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Abstract. In this paper we present a method to enrich the classical
web searching with entity mining that is performed at query time. The
results of entity mining (entities grouped in categories) can complement
the query answers with useful for the user information which can be fur-
ther exploited in a faceted search-like interaction scheme. We show that
the application of entity mining over the snippets of the top-hits of the
answers, can be performed at real-time. However mining over the snip-
pets returns less entities than mining over the full contents of the hits,
and for this reason we report comparative results for these two scenar-
ios. In addition, we show how Linked Data can be exploited for specify-
ing the entities of interest and for providing further information about
the identified entities, implementing a kind of entity-based integration
of documents and (semantic) data. Finally, we discuss the applicability
of this approach on professional search, specifically for the domains of
fisheries/aquaculture and patents.

1 Introduction

Entity search engines aim at providing the user with entities and relationships
between these entities, instead of providing the user with links to web pages.
Although this is an interesting line of research and there are already various
entity search engines and approaches [6, 20, 8], according to our opinion, these
approaches/tools are still in their infancy in the sense that they are not really
useful for the usual information needs of the users. For this reason, instead of
radically changing the way users search for information, we propose enriching
the classical interaction scheme of web search engines with entity mining, as a
means to combine the pros of both families of systems. For instance, showing
to the user the recognized categories and entities (e.g. at a left bar of the user
interface), can be useful for the user in various contexts and for various infor-
mation seeking tasks. For example, consider the case of a user wanting to find
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persons who work on a research topic, places related to one particular painter,
telephones of restaurants on a particular area, etc. If such entities are made
available to the user then he can simply collectively use these entities instead of
having to open several pages and searching in each one of them. Furthermore,
these entities allow the user to restrict his focus on the part of the answer where
a particular entity has been identified. In addition, when the user views an en-
tity that he already knows that is relevant to his information need, this allows
him to realize that his query is appropriate for that need. Recognizing categories
and entities is not only useful to public web search, but it could be particularly
useful in professional search that is, search in the workplace, especially in indus-
trial research and development [14]. For example in professional patent search,
in many situations, one must look beyond keywords to find and analyse patents
based on a more sophisticated understanding of the patents content and mean-
ing [13]. Technologies such as entity identification and analysis could become a
significant aid to such searches and can be seen, together with other text analysis
technologies, as becoming the cutting edge of information retrieval science [2].

From an information integration point of view we could say that entity names
are used as the “glue” for automatically connecting documents with data (and
knowledge). This approach does not require deciding or designing an integrated
schema/view, nor mappings between concepts as in knowledge bases, or map-
pings in the form of queries as in the case of databases. The key point is that
entities can be identified in documents, data, database cells, metadata attributes
and knowledge bases.

To enrich web searching with Named Entity Mining (for short NEM), we
have to tackle (at least) two main challenges: (a) Real-time Response: Real time
interaction is very important in web searching (and generally in any setting
of an interactive search system), however NEM is in general computationally
expensive in the sense that the required processing time (for extracting entities)
is proportional to the size (contents) of the documents. (b) Selection/Ranking of
Entities: We have to specify criteria that determine the selection and ranking
of the (often numerous) discovered entities.

In this work we focus on NEM that is performed at query time and no pre-
processing or indexing has been done. Figure 1 shows an indicative screendump
of a prototype system that we have designed and developped1. This prototype
retrieves the top-K hits (the user is able to set the value of K) of a WSE (Web
Search Engine), in our case Google, and mines entities at that time either from
the snippets, or from the full contents (depending on what the user wants) of the
top hits of the query answer. The discovered entities are grouped according to
their categories and are visualized and exploited according to the faceted explo-
ration interaction paradigm [18]: when the user clicks on an entity, the hits are
restricted to those that contain that entity, and so on. Furthermore, the system,
after user’s request, can apply mining over a desired hit and discover all entities
of that hit. All these are performed at query time, without any preprocessing.

