7http://www.ics.forth.gr/prescan/

104

Chapter 6

Conclusions and Future Work

The preservation of digital objects is critically dependent on the successful preservation of

their viability, renderability, understandability etc. (recall Section 1.1). In this thesis we con-

centrate on the preservation of the intelligibility and provenance of digital objects. Specifically

we described some models and tools for the preservation of digital objects.

We proposed a model for the preservation of intelligibility, based on dependency manage-

ment. This perspective allows us to answer queries of the form: (a) what kind of representation

information do we need , (b) how this depends on the designated community and (c) what kind

of automation can we offer (regarding packaging and dissemination). We also discussed about

modeling and implementation frameworks for the realization of this model based on the different

semantics of dependencies.

Additionally we addressed the need for an extensible conceptual framework that will al-

low provenance information to be integrated, exchanged and exploited within or across digital

archives. To this end we extended CIDOC CRM, defining CIDOC CRM Digital and showed

how it can be used for querying provenance.

Besides we designed and implemented the following tools for digital preservation:

(a) GapMgr: A tool that can aid several tasks related to the preservation of intelligibility.

(b) PreScan: A tool that scans a filesystem, automatically extracts the embedded metadata,

enrich them with user-defined metadata, transforms them to instances according to CIDOC

CRM and its extensions, and supports processes for ensuring the freshness of the metadata

repository.

The completeness of this work can be justified from (a) the fact that it was founded on the

105

conceptual model CIDOC CRM [21], which is an ISO standard (ISO 21127:2006), (b) its com-

pliance with the reference model of OAIS [20], which is also an ISO standard (ISO 14721:2003),

and (c) its applicability in the context of the project CASPAR [1] using real data.

One issue that is worth for further research is the extension of the model for the preservation

of intelligibility with converters. Conversion (or transformation) is becoming a common practice

for achieving interoperability, so it could be exploited for the problem at hand. Additionally

we should remark that further testing of the models and tools is an open ended process for the

future.

106

Bibliography

[1] CASPAR (Cultural, Artistic and Scientific knowledge for Preservation, Access and Re-

trieval), FP6-2005-IST-033572 (http://www.casparpreserves.eu/).

[2] A. Ames, N. Bobb, S.A. Brandt, A. Hiatt, C. Maltzahn, E.L. Miller, A. Neeman, and

D. Tuteja. Richer File System Metadata Using Links and Attributes. In Proccedings of the

22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies

(MSST’05), pages 49–60, Monterey, CA, USA, April, 2005.

[3] R. Anderson, H. Frost, N. Hoebelheinrich, and K. Johnson. The AIHT at Stanford Uni-

versity: Automated Preservation Assessment of Heterogeneous Digital Collections. D-Lib

Magazine, 11:12, December, 2005.

[4] M. Belguidoum and F. Dagnat. Dependability in Software Component Deployment. In

Proceedings of the 2nd International Conference on Dependability of Computer Systems

(DepCoS-RELCOMEX’07), pages 223–230, Szklarska Poreba, Poland.

[5] M. Belguidoum and F. Dagnat. Dependency Management in Software Component Deploy-

ment. Electronic Notes in Theoretical Computer Science, 182:17–32, 2007.

[6] H. Christiansen and V. Dahl. HYPROLOG: A New Logic Programming Language with

Assumptions and Abduction. In Proceedings of the 21st Conference on Logic Programming

(ICLP’05), pages 159–173, Sitges, Barcelona, Spain, October, 2005.

[7] H. Christiansen and V. Dahl. Assumptions and Abduction in Prolog. In Proceedings

of the 3rd International Workshop on Multiparadigm Constraint Programming Languages

(MultiCPL’04); Proceedings of the 20th International Conference on Logic Programming

(ICLP’04), pages 87–101, Saint Malo, France, September, 2004.

107

[8] L. Console, D.T. Dupre, and P. Torasso. On the Relationship Between Abduction and

Deduction. Journal of Logic and Computation, 1(5):661–690, 1991.

[9] S.B. Davidson and J. Freire. Provenance and Scientific Workflows: Challenges and Opportu-

nities. In Proceedings of the 2008 ACM SIGMOD International Conference on Management

of Data, pages 1345–1350, Vancouver, Canada, June, 2008.

[10] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.

