
Int J Digit Libr (2009) 10:159–177
DOI 10.1007/s00799-010-0058-0

Dependency management for digital preservation using semantic
web technologies

Yannis Marketakis · Yannis Tzitzikas

Published online: 21 May 2010
© Springer-Verlag 2010

Abstract The preservation of digital objects is a topic of
prominent importance for archives and digital libraries. In
this article, we focus on the problem of preserving the intel-
ligibility of digital objects. We formalize the problem in terms
of dependencies and specify a number of basic intelligibility-
related tasks. In parallel, we introduce a preservation scenario
as a means for clarifying the pros and cons of various repre-
sentation and modeling languages that are used for the prob-
lem at hand, which reveals the benefits of adopting Semantic
Web (SW) languages as a representation framework. To this
end, we propose a minimal core ontology for representing
intelligibility-related dependencies along with methodolog-
ical hints for extending it. Finally, we report empirical and
experimental results from applying the proposed approach
on real data sets. It is worth mentioning that this approach
can be used not only on SW-based repositories or archives,
but also on those that are based on conventional approaches
and languages (like EAST, DEDSL, XFDU/SAFE).

Keywords Digital Preservation · Intelligibility ·
Dependency management

1 Introduction

Modern society and economy is increasingly dependent on
a deluge of only digitally available information. The preser-
vation of digital information within an unstable and rapidly

Y. Marketakis · Y. Tzitzikas
Computer Science Department, University of Crete, Heraklion,
Crete, Greece
e-mail: marketak@ics.forth.gr

Y. Marketakis · Y. Tzitzikas (B)
Institute of Computer Science, FORTH-ICS, Heraklion, Crete, Greece
e-mail: tzitzik@ics.forth.gr

evolving technological (and social) environment is a chal-
lenging problem of prominent importance. In recent years,
there has been a growing interest around this problem and
several aspects of the problem are being investigated, includ-
ing metadata and services for preservation (e.g., see [7,12]),
data/medium preservation approaches (e.g., [11,5,21,23]),
migration and encapsulation approaches (e.g., [11,30,13,9]),
workflow and preservation approaches (e.g., [27]), theoret-
ical attempts (e.g., see [4]), cost-related strategies for data
preservation planning (e.g., see [17,36,28,29,32]), standards
(like OAIS [14]), and there are several ongoing international
projects (like CASPAR [1] and PLANETS [26]).

Given a corpus of digital information, the first rising ques-
tion is: what should we preserve and how? Certainly, we have
to preserve the bits of digital objects. However we should also
try to preserve their (a) accessibility, (b) integrity, (c) authen-
ticity, (d) provenance, and (e) intelligibility (by human or
artificial actors). In this article, we elaborate on the aspect of
intelligibility.

A formalization of the problem of preserving the intelli-
gibility of digital objects that is based on dependencies was
given in [37,38] and [39]. In this article, we extend that work
and report our experiences from applying this model in prac-
tical (real world) cases. To the end, we discuss an extension
of the model where dependencies are goal-oriented. Subse-
quently, we present a set of basic services designed according
to that model. The proposed model and the corresponding ser-
vices can aid several tasks of archivists (or digital curators),
including:

– the decision of what metadata need to be captured and
stored,

– the reduction of the metadata that have to be archived, or
delivered (as a response to queries) to the users, and

123

160 Y. Marketakis, Y. Tzitzikas

– the identification of the objects that are in danger in case
a module (e.g., a software component or a format) is
becoming obsolete (or has been vanished).

For instance, suppose that we want to preserve digital files
containing temperature measurements from various places
on earth. For instance, assume that we have a file named
datafile20080903_12PM.txt with the following
contents:

25.130 35.325 30.2
25.100 35.161 28.9
25.180 35.333 29.3

Each row contains the longitude, the latitude, and the mea-
sured temperature (in Celsius degrees), while the suffix of the
filename (i.e., 20080903_12PM) reveals the date and time of
the measurement. Some of the rising questions are: (a) what
kind of metadata do we have to add and in what format, (b)
how much of them do we really need to capture and record
(is there any disciplined way to control it), (c) how much
metadata should we pack together if we want to archive or
deliver such files to end users? Can we answer the above
questions objectively, or we have to take into account the des-
ignated community, i.e., the community for which we want
to preserve these files?

In this article, we approach these questions through a
dependency management approach. Subsequently we show
how the model can be realized using Semantic Web (SW)
technologies. In brief, the benefits of adopting SW technol-
ogies is that they provide standard and semantically inter-
pretable exchange formats, and that the knowledge artifacts
expressed in these languages lend themselves to reuse and
extension. To make this clear, we use the temperature mea-
surements preservation scenario and show how different
approaches and languages can support it.

Regarding software architecture and efficiency, this arti-
cle discusses and reports experimental results for two imple-
mentation choices, one proprietary file system-based (with
limited expressive power), and one based on Semantic Web
technologies.

In a nutshell, the contribution of this article lies in:

– providing an ontology for representing dependencies and
community knowledge and in proposing how it can be
extended to capture goal-oriented dependencies,

– specifying a set of basic dependency management ser-
vices that can be exploited for supporting the preservation
of intelligibility of digital objects

– comparing different languages and standards that have
been proposed for digital preservation, and

– detailing implementation approaches including Semantic
Web technologies.

The article is organized as follows: Section 2 describes
the model and its extension. Section 3 describes intelligibil-
ity-related services. Section 4 discusses modeling using SW
languages. Section 5 sketches a methodology for expressing
and exploiting intelligibility-related dependencies. Section
6 describes a preservation scenario and the pros and cons
of various languages and approaches. Subsequently, Sect. 7
describes the software architecture, the functionality of the
GapMgr tool, and reports experimental results over real and
synthetic data sets. Section 8 discusses related work. Sect. 9
discusses various extensions. And finally, Sect. 10 concludes
this article and identifies issues that are worth for further
research.

2 Formal model (for intelligibility preservation)

According to the OAIS reference model [14], metadata
are distinguished to various broad categories. One very
important (for preservation purposes) category of metada-
ta is named Representation Information (RI) which aims
at enabling the conversion of a collection of bits to some-
thing useful. In brief, the RI of a digital object should com-
prise information about the Structure, the Semantics and the
needed Algorithms for interpreting and managing a digital
object. It follows that intelligibility is closely related to RI.
Figure 1 shows one corresponding part of the information
model of OAIS.

2.1 Basic Model

Here, we provide a brief introduction to the model introduced
in [37,39] and [38]. The proposed model is a small formal
model comprising three basic notions: module, dependency,
and profile.

We adopt a very general interpretation for the term mod-
ule. It can be a software or hardware component (i.e., a txt
file, a hard disk), or a knowledge model expressed either for-
mally or informally (i.e., an rdf ontology, the greek language
in general). Modules may require the availability of other
modules to become intelligible. This is modeled by a binary
relation denoted by >, where t > t ′ means that t depends on
t ′. By analyzing the dependencies in this way, we get chains
or trees of dependencies. To limit the potentially extremely
large (or even endless) dependency graph, which is also hard
to express explicitly, the notion of designated community
profile (DC profile, or just profile) is introduced. A user u
(where user could be a community of users or a software
agent), may know (has available) a set of modules denoted
by T (u) where T (u) ⊆ T (and T is the set of all mod-
ules). This is called designated community profile. Recall
that according to OAIS reference model, [14]:

123

Dependency management for digital preservation 161

Information
Object

Data
Object

Representation
Information

Physical
Object

Digital
Object

Bit
Sequence

interpreted
using

interpreted
using

1*

1*

1*1*

Representation Information

interpreted using

Structure
Information

Semantic
Informationadds meaning to

Standards Algorithms

Other
Representation

Information

............