1 Accessible through http://www.ics.forth.gr/isl/ios
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Nicolas Sarkozy
Current President of France
Birth date: 1955-01-28
Birth place: Paris, France
Profession: Lawyer

Web site: http://www.sarkozy.fr
Page: http://en.wikipedia.org/wiki/Nicolas_Sarkozy

Fig. 1: A prototype offering Web Searching enriched with entity mining

In Figure 1 we can see what the user is getting after having submitted the
query “Barack Obama” and selected to mine the full contents of the top-100
results. We observe entities like Joe Biden, John McCain, Michelle Obama and
Clinton under the category “Person”, and White House, Congress, Columbia
University and Harvard under the category “Organization”. Only the top-10
entities of each category are shown, but the user can see all of them by clicking
on “show all”. By clicking on an entity, e.g on Joe Biden, the search space
narrows to those containing that entity, while with “find its entities” on a hit,
the user can ask and get all entities of that hit. Furthermore, for each entity the
user can ask the system to fetch more information from the Linked Open Data
cloud (e.g. as we see for Nicolas Sarkozy in Figure 1).

In a nutshell, in this paper: (a) we detail a novel combination of NEM tech-
nologies for enriching the classical web (meta) searching process with entity
mining performed at query time, where the mined entities are exploited for of-
fering faceted exploration, (b) we compare the results of NEM over document
snippets versus NEM over the full document contents according to various per-
spectives (mined entities, computational cost), (c) we elaborate on the ranking
of entities and we report the results of a comparative evaluation with users, and
(d) we show how to exploit the LOD (Linked Open Data) cloud for enriching
the identified entities with links to their corresponding semantic descriptions.
The rest of this paper is organized as follows. Section 2 discusses the context,
related works, and possible approaches for enriching web and professional search
with NEM. Section 3 describes the approach that we investigate in this work
(architecture, entity ranking, LOD-based enrichment), and a prototype over the
fisheries/aquaculture domain. Section 4 reports experimental results, and finally,
Section 5 concludes and identifies directions that are worth further research.
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2 Background and Related Work

The idea of enriching the classical query-and-response process of current web
search engines, with static and dynamic metadata for supporting exploratory
search was proposed in [17] and it is described in more detail (enriched with the
results of a user-based evaluation) in [16]. In that work the notion of dynamic
metadata refers to the outcome of results clustering algorithms which take as
input the snippets of hits, where snippets are query word dependent (and thus
they cannot a-priori be extracted, stored and indexed). Note that the results
of NEM if applied over the textual snippets also falls into the case of dynamic
metadata.

We can model our setting as follows. Let D be the set of all documents,
and C the set of all supported categories, e.g. C = {Locations, Persons,
Organizations, Events}. Let M be the set of all minable entities where each
entity is described by a string. We can now model the functionality of a NEM
tool by two functions mc and mec. Specifically, let mc : D → 2C be the function
that takes as input a document (say d1) and returns the categories of the entities
that have been recognized in d1, e.g. mc(d1) = {Locations, Persons}. Now let
mec : D × C → 2M be the function that takes as input a document d and a
category c and returns entities belonging to that category which have been rec-
ognized in that document. For example, mec(d1, Location) = {Crete,Athens}.

There are several approaches that could be used in order to enrich the clas-
sical web searching with NEM. Some of them are described below.

RS: Real-time NEM over the Snippets of the top hits of the answer.
Here entity mining is performed only over the snippets of the top hits of the
returned answer.

RC: Real-time NEM over the Contents of the top hits of the answer.
Here the full contents of the top hits of the returned answer are downloaded and
then entity mining is performed. Clearly, this process can take much more time
than RS.

OC: Off-line NEM over the entire Corpus.
Here we mine all entities of the corpus offline (assuming that the corpus is
available), and we build an appropriate index (or database) for using it at run
time. For each incoming query, the entities of the top-K (e.g. K = 100) hits of
the answer are fetched from the index, and are given to the user. An important
observation is that the size of the entity index in the worst case could be in
the scale of the corpus. Also note that this approach cannot be applied in an
uncooperative search environment where full access to the resources is not given.