Patel-Schneider, and L.A. Stein. OWL Web Ontology Language 1.0 Reference, July, 2002.

(http://www.w3c.org/TR/owl-ref).

[11] XFDU development site. (http://sindbad.gsfc.nasa.gov/xfdu).

[12] T. Eiter and G. Gottlob. The Complexity of Logic-based Abduction. Journal of the ACM

(JACM), 42(1):3–42, January, 1995.

[13] M. Ferreira, A.A. Baptista, and J.C. Ramalho. A Foundation for Automatic Digital Preser-

vation. Ariadne, 48, July, 2006.

[14] M.S. Fox and J. Huang. Knowledge Provenance: An Approach to Modeling and Maintaining

the Evolution and Validity of Knowledge. 2003.

[15] X. Franch and N.A.M. Maiden. Modeling Component Dependencies to Inform their Selec-

tion. In Proceedings of the 2nd International Conference on COTS-Based Software Systems

(ICCBSS’03), Ottawa, Canada, February, 2003.

[16] J. Freire, D. Koop, E. Santos, and C.T. Silva. Provenance for Computational Tasks: A

Survey. Computing in Science and Engineering, 10(3):11–21, May-June, 2008.

[17] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A Semantic Web Rule Language Combining OWL and RuleML, May 2004.

(http://www.w3.org/Submission/SWRL/).

[18] J. Hunter and S. Choudhury. A semi-automated digital preservation system based on

semantic web services. In Proceedings of the 4th ACM/IEEE-CS joint Conference on Digital

Libraries (JCDL ’04), pages 269–278, New York, NY, USA, 2004.

108

[19] J. Hunter and S. Choudhury. PANIC: an Integrated Approach to the Preservation of

Composite Digital Objects Using Semantic Web Services. International Journal on Digital

Libraries, 6(2):174–183, April, 2006.

[20] International Organization For Standardization. OAIS: Open Archival Information System

– Reference Model, 2003. Ref. No ISO 14721:2003.

[21] International Organization For Standardization. The CIDOC Conceptual Reference Model,

2006. Ref. No ISO 21127:2006 (http://cidoc.ics.forth.gr/).

[22] M. Jarrar and R. Meersman. Formal Ontology Engineering in the DOGMA Approach. In

Proceedings of the International Conference on Ontologies, Databases and Applications of

Semantics (ODBase’02), pages 1238–1254, Irvine, California, USA, October, 2002.

[23] AC Kakas, RA Kowalski, and F. Toni. The Role of Abduction in Logic Pro-gramming.

Handbook of Logic in Artificial Intelligence and Logic Programming: Logic programming,

page 235, 1998.

[24] G. Karvounarakis, V. Christophides, and D. Plexousakis. Querying Semistructured

(Meta)data and Schemas on the Web: The case of RDF & RDFS. Technical Report 269,

ICS-FORTH, 2000. Available at: http://www.ics.forth.gr/proj/isst/RDF/rdfquerying.pdf.

[25] DEDSL Language. (http://east.cnes.fr/english/index.html).

[26] EAST Language. (http://east.cnes.fr/english/page east.html).

[27] R.A. Lorie. Long Term Preservation of Digital Information. In Proceedings of the 1st

ACM/IEEE-CS joint Conference on Digital Libraries, pages 346–352, Roanoke, Virginia,

USA, 2001.

[28] A. Lucas. XFDU Packaging Contribution to an Implementation of the OAIS Reference

Model. In Proceedings of the International Conference PV’2007 (Ensuring the Long-Term

Preservation and Value Adding to Scientific and Technical Data), Edinburgh, November

2005.

[29] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. RUL: A Declarative

Update Language for RDF. In Proceedings of the 4th International Conference on the

Semantic Web (ISWC-2005), Galway, Ireland, November 2005.

109

[30] Y. Marketakis, M. Tzanakis, and Y. Tzitzikas. PreScan: Towards Automating the Preser-

vation of Digital Objects. In Proceedings of the International Conference on Management of

Emergent Digital EcoSystems (MEDES’09), pages 404–411, Lyon, France, October, 2009.

[31] A. Mikroyannidis, Ong Bee, Kia Ng, and D. Giaretta. Ontology-based Temporal Modelling

of Provenance Information. In Proceedings of the 14th IEEE Mediterranean Electrotechnical

Conference, MELECON 2008, pages 176–181, Tenerife, Spain, May 2008.