Access
Rendering
Software

Representation

Software

SoftwareSoftware

Fig. 1 The information model of OAIS

A knowledge base is a set of information incorporated
by a person or system that allows the person or system
to understand received information

The above definition of knowledge base, relates to what we
call DC Profile since it describes the knowledge assumed
to be known. The key point is that DC profiles allow mak-
ing these assumptions explicit by associating to each profile
the modules which are assumed to be known to the users of
that community. In other words, the quite abstract notion of
“knowledge base” can be analyzed to more concrete elements
each modeled at the desired (or feasible) level of detail.

The availability of dependencies allow us to define the
closure of a module as follows:

Definition 1 The closure of a module t , denoted by Nr∗(t),
is t plus the set of all modules on which t depends directly
or indirectly.

Some notations for various extensions of this definition
(e.g., closures of sets of modules) that we use in the sequel
are given in Table 1. Having defined the notion of closure,
we can now proceed and state that a module t is intelligible
by a user u if all the modules that are required by t belong to
the closure of T (u). If this does not hold, then t is not intel-
ligible by u, and we have what we call intelligibility gap.
Both intelligibility and intelligibility gap are defined rather
straightforwardly.

However, we have to note at this point that we axiomati-
cally assume that if a module t belongs to the profile of a user
u, then it is assumed that all direct and indirect dependencies
of t are also known by u.

Definition 2 A module t is intelligible by a user u if

Nr+(t) ⊆ Nr∗(T (u)). �

Table 1 Basic notions and notations

Notation Definition Name

T The set of all modules and objects

t An element of T A module

S A subset of T A set of modules

t > t ′ t Depends on t ′ (t requires t ′) A dependency

>+ The transitive closure ‡ of the binary relation >

min>(S) The minimal elements of S w.r.t. >+ The minimals of S

max>(S) The maximal elements of S w.r.t. >+ The maximals of S

Nr(t) = { t ′ | t > t ′} The direct dependencies of t , i.e., all modules on which t directly depends

Br(t) = { t ′ | t ′ > t} The direct dependents on t , i.e., all modules that directly depend on t

Nr+(t) = { t ′ | t >+ t ′} All modules that t requires, i.e., the set of all direct and indirect dependencies of t

Nr∗(t) = {t} ∪ Nr+(t) The closure of t , i.e., t and all modules that t requires

Nr+(S) = ∪t∈S Nr+(t) All modules required by S

Nr∗(S) = S ∪ Nr+(S) = ∪t∈S Nr∗(t) The closure of the set S

‡ The transitive closure of a binary relation R is the smallest transitive relation that contains R

123

162 Y. Marketakis, Y. Tzitzikas

Fig. 2 Example of modules, dependencies and profiles

Definition 3 The intelligibility gap between a module t and
the profile of a user u, is the minimum set of extra modules
that u needs to have in order to understand t . This is denoted
by Gap(t, u), and is defined as:

Gap(t, u) = Nr+(t)− Nr∗(T (u)). �

Here “−” denotes set difference. Clearly if t is intelligible
by u then Gap(t, u) = ∅. The intelligibility gap is a useful
notion for understanding what kind RI we need to have, to
ensure the preservation of intelligibility of a digital object for
a designated community. At the same time, it tells us what
RI we need to deliver to a user in order to be sure that we
give him an intelligible package (the package will contain
the module and the required dependencies of this module).
Figure 2 illustrates an example with T = {t1, . . . , t20} and
four profiles:

T (u1) = {t1}
T (u2) = {t10, t11, t12, }
T (u3) = {t8, t9, t13, t15}
T (u4) = {t6, t7}
Consider module t1. Its direct dependencies are
Nr(t1) = {t2, t3}, while its closure is

Nr∗(t1) = {t1, t2, t3, t6, t8, t9, t13, t15, t19}.
Regarding intelligibility, notice that t6 is intelligible by u3

because Nr+(t6) ⊆ Nr∗(T (u3)). However t1 is not intelli-
gible by u3. Specifically, Gap(t1, u3) = {t2, t3, t6}.

The availability of dependencies and community pro-
files allows deriving packages, either for archiving or for
dissemination, that are profile-aware. For instance, OAIS
[14] distinguishes packages to AIPs (Archival Informa-
tion Packages) and DIPs (Dissemination Information Pack-
ages). The availability of explicitly stated dependencies

and community profiles, enables the derivation of pack-
ages that contain exactly those dependencies that are needed
so that the packages are intelligible by a particular DC
profile.

Definition 4 The (dissemination or archival) package of a
module t with respect to a user or community u, denoted by
Pack(t, u), is defined as:

Pack(t, u) = (t, Gap(t, u)) �

In our example,

Pack(t1, u1) = (t1,∅)
Pack(t1, u3) = (t1, {t2, t3, t6})

Pack(t15, u1) = (t15,∅)
Pack(t15, u2) = (t15,∅)
We have to note at this point that there is not any qualita-
tive difference between DIPs and AIPs from our perspective.
The only difference is that AIPs are formed with respect
to the profile decided for the archive, which we can rea-
sonably assume that it is usually more rich than user pro-
files. Details regarding the packaging formats are given in
Sect. 6.

2.2 Addition of types

In this section, we motivate the need for introducing and
supporting module and dependency types. Suppose that we
want to preserve a file a.java containing java code. If our
objective is to preserve the ability to read/edit this file, then
its intelligibility depends only on the ASCII data format. If
on the other hand, our objective is to be able to compile it
(i.e., to preserve the compilability of the file), then it depends
on the availability of a java compiler (i.e., javac), as well
as on the availability of all other Java packages/classes that
are used by a.java (i.e., all import statements). In general,
we can say that:

It is the goal that determines which are the depen-
dencies of a module.

For this reason, we introduce module and dependency
types. Let C be the set of all module types, and D the set
of all dependency types. If c is a subclass of c′, we shall
write c � c′. If d is a subtype of a dependency type d ′,
we shall write d � d ′. Clearly both � relations are transi-
tive. Given a module t , we shall use t ypes(t) to denote the
types (direct and indirect) of t . Given a direct dependency
t > t ′, we shall use t ypes(t > t ′) to denote the types (direct
and indirect) of all direct dependencies between these two
modules.

123

Dependency management for digital preservation 163

Having extended our model with types, we can now intro-
duce type-restricted dependency gaps. As motivating exam-
ple suppose that we have an object and we are interested only
in its compile dependencies. In this case, and for computing
the gap, we should traverse dependencies whose type is com-
pile, or a subtype of compile. This can be defined formally as
follows: given a module t , a profile u and a set of dependency
types W (W ⊆ D), we define

t >W t ′ iff (a) t > t ′ and (b) t ypes(t > t ′) ∩W ∗
= ∅

where W ∗ is the set of all possible subtypes of W. The for-
mula implies that we consider all types in W disjunctively.
Now, we can define:

Gap(t, u, W) = { t ′ | t >+W t ′} − Nr∗(T (u))

Since the number of dependency types may increase, it is
beneficial to organize them according to an object-oriented
approach, i.e., to introduce module types, and to specify the
domain and range of each dependency type (each being a
module type). For example, we can have a module type Soft-
ware which is specialized to SoftwareBinary and Software-
SourceCode types. Now the domain of the dependency type
compile can be defined to be the class SoftwareSourceCode,
while the range can be defined to be the module type Soft-
ware. Apart from this, module types are useful due to the het-
erogeneity of modules in real settings. Finally, module types
can also be exploited when computing closures or gaps, i.e.,
we could filter out modules based on type conditions.