OFQ: Offline NEM over the top hits of the answers of the Frequent
Queries. Here, also offline, for each frequent query of the log file (e.g. for those
which are used for query suggestion), we compute its answer, we fetch the top-
K hits, we apply NEM and save its results as they should be shown (i.e. what
the left bar should show) using the approach and indexes described at [10, 9].
The benefit of this approach in comparison to OC is that we do not have to
apply NEM at the entire collection but only at the top hits of the most frequent
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queries. This significantly reduces the required computational effort and storage
space. The downside of this approach is that if a user submits a query which
does not belong to the frequent queries, and thus it has not been processed, then
the system cannot provide and suggest entities. In that case the system could
offer the choice to the user to apply NEM at query time, i.e. approach RS or RC
as described earlier. Finally, we should note that this approach is applicable also
at a meta search level since it does not require access to the entire corpus (only
to the query answers), but periodically the index has to be refreshed (mainly
incrementally).

There is a plethora of related works and systems that offer a kind of entity
search, below we briefly describe few of them.

The Entity Search Engine [6, 5, 4] supports only two categories (phone and
email) and users have to type formatted queries (using # to denote entities).
NEM is applied over the entire corpus and the extracted entities are stored in the
form of ordered lists based on document ID (much like storing inverted indices),
in order to provide their results instantly.

EntityCube2 is an entity search engine by Mircosoft which extracts entities
and relationships from semistructured as well as natural-language Web sources.
The goal is to automatically construct and maintain a knowledge base of facts
about named entities, their semantic classes, and their mutual relations as well
as temporal contexts.

MediaFaces [20, 21] provides faceted exploration of media collections and of-
fers a machine learned ranking of entity facets based on user click feedback and
features extracted from three different ranking sources. For a given entity of in-
terest, they have collected (from knowledge bases like Wikipedia and GeoPlanet)
a large pool of related candidate facets (actually related entities).

The approach described at [8] aims at identifying related entities by analyz-
ing a user query (that describes one entity in a TREC-like manner) and then
generating and sending (to various search engines) an enriched query, and finally
analyzing the (full contents) of the returned results.

With respect to the approaches RS, RC, OC and OFQ described earlier,
most systems follow approach OC. [8] follows the RC approach, while the only
system that offers OFQ is [9]. To the best of our knowledge the current paper
is the first that investigates the RS approach.

3 NEM at Query Time

We focus on a dynamic approach where no pre-processing of the resources has
been done. Analogously to works like [22] which compares the outcomes of clus-
tering over snippets with the outcomes of clustering over contents, in this work
we investigate the same question but for the case of entity mining. Furthermore
we investigate linking the identified entities with Linked Data.

2 http://entitycube.research.microsoft.com/
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Architecture Our prototype system IOS, supports the approaches RS, RC and
OFQ. The default choice is RS and OFQ, while RC is offered on demand (see
the options at the upper right corner of Figure 1). Approach OFQ is offered
for the frequent queries only and the reason for providing it is because: (i)
it can offer instant behavior for a significant percentage of incoming queries,
(ii) it is less space consuming than the OC approach that mines everything,
and (iii) it is beneficial for the server since it reduces the number of incoming
queries and the same precomputed information is exploited in several requests.
We do not further analyze this case since it has been described in detail at [10]
and [9]. Figure 2 shows the architecture. We currently use GateAnnie3[3, 7] for
NEM. In our case it takes as input a set of documents (or document snippets),
specifically those of the top-K hits of the query answer. It returns as output
a set of lists (one list for each category). In general, GateAnnie relies on finite
state algorithms and the JAPE (regular expressions over annotations) language.
It consists of various components, in our case the following are used: Unicode
Tokeniser (for splitting text into simple tokens such as numbers, punctuation
and words ), Gazetteer (predefined lists of entity names), and Sentence Splitter
(for segmenting text into sentences). The prototype also supports faceted search-
like restriction of the answer, i.e. the user is able to gradually select entities from
one or more categories and refine the answer set accordingly (the mechanism is
session-based). So far all such selections have disjunctive (OR) semantics.
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Fig. 2: The architecture (and main flow of control) of the prototype system

Entity Ranking Entity selection and ranking is important since usually the
UI has limited space therefore only a few can be shown at the beginning. We
propose tackling this problem by (a) ranking all identified entities for deciding
the top-10 entities to be shown for each category, and (b) offer to user the ability
to show more entities (all) on demand. Below we focus on ranking methods that
do not rely on any log analysis, so they are aligned with the dynamic nature of
our approach.