[32] L. Moreau, J. Freire, J. Myers, J. Futrelle, and P. Paulson. The Open Provenance Model

v1.1. University of Southampton, December, 2009.

[33] GDFR (Global Digital Format Registry). (http://www.gdfr.info).

[34] B. Schandl and N. Popitsch. Lifting File Systems into the Linked Data Cloud with TripFS.

In Proceedings of the WWW 2010 Workshop Linked Data on the Web (LDOW’10), Raleigh,

North Carolina, April, 2010.

[35] J.A. Smith and M.L. Nelson. A Quantitative Evaluation of Dissemination-time Preservation

Metadata. In Proceedings of the 12th European conference on Research and Advanced Tech-

nology for Digital Libraries (ECDL’08), pages 346–357, Aarchus, Denmark, 2008. Springer.

[36] J.A. Smith and M.L. Nelson. Creating preservation-ready web resources. D-Lib Magazine,

14(1/2):1082–9873, 2008.

[37] H. Stenzhorn, K. Srinivas, M. Samwald, and A. Ruttenberg. Simplifying Access to Large-

Scale Health Care and Life Sciences Datasets. Lecture Notes in Computer Science, 5021:864,

2008.

[38] E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi. An Environment for Distributed

Ontology Development Based on Dependency Management. In Proceedings of the 2nd

International Semantic Web Conference (ISWC’03), pages 453–468, Sanibel Island, Florida,

USA, October, 2003. Springer.

[39] The technical registry PRONOM (The National Archives).

(http://www.nationalarchives.gov.uk/pronom).

[40] M. Theodoridou, Y. Tzitzikas, M. Doerr, Y. Marketakis, and V. Melessanakis. Modeling

and querying provenance by extending CIDOC CRM. Journal of Distributed and Parallel

Databases, 27:169–210, 2010.

110

[41] Y. Tzitzikas and G. Flouris. Mind the (Intelligibility) Gap. In Proceedings of the 11th Eu-

ropean Conference on Research and Advanced Technology for Digital Libraries (ECDL’07),

Budapest, Hungary, September 2007.

[42] Y. Tzitzikas, D. Kotzinos, and Y. Theoharis. On Ranking RDF Schema Elements (and its

Application in Visualization). Journal of Universal Computer Science, 13(12):1854–1880,

2007.

[43] Y. Tzitzikas and Y. Marketakis. Automating the ingestion and transformation of embedded

metadata. ERCIM News, 2010(80), 2010.

[44] Y. Tzitzikas, Y. Marketakis, and G. Antoniou. Task-based Dependency Management for the

Preservation of Digital Objects using Rules. In Proceedings of the 6th Hellenic Conference

on Artificial Intelligence (SETN’10), Athens, Greece, May, 2010.

[45] J.R. van der Hoeven, R.J. van Diessen, and K. van der Meer. Development of a Uni-

versal Virtual Computer (UVC) for long-term preservation of digital objects. Journal of

Information Science, 31(3):196, 2005.

[46] M. Vieira, M. Dias, and D.J. Richardson. Describing Dependencies in Component Ac-

cess Points. In Proceedings of the 23rd International Conference on Software Engineering

(ICSE’01), pages 115–118, Toronto, Canada, May, 2001.

[47] M. Vieira and D. Richardson. Analyzing dependencies in large component-based systems. In

Proccedings of the 17th IEEE International Conference on Automated Service Engineering,

ASE’02, Los Alamitos, CA, USA, 2002.

[48] M. Walter, C. Trinitis, and W. Karl. OpenSESAME: an Intuitive Dependability Model-

ing Environment Supporting Inter-Component Dependencies. Proceedings of Pacific Rim

International Symposium on Dependable Computing, pages 76–83, 2001.

111

Index

GapMgr, 48

CRMdig, 73

DC Profile, 28

DEDSL, 9

Dependency, 21

EAST, 8

Intelligibility Gap, 33

JHOVE, 95

Metadata, 90

Module, 20

OAIS, 5, 19

Prolog, 46

PRONOM, 60

SWKM, 52, 60

SWRL, 46

Task, 21

XFDU, 10

112