3 Intelligibility (dependency) management services

In this section, we describe the main dependency manage-
ment services based on the model described in Section 2.
Specifically, we specify the basic query and update services.

3.1 Closures and gaps

Table 2 shows the definition of the services for computing
gaps and closures and for deciding whether a module is intel-
ligible by a profile or whether it depends (directly or indi-
rectly) on another module.

3.2 Updating dependencies

The set of modules, dependencies, and profiles may change
over time, and therefore we have to define a set of basic
change operations. For this analysis, we first have to define
profile equivalence.

Definition 5 Two profiles u and u′ are equivalent, denoted
by u ∼ u′, if Nr∗(T (u)) = Nr∗(T (u′)). �

It follows that for every profile u it holds T (u) ∼ max>

(T (u)), i.e., u is equivalent to a profile comprising only the
maximal elements of T (u) with respect to the dependency
relation. So, we can reduce the size of a profile by keep-
ing only its maximal elements. Hereafter, we assume that all
profiles are stored in this way.

Table 3 introduces some basic services for updating the
dependency graph. Each operation is specified by its pre-
and post-condition. The post-conditions describe not only
the conditions that must be true in the dependency graph, but
also their side-effects on profiles. An archive could follow
its own policy which may deviate from the one we describe
(which is just indicative). The underlying assumption in our
specification is that the dependencies are transitive. The list
of operations includes an operation upgradeModule(t) use-
ful for creating a new module tnew which is a newer ver-
sion of an existing module t . This operation is actually a
shortcut which can be configured (or specialized accord-
ing to the needs). For instance, if we assume that new ver-
sions are backwards compatible, then the new module tnew

will have the same description with t (i.e., name, dependen-
cies) but a revised version number. For example, if we issue
upgradeModule(t14) (assuming the example of Fig. 2), then
we will get a new module t ′14 which will also depend on t16

and t17.
Since only the maximal elements of profiles are stored, the

deletion of a dependency, say del Dependency(t, t ′), may
“break” the defined profiles. To avoid such cases before exe-
cuting del Dependency(t, t ′) we have to find those profiles
that contain t or a broader term of t . If U is the set of all
profiles, then the sought set of profiles, is { u ∈ U | t ∈
Nr∗(T (u))}. If u is a profile in the above set, we add to it
the modules Nr(t). This means that for the revised profile u′
it holds that T (u′) = T (u) ∪ Nr(t). After performing these
updates, we can reduce the size of the profile to contain only

Table 2 Basic intelligibility services

Return value Service Definition

Module[] Closure(Module[] S, DepTypes[] W) Nr∗W = ∪t∈S({t} ∪ { t ′ | t >+W t ′})
Module[] Gap(Module t, Profile u, DepTypes[] W) Gap(t, u, W) = { t ′ | t >+W t ′} − Nr∗(T (u))

Boolean isIntelligible(Module t, Profile u, DepTypes[] W) { t ′ | t >+W t ′} ?⊆ Nr∗(T (u))

123

164 Y. Marketakis, Y. Tzitzikas

Table 3 Change operations

Ret. value Operation Pre-condition Post-condition

Change operations on dependencies

Boolean addDependency t, t’∈ T , W ⊆ D For each w ∈ W it holds:

(t, t′: Module, W: DepTypes[]) t >w t ′ and >w is acyclic

Boolean delDependency t >W t ′ For each w ∈ W it holds:

(t,t′:Module, W: DepTypes[]) t
>w t ′

For each u ∈ U , if t ∈ Nr∗(T (u)) then

T (u)← max>(T (u) ∪ Nr(t))

Boolean delModule(t: Module) t ∈ T All dependencies that involve t are removed

(by issuing delDependency operations)

For each u ∈ U, T (u)← T (u)\{t}
t
∈ T

Module upgradeModule (t: Module) t ∈ T A new Module tnew is created such that:

for each w ∈ W

if t >w t ′ then tnew >w t ′

Change operations on profiles

Void appendKnownModules S ⊆ T T (u)← max>(T (u) ∪ S)

(u:Profile, S: Module[])

Boolean delModule t ∈ Nr∗(T (u)) T (u)← max>((T (u) ∪ Nr(t))− {t})
(u:Profile, t: Module,)

the maximal modules and delete the dependency t > t ′. As
an example, consider the profile u3 of Fig. 2, where T (u3) =
{t8, t9, t13, t15}. Since max>({t8, t9, t13, t15}) = {t8, t9, t13},
only these three modules need to be stored for that profile.
Now suppose the deletion of the dependency t13 > t15. To
curate profile u3, we need to add to it the modules in Nr(t13),
i.e., {t15}.

3.3 Dependency management and ingestion quality control

The notions of profile and intelligibility gap allow reducing
the amount of dependencies that have to be archived/deliv-
ered on the basis of DC profiles (recall how Pack(t, u)

is defined). Another aspect of the problem concerns the
ingestion of information. Specifically, one rising question
is whether we could provide a mechanism (during ingestion
or curation) for identifying the representation information
that is required or missing. This requirement can be tackled
in several ways: (a) we require each module to be classi-
fied (directly or indirectly) to a particular class, so we define
certain facets and require classification with respect to these
(furthermore some of the attributes of these classes could be
mandatory), (b) we define some dependency types as man-
datory and provide notification services returning all those
modules which do not have any dependency of that type,
(c) we require that the dependencies of the objects should
(directly or indirectly) point to one or several profiles. Below,
we elaborate on policy (c).

Definition 6 A module t is related with a profile u, denoted
by t
→ u, if Nr∗(t) ∩ Nr∗(T (u))
= ∅.

This means that the direct/indirect dependencies of a module
t lead to one or more elements of the profile u. At the applica-
tion level (for more see Sect. 7.1), for each module t we can
show all related and unrelated profiles, i.e.: Rel Prof (t) =
{ u ∈ U | t
→ u} and Un Rel Prof (t) = { u ∈ U | t

→ u}
respectively. Note that Gap(t, u) is empty if either t does
not have any recorded dependency, or if t has dependencies
but they are known by the profile u. The computation of the
related profiles allows curators to distinguish these two cases
(Rel Prof (t) = ∅ in the first and Rel Prof (t)
= ∅ in the
second). If u ∈ Rel Prof (t) then this is just an indication
that t has been described with respect to profile u, but it does
not guarantee that its description is complete with respect to
that profile.

4 Modeling using Semantic Web Languages

This section describes a realization of the proposed model
and services using Semantic Web technologies.

4.1 Core ontology for dependencies

To represent modules, dependencies and DC profiles we
defined an ontology (expressed in RDF/S [3]). Figure 3

123

Dependency management for digital preservation 165

Fig. 3 The core ontology for dependencies

sketches the backbone of this ontology. We shall hereafter
refer to this ontology with the name COD (Core Ontology for
representing Dependencies). This ontology contains only the
notion of Profile and Module and consists of only two
RDF Classes and five RDF Properties (it does not define any
module or dependency type). It can be used as a standard
format for representing and exchanging information regard-
ing modules, dependencies and DC profiles. Moreover it can
guide the specification of the message types between the soft-
ware components of a preservation information system.

Subsequently, we defined an ontology for module and
dependency types. Currently, this ontology consists of 43
classes and 9 properties.1 The typology of modules, as visu-
alized by StarLion2[40], is given in Fig. 4. This ontology
extends the COD ontology.

One benefit of adopting Semantic Web languages is that
we can base on COD the core query services of a preservation
system. For instance, the queries that will be formulated using
elements of COD, will continue to function correctly even if
the data layer instantiates specializations of COD. Such spe-
cializations are described in the next section (Sect. 4.2), while
Sect. 4.3 discusses how this ontology can be combined with
other ontologies (which are not necessarily specializations
of COD).