Consider a query q and let A be the set of returned hits (or the top-K hits
of the answer). Now consider a category c. The entities that fall in this category

3 http://gate.ac.uk/ie/annie.html
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are E = ∪a∈Amec(a, c). For an e ∈ E, let docs(e) = {a ∈ A | e ∈ mec(a, c)}, i.e.
docs(e) is the set of documents in which entity e is identified.

We need a method to rank the elements of E. One approach is to count the
elements of A in which the entity appears, i.e. its frequency. Furthermore, we can
take into account the rank of the documents that contain that entity in order
to promote those entities that are identified in more highly ranked documents
(otherwise an entity occurring in the first two hits will receive the same score
as one occurring in the last two). For an a ∈ A, let rank(a) be its position in
the answer (the first hit has rank equal to 1, the second 2, and so on). We can
capture this requirement by a formula of the form:

Scorerank(e) =
∑

a∈docs(e)

((|A|+ 1)− rank(a)) (1)

We can see that an occurrence of e in the first hit, counts |A|, while an occurrence
in the last document of the answer counts for 1.

Another approach is to take into account the words of the entity name and the
query string. If for an entity e ∈ E, we denote by w(e) the words of its name, and

by w(q) the words of the query, then we can define Scorename(q, e) =
|w(q)∩w(e)|

|w(e)| .

To tolerate small differences (due to typos or lexical variations), we can define
an alternative scoring function that is based on the Edit Distance:

ScorenameDist(q, e) =
|{ a ∈ w(q) | ∃b ∈ w(e), EDist(a, b) ≤ 2}|

|w(q)|
(2)

which returns the percentage of the words of q which can be “matched” to one
word of the entity e either exactly or up to an Edit distance equal to 2.

The above scores can be combined to reach a final score that considers both
perspectives. We can adopt the harmonic mean for promoting those entities
which have high scores in both perspectives. However notice that if an entity
has not any query word (or a word that is close to a query word), that entity
would take zero at Scorename and that would zero also the harmonic mean. One
approach to tackle this problem is to compute the plain (instead of the harmonic)
mean, or in place of ScorenameDist(q, e) to have the sum ScorenameDist(q, e)+ b
for a very small positive constant b (e.g. b = 0.01). To conclude we could use:

Score(q, e) =
2 Scorerank(q, e) ScorenameDist(q, e)

Scorerank(q, e) + ScorenameDist(q, e)
(3)

3.1 On Exploiting Linked Open Data

There are already vast amounts of structured information published according
to the principles of Linked Open Data (LOD). The availability of such datasets
enables not only to configure easily the entity names that are interesting for the
application at hand, but also the enrichment of the identified entities with more
information about them. In this way the user not only can get useful information
about one entity without having to submit a new query, but he can also start
browsing the entities that are linked to that entity.
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Another important point is that exploiting LOD is more dynamic, afford-
able and feasible, than an approach that requires each search system to keep
stored and maintain its own knowledge base of entities and facts. Returning to
our setting, the first question is which LOD dataset(s) to use. One approach
is to identify and specify one or more appropriate datasets for each category
of entities. For example, for entities in category “Location”, the GeoNames4

dataset is ideal since it offers access to millions of placenames. Furthermore,
DBpedia5 is appropriate for multiple categories such as “Organizations”, “Peo-
ple” and “Locations”. Other sources that could be used include: FreeBase6 (for
persons, places and things), YAGO[19] (for Wikipedia, WordNet and GeoN-
ames), Wikicompany7 (for organizations). In addition FactForge[1] includes 8
LOD datasets (including DBpedia, Freebase, Geonames, UMBEL, Wordnet).
DBpedia and FactForge offer access through SPARQL endpoints8.