4.2 Extending the core ontology

Here, we motivate the need for specializing the core ontol-
ogy. Recall the example with the filea.java containing java
code. Figure 5 shows different kinds of dependencies for this
example. Since the set of possible goals cannot be fixed in
advance, we need a way to extend the set of goals and the
corresponding dependency types. To this end, we propose
representing goals by specializing the dependency relation
(by exploiting “subPropertyOf” of RDFS). An example is
shown in the left part of Fig. 5. Here, we define three new
dependency types by simply specializing the one defined in

1 It is available from http://www.casparpreserves.eu/.
2 www.ics.forth.gr/~tzitzik/starlion.

theCOD ontology. Specifically, a_run dependency is used if
a module depends on another in order to be runnable, while
the other two dependency types concern compilability and
editability.

Notice that this approach is more extensible than other
works (discussed in more detail in Sect. 8) that presuppose a
fixed set of goals.

4.3 Combining COD with other ontologies

One rising question is how COD could be related with other
ontologies that may have narrower, wider, overlapping, or
orthogonal scope.

For instance, one may find out that an intelligibility depen-
dency corresponds to a certain relationship, or a path of
relationships, over another conceptual model (or ontology).
Below, we discuss in brief such a case, assuming the CIDOC
Conceptual Reference Model (ISO 21127) [18]. CIDOC
CRM is a core ontology describing the underlying semantics
of data schemata and structures from all museum disciplines
and archives. It is the result of long-term interdisciplinary
work and agreement and it has been derived by integrat-
ing (in a bottom-up manner) hundreds of metadata schemas.
Consider a set of digital objects and suppose that we want to
express their dependencies according toCOD and their prove-
nance (e.g., change of custody, or derivation history) accord-
ing to CIDOC CRM. For instance, if one wants every CIDOC
CRM E73 Information Object to be considered as
Module, then he could “merge” these ontologies. Specif-
ically he would define E73 Information Object as
a subclass of Module. The ability of multiple-classifica-
tion and of inheritance (of Semantic Web languages) gives
this flexibility. Alternatively, one could either manually or
through a declarative update language (e.g., RUL [20]), clas-
sify his data also with respect to COD. In that case COD
could be considered as the schema of a read-only view
of knowledge bases structured according to more sophis-
ticated conceptual models. Just indicatively, Fig. 6 shows
two approaches for modeling provenance. The first (a) is a
naive approach where COD is just extended with the property
derivedBy. The resulting structuring is very poor (for the
needs of provenance). The second (b) shows a combination
of COD with CIDOC CRM Digital Ontology3 which is an
extension appropriate for capturing the properties and the
provenance of digital objects [35]. Both modules are classi-
fied to the class E73 Information Object. The prov-
enance of the module a.class has been modeled using
elements (classes and properties) of CIDOC CRM Digital,
specifically using the class Formal Derivation and its prop-
erties (for more refer to [35]).

3 http://cidoc.ics.forth.gr/rdfs/caspar/cidoc_digital2.3.rdfs.

123

http://www.casparpreserves.eu/
www.ics.forth.gr/~tzitzik/starlion
http://cidoc.ics.forth.gr/rdfs/caspar/cidoc_digital2.3.rdfs

166 Y. Marketakis, Y. Tzitzikas

Fig. 4 Typology of modules

a.java

javac

ASCII

a.class JVM

_run _compile _edit

dependsOn

three specializations of the dependsOn _run

_compile

_edit

Fig. 5 Specializing dependency types

(a) (b)

Fig. 6 Dependencies and provenance of digital objects

Figure 7 shows the architecture of ontologies that is used
by PreScan (presented later in Sect. 7) for capturing the
embedded metadata of digital objects. At the top we can see
the CIDOC CRM Ontology, at the middle layer the CIDOC
CRM Digital Ontology, while at the lowest layer we have the
COD ontology and other domain specific specializations of it
(e.g., the typology of modules shown in Fig. 4).

schema
layer
metadata
layer

Fig. 7 Architecture of SW ontologies

5 Methodology

Below we sketch a sequence of steps that could be followed
by one organization (or digital archivist/curator) for advanc-
ing its archive with dependency management services.

St. 1 Identify intelligibility goals and objectives.
St. 2 Model the identified goals with dependency types. If

goals can be hierarchically organized, then this should
be reflected in the definition of the dependency types.

St. 3 Specialize the COD ontology according to the results
of the previous step.

St. 4 Capture the dependencies of the digital objects of the
archive. This can be done manually, automatically or
semi-automatically. Tools like the one presented in

123

Dependency management for digital preservation 167

Sect. 7 can aid this task. In addition, DC profiles can
be defined at this step. The availability of profiles can
be exploited for reducing the depth of the dependency
graph that has to be captured.

St. 5 Customize, use and exploit the dependency services
according to the needs. For instance the intelligibil-
ity-related services can be articulated with monitoring
and notification services.

St. 6 Evaluate the services in real tasks and curate accord-
ingly the repository.

Step 1 strongly depends on the nature of the digital objects
and the tasks that we want to perform on them. For instance,
suppose we have a set of java files, 2D and 3D images. Com-
mon goals for java files include the ability to compile and
edit, while for images they include the ability to render them
on screen. The latter could be specialized to two goals, say
2Drendering and 3Drendering. At Step 2, we would define
five dependency types, say, compile, edit, render, render2D,
render3D, and two subtype relationships: render2D � ren-
der and render3D � render. Step 3 we would extend COD,
i.e., we would define compile � depends, edit � depends,
and render� depends. The last step (Step 6) concerns evalu-
ation and curation. For instance, suppose the model fails for
one particular module, i.e., the consumer of the package is
unable to understand the delivered module. Such situations
indicate that the recording of dependencies is not complete.
For example, suppose a user who cannot run a software com-
ponent, although the computed gap is empty. This can happen
if the component has an additional dependency which has
not been recorded. A corrective action would be to add this
dependency. Analogously, if a user cannot understand a par-
ticular research paper, this is probably because the paper uses
concepts or symbols the user cannot understand. These con-
cepts and symbols are actually dependencies which should
be recorded. Synopsizing, empirical testing is a useful guide
for defining and enriching the dependency graph.

6 Languages for preservation

Here, we elaborate on the various languages that could be
used for realizing the aforementioned methodology and sce-
narios. Specifically, we describe how the various languages
and formats (EAST, DEDSL, XFDU, Semantic Web Lan-
guages) could be used for the temperature measurements
scenario (that was introduced in Section 1), and we discuss
their pros and cons.

Suppose we want to preserve files containing temperature
measurements from various places on earth. Each file com-
prises an arbitrary number of lines where each line contains
three numerical values corresponding to the longitude, the
latitude and the measured temperature (in Celsius degrees).

Each line corresponds to the temperature at the coordinate-
specified area as it was measured at a certain point in time.
The time of measurement is hardwired in the name of the
file, e.g., a file named datafile20080903_12PM.txt
contains measurements taken at 12pm of the 3rd Septem-
ber of 2008. Suppose that the contents of this file are:
25.130 35.325 30.2

25.100 35.161 28.9
25.180 35.333 29.3

We may have several such files (all having the same format
though) each one containing measurements at different loca-
tions and times.

6.1 Syntax Description

In order to preserve the structure of the file datafile
20080903_ 12PM.txt we could make use of the EAST
(Enhanced Ada Subse T)[8] language. Each data descrip-
tion record (DDR), according to that language, consists
of two packages, one for the logical description and one
for the physical description of the data. These two pack-
ages are mandatory even if the content of the physical
part is empty. The first package includes a logical descrip-
tion of all the described components, their size in bits
as well as their location within the set of the described
data. The physical part includes a representation of some
basic types defined in the logical description and depend
on the machine that generates these data: the organization
of arrays (i.e., first-index-first, last-index-first) and the bit
organization on the medium (high-order-first or low-order-
first for big-endian or little endian representation respec-
tively). Figure 8 shows an example of a DDR describing
datafileX.txt. We defined three different types one for
each column of a data file (longitude, latitude , tempera-
ture), since each column represents a different kind of data.
More precisely the distinction of longitude and latitude is
only made because of their different upper and lower bounds.

6.2 Semantic description

We can define semantic descriptions for the entities (longi-
tude, latitude and temperature) of the filedatafileX.txt
aiming at preserving the meaning (clarifying the interpreta-
tion) of the terms “longitude” “latitude” and “temperature”.
One approach is to use the DEDSL (Data Entity Dictionary
Specification Language) [6] language. Figure 9 shows an
example of a DEDSL description for datafileX.txt
according to the implementation of DEDSL using XML.
Note that if we have another file with the same kind of infor-
mation, we could reuse the same semantic descriptions. So
semantic descriptions can be considered as reusable mod-
ules. These modules can contain abstract data descriptions
to which concrete descriptions may refer.

123

168 Y. Marketakis, Y. Tzitzikas

Fig. 8 An example of an EAST description

6.3 Packaging

Now suppose that we want to preserve and archive a num-
ber of datafiles with such measurements. Packaging formats
can be used for preparing a package that contains the data
files plus their EAST and DEDSL descriptions. We can sat-
isfy such packaging requirements using XFDU (XML For-
mated Data Unit (XFDU) [44,19] which is a standard file
format developed by CCSDS (Consultative Committee for
Space Data Systems) for packaging and conveying scientific
data, aiming at facilitating information transfer and archiv-
ing. The benefits of adopting a packaging approach (like that
of XFDU) is that we can also add various information about
the components of the package. For example, suppose we
would like to include information about the user that took
the temperatures for each file, as well as the GPS (Global
Positioning System) and the thermometer characteristics or
the satellite information (if the samplings were made from
space). We can easily add the above information using XFDU

Fig. 9 An example of a DEDSL description

123

Dependency management for digital preservation 169

Fig. 10 An example of a XFDU package

since we just have to add the necessary information in the
package. For instance, we could describe such information
using CIDOC CRM ontology. Such descriptions could be
expressed in XML format (e.g., CIDOC CRM CORE) or as
an RDF/XML file4 (the RDF-case is described in more detail
in Sect. 6.4). In both cases the file could be included in the
package. It is obvious that the major benefit from the use of
XFDU is that we can package together heterogenous mod-
ules (java programs, datafiles, GPS info, provenance data)
and deliver them to the user, or archive them, as a single
(ideally self-describing) unit.

As another example suppose that we have a java pro-
gram that calculates the daily, weekly, and monthly average
temperatures of various locations. To make such aggregate
calculations the program needs a number of data files. For
example, to calculate the average temperature of each loca-
tion during the 3rd of September of 2008, we need all data
files with names datafile20080903_ ∗ ∗ ∗ ∗.txt. For deliver-
ing this program to a user, as an application that contains
past measurements, we have to pack together the required
data files. The resulting XFDU package will contain both the
java program and the data files. Figure 10 shows an example
of such a package (for reasons of brevity we depict only two
data files), while Fig. 11 illustrates the structure of such a
package.

4 That uses the classes and properties defined in http://cidoc.ics.forth.
gr/rdfs/caspar/cidoc.rdfs#.

Fig. 11 Structure organization for a XFDU package

Fig. 12 Example of an ontology for measurements expressed in RDF/S

6.4 Semantic Web Languages

Here, we describe an alternative approach that relies on
Semantic Web (SW) languages. The adoption of SW lan-
guages (like RDF/S) has an additional benefit. A top/upper
level ontology can be used to describe (syntactically and
semantically) the form of the data and other files can instan-
tiate this ontology. These instantiations are actually the data
themselves. When creating a new data file, there is no need to
create its DEDSL or EAST description every time. Instead,
we have to represent the data using the syntax specified by
the ontology. Moreover, whenever we want to preserve more
data types we can extend that ontology. For example, past
data files can contain only the longitude, the latitude and the
temperature, while current ones may contain also the name of
each location, or the thermometer used for the measurement.
In such cases, two different kinds of DEDSL/EAST descrip-
tions have to be created and used. In the SW approach, we just
have to extend the top ontology. Figure 12 shows an indica-
tive ontology for our running example expressed in RDF/S
XML. Other ontologies of wider scope can be used as well
(e.g., CIDOC CRM).

123

http://cidoc.ics.forth.gr/rdfs/caspar/cidoc.rdfs
http://cidoc.ics.forth.gr/rdfs/caspar/cidoc.rdfs

170 Y. Marketakis, Y. Tzitzikas

Another benefit of using SW languages is that data
and their descriptions are tightly coupled. In contrast,
EAST/DEDSL-descriptions are represented as separate files
and for this reason packaging formats are important. On the
other hand, in RDF, a data file would itself define the data
type of each data element in the file. To clarify this point con-
sider the following line from our running example: 25.130
35.325 30.2. This line does not provide any information
regarding what 25.130 might be, it could be either the lon-
gitude, the latitude or the temperature. On the other hand its
RDF representation would be:

<temperature:Sample
rdf:about=’’sampingId20080903_12PM_

35.233_25.343>
<temperature:Longitude= ‘‘25.130’’/>
<temperature:Latitude= ‘‘35.325’’/>
<temperature:Temperature= ‘‘30.2’’/>
</temperature:Sample>

This part of RDF can be understood without the existence
of any other (EAST/DEDSL) file.

7 Implementations

Here we detail the functionality and architecture of a tool
named GapMgr that realizes all services described previ-
ously. It comprises:

(a) GapMgr API. This is a programmatic interface written
in Java. Instead of directly adopting one of the existing
APIs and main memory models of the Semantic Web,
we designed a new one focusing only on the require-
ments of the problem at hand.

(b) Two different implementations of the API. The first is
a main memory implementation. The persistence layer
is a plain file-system based. The second is an imple-
mentation over the SWKM (Semantic Web Knowledge
Middleware).5

(c) An end-user Web-based application developed using
GWT (Google Web Toolkit).6 It has a modular design
and it can work with both implementations of the API.
Figure 13 shows the Use Case Diagram of this applica-
tion.

7.1 Web-based GUI

The graphical user interface has been implemented using
GWT offering an easy to use Web-based UI. Several part-

5 http://athena.ics.forth.gr:9090/SWKM/.
6 http://code.google.com/webtoolkit/.

ners (both technical and data providers) of the CASPAR pro-
ject, including University of Leeds, CNRS,7 CIANT,8 Brit-
ish Atmospheric Data Centre (UK), European Space Agency
(ESA-ESRIN), have already deployed it and have started
using it.9 Figures 14 and 15 show some indicative screen-
dumps; The former for defining dependencies and the latter
for computing intelligibility-aware packages. It can be con-
sidered as a semantic registry for preservation.

7.2 Experimental evaluation

7.2.1 Real data sets

To investigate whether COD can capture (as it is or by extend-
ing it) modules and dependencies from various different
domains, we used it for expressing the contents of various
existing collections. We have successfully represented the
following collections.

– File formats and software products
PRONOM [34] is an online registry of technical infor-
mation. It provides information about file formats, soft-
ware products and other technical components that are
required to support long-term access to electronic records
and other digital objects of cultural, historical or business
value. Currently approximately 850 records are listed.
All have been extracted and loaded to GapMgr. How-
ever, only a few dependencies are defined between these
formats.