Running one (SPARQL) query for each entity would be a very expensive
task, especially if the system has discovered a lot of entities. Some possible
ways to tackle this problem are: (a) offer this service on demand, (b) for the
frequent queries pay this cost at pre-processing time and exploit the results
as described in [10, 9], (c) periodically retrieve and store locally all entities of
each category, so at real time only a matching process is required (however
here we have increased space and maintenance requirements). Note however that
approach (c) is essentially the approach of our prototype (even though no Linked
Data are used), since the Gazetteers of GateAnnie that we use include names
of persons (11,974), organizations (8,544), and locations (29,984); in total about
50,502 names are used in our setting. Furthermore, lists of prefixes and postfixes
are contained that aid the identification of entities (e.g. from a phrase “Web
inventor Tim Berners-Lee”, it recognizes “Tim Berners-Lee” as a person due to
the prefix “inventor”). So the essential difference could be the following: instead
of having a NEM component that contains predefined named lists/rules, it is
beneficial (certainly from an architectural point of view) to offer the ability to
the system to download the required lists (from the constantly evolving LOD)
that are appropriate for the application at hand. For example, we can run a
SPARQL query that returns a list with all objects of rdf:type dbp-ont:Artist

and thereby offer the ability to explore artists in the search results.

Currently our prototype adopts the (a) approach for the general web search
scenario, and the (c) approach for vertical search scenarios. Specifically when the
user clicks on the small icon at the right of an entity, the system at that time
checks if that entity lies in the LOD cloud (by performing a SPARQL query)
and if yes it collects more information about that entity which are visualized in
a popup window as shown in Figure 1. For instance, the following query, evalu-
ated over FactForge SPARQL Endpoint, returns the basic information about a

4 http://www.geonames.org/
5 http://dbpedia.org/
6 http://www.freebase.com/
7 http://wikicompany.org/
8 DBpedia: http://dbpedia.org/sparql, FactForge: http://www.factforge.net/sparql
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foaf:Person with foaf:name ‘Barack Obama’:
SELECT DISTINCT

?person ?name ?comment ?birthDate ?birthPlace ?homepage ?thumbnail WHERE {
?person rdf:type foaf:Person; foaf:name ?name

FILTER(regex(str(?name),’Barack Obama’,’i’))

?person dbp-ont:birthDate ?birthDate .

OPTIONAL{?person rdfs:comment ?comment

FILTER(langMatches(lang(?comment),"EN"))}
OPTIONAL{?person dbp-ont:thumbnail ?thumbnail}
OPTIONAL{?person foaf:homepage ?homepage}
OPTIONAL{?person dbp-ont:birthPlace ?place .

?place rdfs:label ?birthPlace FILTER(langMatches(lang(?birthPlace), "EN"))}

Case Study: Fisheries and Aquaculture publications Apart from the case
of general purpose Web searching, we have started investigating this approach in
vertical search scenarios. One of this is the domain of FAO (Food and Agricul-
ture Organization) publications about fisheries and aquaculture. The underlying
keyword search system is the FIGIS search component9 which can receive queries
through an HTTP API. The search result apart from formatted HTML can be
returned in XML format which uses Dublin Core schema to encapsulate biblio-
graphic information. Each returned hit has various textual elements, including
publication title and abstract. The first is around 9 words, the second cannot
go beyond 3,000 characters. As concern NEM, we identified the following rele-
vant categories: Countries, Water Areas, Regional Fisheries Bodies, and Marine
Species. For each one there is a list of entities: 240 countries, 28 water areas, 47 re-
gional fisheries bodies and 8,277 marine species, in total 8,592 names. Each such
entity is also described and mutually networked in the Fisheries Linked Open
Data (FLOD) RDF dataset. FLOD extended network of entities is exposed via
a public SPARQL endpoint10 and web services.

The objective is to investigate how to enrich keyword search with entity
mining where the identified entities are linked to entities in FLOD endpoint,
and from which semantic description can be created and served. A screendump
of this prototype is shown in Figure 3. The link in the popup window redirects
the users to the FLOD graph browser (a customized version of the Pubby web
application11 interfacing with FLOD endpoint).