– Modules and dependencies from the CASPAR project
We have imported several modules along with their
dependencies in the context of the CASPAR project.
In addition, we defined several profiles for the various
communities involved. The resulting data set contains
modules from the cultural domain (UNESCO sites) and
contemporary arts domain (mainly coming from CNRS,
INA,10 University of Leeds, and CIANT). Furthermore,
there are more than 1,200 modules exported from a Reg-
istry of formats from the scientific domain.

7.2.2 Synthetic data sets

To evaluate the efficiency of the two implementations, we
created several synthetic data sets. We developed a generator
that takes as input two parameters: the number of modules

7 Centre National de la Recherche Scientifique, France.
8 International Centre for Art and New Technologies, Prague, Czech
Republic.
9 http://developers.casparpreserves.eu:8080/CasparGui/.
http://139.91.183.30:3025/GapManagerGWT_SWKM/.
10 Institut National de l’Audiovisuel, France.

123

http://athena.ics.forth.gr:9090/SWKM/
http://code.google.com/webtoolkit/
http://developers.casparpreserves.eu:8080/CasparGui/
http://139.91.183.30:3025/GapManagerGWT_SWKM/

Dependency management for digital preservation 171

Fig. 13 The use case diagram
of GapMgr

Typology of
dependencies

Typology of
modules

dependencies

Fig. 14 The GUI of GapMgr: defining dependencies

N to be created, and the “density” of the dependency graph
(two options are supported: sparse and dense). The genera-
tor proceeds as follows: at first it creates N modules. Then
it creates random dependencies among these modules. If the
option is set to “sparse” then it creates N log N dependencies,
otherwise (i.e., if “dense”) it creates 2N log N dependencies.
Subsequently log N profiles are defined.

Selection of
modules

Selection of
profiles

Computation
of gap

Fig. 15 The GUI of GapMgr: computation of the intelligibility gap

To each of these profiles a random set of modules is asso-
ciated in the range of [1 . . .

√
N]. The average depth of the

obtained dependency graph as well as the average size of the
closure of a module are shown in Table 4. We can see that
the average depth of the graph remains the same even if the
number of modules increases. On the other hand the average
size of the closure increases. This means that as the number
of modules grows, the dependency graph becomes broader

123

172 Y. Marketakis, Y. Tzitzikas

Table 4 Features of the synthetic dependency graphs

N 103 104 105

Average depth 9 10 10

Average closure size 261 2174 17227

Max depth 23 24 25

Max closure size 675 5930 50838

rather than deeper, and this is due to the adopted generation
method.

7.2.3 Measured tasks (description and algorithms)

We measured the time requirements for the following tasks:

– Computing a closure (i.e., Closure(t) or Closure(S))
We traverse the dependency graph and collect all depen-
dent modules starting from t or S. The complexity of this
task depends on the number of modules but mainly on
the density of the dependency graph (the more dense the
graph is, the more modules the closure will contain).

– Computing a gap (i.e., Gap(t, u))
The computation of the gap between one module t and
one profile u is more complex than the computation of the
closure of a single module, since here we have to compute
the closures of all modules contained in the profile. Con-
sequently, the complexity of this task depends on the size
of the profile and the density of the dependency graph.

– Deciding intelligibility (i.e., is I ntelligible(t, u))
To decide whether a module t is intelligible by a profile
u, we have to compute the closure of all modules in u. If
t or its direct dependencies exist in the closure set, then
this module is intelligible by the profile.

– Deciding dependency (i.e., depends(t, t ′))
Module t depends (directly or indirectly) on t ′ if t ′
belongs to the closure of t (i.e., if t ′ ∈ Nr+(t)). Instead
of computing the entire closure of t , we can compute it
gradually and terminate whenever t ′ is about to be added
to the closure. It follows that this task is faster than the
computation of the entire closure.

– Adding a dependency
Before adding a dependency t > t ′, we have to guarantee
that this addition will not create a cycle. For this reason
we first check whether t ′ >+ t holds, and if yes we reject
the request. Therefore, the cost of this task is roughly
equal to the cost of depends(t, t ′).

– Deleting a module
Before deleting a module t we have to remove all depen-
dencies that involve t . In addition, we have to “curate” the
profiles, i.e., for each profile u such that t ∈ Nr∗(T (u)),
we have to replace t with the modules Nr(t). At the end,
we delete t .

– Upgrading a module
A new module tnew is created with the same dependencies
with the specified module t (i.e., Nr(tnew) = Nr(t)).

7.2.4 Implementation settings

We performed measurements over the following settings:

(A) We used the dedicated main memory API (in Java) that
we have developed.

(B) We used the Semantic Web Knowledge Middleware. In
this case, modules, dependencies and profiles are stored
in the SWKM repository. SWKM offers a wide and
scalable suite of basic services for validating, storing,
querying, updating and exporting descriptive metadata
expressed in RDF/S. All services are based on a com-
mon knowledge repository enabling the consistency of
its contents. It also offers knowledge evolution ser-
vices (declarative update languages, comparison ser-
vices and versioning). In this setting all measurements
have been done by sending read/update queries (in
RQL[16] and RUL[20]) to the repository through the
SWKM WS client.

A deployment diagram of the architecture of the entire
system (GapManager and associated components) is shown
in Fig. 16.

7.2.5 Results

Table 5 reports execution times for various numbers of mod-
ules. If the number of modules is low (e.g., 1000) all tasks
are performed very fast. As the number of modules increases
the time to perform some tasks, especially those that require
traversals, increases. For example, for |T | = 105, the com-
putation of gap takes around 5 s.

7.2.6 Implementation over SWKM

With the main memory implementation of the API, all mod-
ules, dependencies and profiles are loaded in main memory.
This approach is proved efficient, however, if the volume of
data increases then they may not fit in memory. The imple-
mentation over SWKM overcomes such limitations, as all
data are stored in the SWKM repository and all services are
implemented by appropriate calls to the declarative query
and update language (RQL and RUL respectively). How-
ever, and regarding efficiency, this approach has the overhead
of parsing the results of the queries which are delivered in
RDF/XML format. For big results, the delay is unacceptably
long. For instance, the execution of a query comprising of
2,300 modules takes about 5 s to compute and get (through the

123

Dependency management for digital preservation 173

deployment GapManager

server

Gap Manager

Sw kmMiddlewa reWS

GWT-Client

import

export

query

update

Gap ManagerPersistent
Storage

Main Memory

SWStorage

glassfish

GWT_Server

SWKM
Client

Web Browser

«RPC»

«HTT P/SOAP»

Fig. 16 GapMgr architecture

Web Service), while the parsing of the results takes approx-
imately 50 s. The problem could be alleviated by extending
the implementation of RQL so that to support result sets and
cursors. Finally, a general approach to speedup the evaluation
of SW queries it to adopt a grid computing infrastructure. For
instance [31] reports results of querying over 300 million SW
triples using Openlink Virtuoso.11

7.3 Automating the ingestion of digital objects

Recently, we developed a tool that can automate the ingestion
of metadata. Specifically, PreScan12 [22] scans entire file
systems, automatically extracts the embedded metadata of
the encountered digital files, and allows the addition of user-
provided metadata or extra dependencies. It uses external
metadata extractors (currently JHOVE.13) and exploits the

11 http://www.openlinksw.com/virtuoso/.
12 http://www.ics.forth.gr/prescan/.
13 http://hul.harvard.edu/jhove/.