Patent Search Entity mining at query time can also be beneficial for patent
search. Patent search is a kind of professional search, and most patent searches
(e.g. patentability and validity) are crucially important for businesses’ patent
management success. Missing relevant documents is unacceptable therefore the
retrieval of all relevant documents is usually necessary. Clearly, this is a kind
of recall-oriented search, and thus the support of an interactive and gradual

9 http://www.fao.org/fishery/search/en
10 http://www.fao.org/figis/flod/endpoint/sparql
11 http://www4.wiwiss.fu-berlin.de/pubby/
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Fig. 3: A prototype over FAO publications with links to FLOD

(session-based) multi-faceted search process is required. In that context the pro-
vision of facets that correspond to various kinds of entities can help the user to
get an overview and to quickly restrict the search space. The usefulness of entity
mining in patent search is also signified by the emergence of systems like quan-
talyze12 in which quantities such as temperatures are spotted in the documents
(patent documents in this case), their respective semantic context is identified
and the quantity itself is normalized to a standard unit. However, more kinds
of entities would be useful to be supported, e.g. companies, countries, persons
(of related publications), product types, laws, other patents, etc. Since most of
them are named entities the exploitation of LOD is indispensable. In this setting
NEM could be applied not only over the textual snippets returned by a simple
search, but also over the abstracts or descriptions (full contents) of the patents.

4 Experimental Results

At section 4.1 we report the results of a comparative evaluation of the three entity
ranking methods by users, while at section 4.2 we compare snippet-mining versus
contents-mining from various perspectives. Finally, in section 4.3 we report the
results of LOD-related experiments.

4.1 Comparative Evaluation of Entity Ranking Methods by Users

We comparatively evaluated with users the three methods for entity ranking,
i.e. equations (1), (2) and (3) of Section 3. Fifteen users participated in the
evaluation with ages ranging from 20 to 28, 73.3% males and 26.6% females.
We selected a set of 20 queries and for each one we printed one page consist-
ing of three columns, one for each ranking method. Each column was showing

12 https://www.quantalyze.com/en/
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the top-10 entities for the categories Person, Location, Organization. NEM over
full contents was used. Each participant was asked to mark the most preferred
ranking. If the user could not identify the most preferred, the user could mark
two or even all three as equally preferred. We aggregated the results based on
plurality ranking (by considering only the most preferred options). The results
showed that the most preferred ranking is that derived by equation (1), which
was the most preferred in 228 of the 15x20=300 questions. The equations (2) and
(3) received almost the same preference; they were selected as most preferred
options in 43 and 44 of the 15x20=300 questions.
In more detail, Figure 4a shows that for 13 of the 15 participants, equation (1)
was the most preferred, while Figure 4b shows that equation (1) was the most
preferred for all 20 queries.
From these we can conclude that the string similarity between the query and
the entity name did not improve entity ranking in our setting.
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Fig. 4: Left: Aggregated preferences for each user. Right: Aggregated preferences
for each query.

4.2 Contents Mining versus Snippet Mining

Since a snippet is part of a document, the entities discoverable in a snippet are
subset of those discoverable at the full document contents. From this perspective
we could say that the results of snippet mining are “sound” with respect to the
results of documents mining.

To check how different they are we performed various measurements. For a set
of 1,000 queries we compared the results of snippet-mining and contents-mining
over the top-50 hits of the query answers. In our experiments we considered the
categories Person, Location and Organization. The results are shown in Figure
5a, 5b and 5c respectively. The y-axis is in log scale and the queries are ordered
in descending order with respect to the number of mined entities over their full
contents.

Figure 5a shows that the average number of identified persons over full con-
tents is about 527, while the average number of identified persons over snippets
is about 18, meaning that content mining yields around 29 times more persons.
We should also note that 50% of the queries return less than 500 entities, 43%
of queries retrieve from 500 to 1000 entities and only 7% return more than 1000
entities.
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Fig. 5: Comparing the number of mined entities (for the categories Person, Lo-
cation, Organization) over the contents and over the snippets for 1,000 queries
(for each query its top-50 hits are mined).

In Fig. 5b we observe the same pattern for locations: contents-mining in
average returns about 219 entities per query while snippet-mining about 12
entities. Finally, according to Fig. 5c, contents mining identifies on average 309
organizations while snippet-mining 14 organizations (22 times less).

To sum up, we could say that contents mining yields around 20 times more
entities than snippet mining.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 201 401 601 801

Jac
ca

rd 
Sim

ila
rit

y f
or

 
To

p1
0 P

ers
on

s 

Number Of Queries 

Jaccart Similarity

(a)

0%
10%
20%
30%
40%
50%
60%
70%

1 201 401 601 801

Jac
ca

rd 
Sim

ila
rit

y f
or

 
To

p1
0 L

oc
ati

on
s 

Number Of Queries 

Jaccard Similarity

(b)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

1 201 401 601 801

Jac
ca

rd 
Sim

ila
rit

y f
or

  
To

p1
0 O

rga
niz

ati
on

s 

Number Of Queries 

Jaccard Similarity

(c)

Fig. 6: Jaccard Similarity between top-10 mined entities for the categories Per-
son, Location, Organization over snippets and over full contents for 1,000 queries
(for each query answer the top-50 hits are considered).

In addition, we compared only the top-10 mined entities as produced by
equation (1). We compared these lists as sets using the Jaccard similarity. The
results are shown in the three diagrams of Figure 6. We observe that the entities
in the category “Person” have Jaccard similarity 0% for the 65% of queries and
more than 20% for less than the 10% of queries. For the categories “Location”
and “Organization”, about half of the queries have 0% similarity. Furthermore,
for entities in “Organization” there are no queries with Jaccard similarity more
than 50%, while for entities in “Location” there is not any query with more
than 70% similarity. From the above we can conclude that the top-10 entities
yielded from snippets mining are quite different from those yielded from contents
mining. This is quite expectable since (as we described earlier) contents mining
yields around 20 times more entities than snippets mining.
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Computational and Memory Costs

Below we report execution times. All experiments were carried out using a laptop
with processor Intel Core 2 Duo T8300 @ 2.40Ghz CPU, 4GB RAM and running
Ubuntu 10.04 (32 bit), and Google was used as the underlying engine. The
implementation of the system is in Java 1.6 (J2EE platform), using Apache
Tomcat 7 (2GB of RAM).

Snippet-mining. Time: The whole process over the top-50 snippets (each hav-
ing the size of 193 bytes in average) for one query takes 1.5 seconds in average.
The process comprises the following steps. At first we retrieve the results pages
from the underlying WSE which costs about 547 ms (36,2% of the total time).
Second, we apply NEM over the snippets of the retrieved query answers which
takes about 901 ms (60,4% of the total time). Third, we apply NEM over the
query string which costs about 5,6 ms (0,37% of the total time). Finally, we
create a string representation of the first page of results with cost about 36 ms
(2,4% of the total time) and also a string representation of all entities in about 9
ms (0,6% of total time). The time for ranking entities and categories is negligible
(less than 1 ms). In more detail, and only for the NEM task, some indicative
times follow: 0.2 secs for 10 snippets of total size 0.1 MB, 1.2 secs for 100 snippets
of total size 1.94 MB.

The average main memory requirements for one query (for the whole process)
is about 37MB.

Contents-mining Time: The whole process over the top-50 full documents (of
total size about 6.8 MB) for one query takes 78 seconds in average. The retrieval
of results from the underlying WSE costs less than one second (1% of the total
time). The downloading of the contents of each hit costs about 28 seconds (36%
of the total time). The application of NEM over the contents of the downloaded
documents takes about 45 seconds (57% of the total time). The creation of the
string representation of the first page of results costs about 33 ms (0.04% of
the total time), while the construction of the string representation of all entities
takes about 4,5 seconds (6% of total time)13. The sorting of the categories and
entities costs only a few ms. Some indicative times for NEM only: 5.2 seconds
for 10 documents of total size 1.5 MB, 107 seconds for 100 documents of total
size 16.3 MB.
The average main memory requirements for one query (the whole process) is
about 300 MB.