Table 5 Execution times using MM API

Services Time(ms)

N = 103 N = 104 N = 105

getClosure(t) 2 51 820

depends(t,t′) 1 33 426

addDependency(t,t′) 1 33 411

getDirectDependencies(t) 0 0 0

getDirectDependents(t) 0 0 0

isIntelligible(t,u) 8 212 4631

deleteModule(t) 0 1 1

Gap(t,u) 13 223 5412

upgradeModule(t) 1 2 2

repository of GapMgr for modeling and recording depen-
dencies. The benefit of adopting a repository is that the
extracted metadata are linked with their format descrip-
tions. In case the automatically extracted dependencies are
not adequate, users can add extra dependencies using Gap-
Mgr.

123

http://www.openlinksw.com/virtuoso/
http://www.ics.forth.gr/prescan/
http://hul.harvard.edu/jhove/

174 Y. Marketakis, Y. Tzitzikas

Table 6 Dependency management in other domains

Work Modules Assumed goal (when Types of dependencies Reason why dependencies
recording dependencies) (between modules) are recorded

[2] Software components To install or uninstall a
composite component

Mandatory, optional, negative To reason on istallability,
deinstallability

[10] Software components Achieve goals, satisfy soft
goals, complete tasks, provide
and consume resources

Goal, task, resource, soft goal To aid the selection of the
most appropriate component

[41] Software components Ability to compile/run
expressing which component
affects the behavior of other
components

The dependencies of a
component are categorized to
(a) internal (i.e.,
intra-component), and (b)
external (inter-component).
The internal ones are further
categorized to (a1)
implementation-based and
(a2) operation-based. The
external ones are further
distinguished to (b1)
hardware, (b2) software (i.e.,
required interfaces), and (b3)
causal

To support the process of
evolution and testing in
component-based systems

[33] Ontologies Considers the dependencies in
the ontology representations
(reuse/extend inter-ontology
relationships)

Isa, reference To aid the development of
ontologies, in particular when
changes occur, i.e., to address
questions of the form: if an
ontology changes what
should happen in the
dependent ontologies?

Maven Software components Software engineering Compile, provided, runtime,
test, system, import

Build, compile, and the like

8 Related work

At first, we should say that in comparison to existing regis-
tries for preservation (like PRONOM), our approach has the
following key advantages: (a) typed dependencies (between
modules), (b) typed modules, (c) the notion of DC profiles
(for making the assumptions explicit and enabling profile-
aware packaging).

Regarding dependencies, we should note that dependency
management is an important requirement that is subject of
research in several traditional or more recent areas: from Soft-
ware Engineering (at [42,41,43,2]), to Ontology Engineering
(at [15,33]). In software engineering the various build tools
(e.g., make, gnumake, nmake, jam, ant) are related to our
problem, since they allow defining dependencies and those
tasks required to be performed in order to build a software
project. In ontology, engineering an analogous problem is
how to reflect a change of an ontology to the dependent ontol-
ogies (i.e., to those that reuse or extend parts of it), which
may be stored in different sites. Another related problem is
the schema evolution problem, i.e., the problem of reflecting
schema changes to the underlying instances. Actually, this

problem is related to the evolution of modules and depen-
dencies.

Table 6 lists and describes in brief a number of depen-
dency management approaches that have been described in
the literature: [10] focuses on dependency types to enable
the selection of the best software architecture, [41] analyzes
the dependencies in large scale component-based systems to
ensure the runability and compilability, while [2] concen-
trates on the success of the deployment and the safety of the
system. Finally, [33] elaborates on the dependencies between
ontologies and distinguishes dependencies to super-sub and
referring-to dependencies.

As we can see there is much heterogeneity on the types
of modules, the kinds of goals (that determine the seman-
tics of a dependency), the types of dependencies and the
dependency management services. Probably, in each pres-
ervation application domain, we have to model the corre-
sponding modules and dependency types and identify the
needed services. It does not seem that we could have one
single modeling for all cases. This observation justifies the
selection of SW languages (due to the extensibility they
offer).

123

Dependency management for digital preservation 175

A

C

B

o1 o2

p1p2
knows

Fig. 17 Example of an ontology gap

9 Extensions of the model

In this section, we discuss other kinds of gaps, including gaps
that concern descriptive metadata, gaps in the form of change
operations, and gaps of finer granularity.

So far, we have focused mainly on the representation
information (OAIS RepInfo) dependencies of digital objects.
Let us now discuss the dependencies of digital objects from
the descriptive metadata point of view. Recall that according
to OAIS, an object can have various descriptive metadata.
Let us assume that all these metadata are represented with
respect to ontologies expressed in RDFS. In particular, con-
sider two objects o1 and o2 where the metadata of o1 are
expressed with respect to an ontology A, while those of o2

are expressed with respect to an ontology C . Now consider a
particular community p1 that is not familiar with any of the
ontologies used for expressing metadata, and a community
p2 that is familiar with ontology B and suppose that C is a
specialization of B (i.e., it reuses and extends elements of
B), as shown in Fig. 17. Familiarity with an ontology means
familiarity with the domain of the ontology and the concep-
tualization of that ontology. We could define the descriptive
gap between an object o and a community profile p, denoted
by dgap(o, p), as the set of ontologies that a member of the
p community needs to understand in order to understand the
metadata of o. In our case, this would mean that:

dgap(o1, p1) = A

dgap(o2, p1) = C ∪ B

dgap(o1, p2) = A

dgap(o2, p2) = C

Furthermore, we can refine the granularity of modules:
instead of considering ontologies as modules, we can con-
sider the elements of these ontologies as modules. To this
end we could exploit comparison operators, else called diff or
delta (�) operators, like those proposed in [24,45], as well as
methods that take as input the set of elementary change oper-
ations that is returned by a comparison operator, and output
an equivalent set of high level changes [25]. For example,

consider the case illustrated in Fig. 18. If we assume that
equality of concept names implies equality of concepts, we
could define:

dgap(o1, p1) = �(A→ A) = ∅
dgap(o2, p1) = �(A→ C ∪ B)

dgap(o1, p2) = �(B → A)

dgap(o2, p2) = �(B → C ∪ B)

According to this view, a gap comprises change operations.
A detailed treatment of such cases goes beyond the scope of
this article (for more see [45]).

An alternative approach to define fine grained gaps that
consist of modules (not change operations) is also possi-
ble. The key observation is that instanceOf and isA relations
are special kinds of dependencies, actually they carry more
meaning than a plain dependency relation. This means that
an isA hierarchy could be construed as a dependency graph
in our framework (where each subclass depends on its super-
classes). In the example of Fig. 18, this means that we have
the dependencies o2 <instanceO f Student <is A Person.
Under this perspective, Gap(o2, p2) = {Student}. It fol-
lows that according to this view, profiles, as well as intelligi-
bility gaps, can contain all kinds of RDF elements.

So far we have considered intelligibility gaps that com-
prise sets of modules. The dependency types that partici-
pate to the computation of gap could also be returned as
they convey extra meaning which could be exploited and
recorded (e.g., in the manifest file of XFDU). For instance,
we can define gaps as sets of paths where a path is a sequence
of (depT ype, module) pairs, or RDF triples of the form
(subject, predicate, object), indicating the specializations
of the ontology that are required. In the example of Fig. 18,
where
Gap(o2, p2) = {Student}, a more informative gap would
be:
I Gap(o2, p2) = {instOf Student subclassOf
Person}. In a triple form we could write:

I Gap(o2, p2) = {{o2 instOf Student},
{Student subclassOf Person}}

10 Concluding remarks

This article described a methodology for representing
intelligibility-related dependencies and exploiting them for
various preservation tasks. The described services and sys-
tems can be useful not only for archives that follow a SW-
based preservation approach, but also for those that are based
on conventional approaches (like EAST, DEDSL, XFDU,
SAFE). To summarize, we could say that dependency man-
agement can be exploited for:

123

176 Y. Marketakis, Y. Tzitzikas

Fig. 18 Example of a more
refined ontology gap C

o1 o2

p2
knows

Student

Person

Fisherman

B

CStudent

Medical Stuff A

p1
knows

– Enabling a disciplined method for deciding what meta-
data to include in a package.
It allows deriving packages that are intelligible for a cer-
tain community and the assumed knowledge of that com-
munity is explicitly specified (in the form of a profile).
For example if we want to derive a package for a commu-
nity that is not familiar with EAST/DEDSL, then apart
from the EAST/DEDSL files for the data files we should
also include the descriptions of these standards. The lat-
ter could be a set of documents in the pdf format (if
of course that format is supposed to be known by that
community).