Synopsis. The comparison between snippet and contents mining can be sum-
marized as:

13 Notice that this step takes 6%, while in snippets it takes only 0.6% of the total time.
This is due to the much higher number of entities.
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entities per hit: 1.2 10.1

overall time: 1.5 secs 78 secs

main memory footprint for one query: 37 MB 300 MB

4.3 Linked Data-related Experimental Results

In general the time required for getting the semantic description of an entity by
querying a SPARQL endpoint, depends on the particular query and the partic-
ular endpoint. In our case, and using the FLOD Endpoint, the average time for
an entity of the category Location is 230 ms, while the average time for the rest
categories is 450 ms.

Below we report the times required for getting the entire list of entities of the
FAO categories mentioned earlier, by submitting one query for each category:
Countries (240) in about 450 ms, Species (8,277) in about 12,000 ms, Water
areas (28) in about 300 ms, and Regional Fisheries Bodies (47) in about 340 ms.

5 Concluding Remarks

In this paper we have discussed methods to enhance web searching with entity
mining. Such enhancement is useful because it gives the user an overview of the
answer space, it allows the user to restrict his focus on the part of the answer
where a particular entity has been mined, it is convenient for user needs (or user
tasks) that require collecting entities, and it can assist the user to assess whether
the submitted query is the right one.

We described four main approaches for supporting this functionality and
we focused on two dynamic methods, i.e. methods that are performed at query
time and do not require any pre-processing. Since such methods have not been
studied in the literature (nor supported by existing systems), we compared the
application of NEM over textual snippets versus NEM over the full contents
(after having downloaded them at real time) of the top hits (according to various
criteria). In brief, the experimental results showed that real time NEM over the
top snippets is feasible (requires less than 2 secs for the top-50 hits) and yields
about 1.2 entities per snippet. On the other hand the approach “download and
mine over the full contents” is more time consuming (requires 80 secs for the
top-50), but mines much more entities (in average 10.1 per hit).

As regards entity ranking we comparatively evaluated three methods; one
based on the frequency of the entity and the rank of the hits in which it occurs,
one based on similarity with the query string, and one that combines both. The
user study showed that the string similarity between the query and the entity
name did not improve entity ranking in our setting. Another important point is
that the top-10 entities derived from snippet mining and the top-10 entities de-
rived from contents mining for the same queries are quite different; their Jaccard
similarity is less than 30% for the majority of the queries. Therefore one issue
that is worth further research is to compare the quality of the identified entities
in snippets versus those identified in contents. Towards the same direction, it
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is worth investigating approaches for entity deduplication and cleaning that are
appropriate for our setting.

In addition, and since there are already vast amounts of structured infor-
mation published according to the principles of Linked Open Data (LOD), we
discussed and showed how they can be exploited for enriching the semantic de-
scriptions of identified entities. In this way, the user not only can get useful
information about one entity without having to submit a new query, but he can
also start browsing the entities that are linked to that entity.

In future we plan to apply and evaluate empirically this approach in the
domains of fisheries/aquaculture and patent search. Regarding the latter, we
currently develop a patent search system for the whole spectrum of patent users
based on the ezDL system14 (framework for interactive search applications and
system for performing evaluations [12]). The plan is to integrate multiple patent
data sources, patent search tools and UIs, and one of these tools will offer NEM.

The long term vision is to be able to mine not only correct entities but
probably entire conceptual models that describe and relate the identified entities
(plus other external entities) and are appropriate for the context of the user’s
information need. After reaching that objective the exploratory process could
support the interaction paradigm of faceted search over such (crispy or fuzzy)
semantic models, e.g. [11] for plain RDF/S, or [15] for the case Fuzzy RDF.

Acknowledgement Work done in the context of the iMarine (FP7 Research
Infrastructures, 2011-2014) and MUMIA (COST action IC1002, 2010-2014).
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