– Supporting the curation of existing packages.
The services could aid protecting archives from obsoles-
cence risks. For example, if a digital file, e.g., a.east
is identified as problematic (or if EAST becomes obso-
lete), then the repository of a tool like GapMgr could
be exploited for identifying the packages that have to be
revised.

– Enabling intelligibility-aware packaging also for the SW
approach.
Recall that ontologies may reuse/extend elements com-
ing from other ontologies. For example, if the assumed
designated community is supposed to know CIDOC
CRM ontology, then for constructing packages contain-
ing metadata expressed with respect to a specializa-
tion of CIDOC CRM, we are not obliged to include
the CIDOC CRM ontology (i.e., its representation in
RDF) in the package, but only its specialization (if that
specialization is not member of the designated profile
too).
For the case where the profile is a version of CIDOC
CRM and the object is described with respect to a newer
version of CIDOC CRM, then the comparison functions
introduced in [45] could also be considered as a way to
fill the intelligibility gap.

Issues that are worth further research include: (a) adop-
tion of rules (for capturing more complex cases of depen-
dencies, or for defining the properties of dependencies), (b)
investigation of the benefits/applicability of metamodeling

approaches, (c) investigation of relationships with formal
ontology, and (d) automatic extraction of dependencies.

Acknowledgements Motivation for this work is the ongoing EU pro-
ject CASPAR (FP6-2005-IST-033572) whose objective is to build a
pioneering framework to support the end-to-end preservation lifecycle
for scientific, artistic and cultural information based on existing and
emerging standards.

References

1. CASPAR (Cultural, Artistic and Scientific knowledge for Preser-
vation, Access and Retrieval). FP6- 2005-IST-033572. http://www.
casparpreserves.eu/

2. Belguidoum, M., Dagnat, F.: Dependency Management in Software
Component Deployment. Electronic Notes in Theoretical Com-
puter Science 182, 17–32 (2007)

3. Brickley, D., Guha, R.V.: Resource Description Framework (RDF)
Schema Specification: Proposed Recommendation, W3C, March
1999. http://www.w3.org/TR/1999/PR-rdf-schema-19990303

4. Cheney, J., Lagoze, C., Botticelli, P.: Towards a theory of informa-
tion preservation. In: Proceedings of the 5th European Conference
on Research and Advanced Technology for Digital Libraries, pp.
340–351, ECDL’01, London, UK. Springer-Verlag, Berlin (2001)

5. Cooper, B.F., Garcia-Molina, H.: InfoMonitor: unobtrusively
archiving a World Wide Web server. Int. J. Digit. Libr. 5(2), 106–
119 (2005)

6. DEDSL Language. http://east.cnes.fr/english/index.html
7. Day, M.: Integrating metadata schema registries with digital pres-

ervation systems to support interoperability: a proposal. In: Pro-
ceedingss of DC 2003. Supporting Communities of Discourse and
Practice-Metadata Research & Applications, vol. 2, Seattle, Wash-
ington (USA), September (2003)

8. EAST Language. http://east.cnes.fr/english/page_east.html
9. Ferreira, M., Baptista, A.A., Ramalho, J.C.: An intelligent decision

support system for digital preservation. Int. J. Digit. Libr. 6(4), 295–
304 (2007)

10. Franch, X., Maiden, N.A.M.: Modeling component dependen-
cies to inform their selection. In: Proceedings of the 2nd Interna-
tional Conference on COTS-Based Software Systems, ICCBSS’03,
Ottawa, Canada, February, 2003. Springer, Berlin (2003)

11. Hedstrom, M.: Digital preservation: a time bomb for digital
libraries. Comput. Hum. 31(3), 189–202 (1997)

12. Hunter, J., Choudhury, S.: A semi-automated digital preservation
system based on semantic web services. In: Proceedings of the 4th
ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL’04,
pp. 269–278, New York, NY, USA. ACM Press, New Yoek (2004)

123

http://www.casparpreserves.eu/
http://www.casparpreserves.eu/
http://www.w3.org/TR/1999/PR-rdf-schema-19990303
http://east.cnes.fr/english/index.html
http://east.cnes.fr/english/page_east.html

Dependency management for digital preservation 177

13. Hunter, J., Choudhury, S.: PANIC: an integrated approach to the
preservation of composite digital objects using Semantic Web ser-
vices. Int. J. Digit. Libr. 6(2), 174–183 (2006)

14. International Organization For Standardization (OAIS): Open
Archival Information System—Reference Model. Ref. No ISO
14721:2003 (2003)

15. Jarrar, M., Meersman, R.: Formal ontology engineering in the
DOGMA approach. In: Proceedings of the International Confer-
ence on Ontologies, Databases and Applications of Semantics, OD-
Base’02, pp. 1238–1254. Springer, Berlin (2002)

16. Karvounarakis, G., Christophides, V., Plexousakis, D.: Querying
Semistructured (Meta)data and Schemas on the Web: The case
of RDF & RDFS. Technical Report 269. ICS-FORTH, Heraklion
(2000). (http://www.ics.forth.gr/proj/isst/RDF/rdfquerying.pdf)

17. Lee, K.H., Slattery, O., Lu, R., Tang, X., McCrary, V.: The state of
the art and practice in digital preservation. J. Res. Natl. Inst. Stand.
Technol. 107(1), 93–106 (2002)

18. Lin, C.H., Hong, J.S., Doerr, M.: Issues in an inference plat-
form for generating deductive knowledge: a case study in cul-
tural heritage digital libraries using the CIDOC CRM. Int. J. Digit.
Libr. 8(2), 115–132 (2008)

19. Lucas, A.: XFDU packaging contribution to an implementation
of the OAIS reference model. In: Proceedings of the International
Conference, PV’2007. Ensuring the Long-Term Preservation and
Value Adding to Scientific and Technical Data, Edinburgh, Novem-
ber (2005)

20. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.:
RUL: A declarative update language for RDF. In: Proceedingss
of the 4th International Conference on the Semantic Web, ISWC-
2005, Galway, Ireland, November (2005)

21. Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal, D.S.H.,
Baker, M.: The LOCKSS peer-to-peer digital preservation sys-
tem. ACM Trans. Comput. Syst. (TOCS) 23(1), 2–50 (2005)

22. Marketakis, Y., Tzanakis, M., Tzitzikas, Y.: Prescan: towards auto-
mating the preservation of digital objects. In: Proceedings of the
International ACM Conference on Management of Emergent Dig-
ital Ecosystems, MEDES’09, pp. 404–411, Lyon, France, October
(2009)

23. Nelson M.L., McCown F., Smith J.A., Klein M.: Using the web
infrastructure to preserve web pages. Int. J. Digit. Libr. 6(4):327–
349 (2007)

24. Noy, N.F., Musen, M.A.: PromptDiff: A fixed-point algorithm for
comparing ontology versions. In: Proceedings of the 18th National
Conference on Artificial Intelligence, AAAI-2002, pp. 744–750,
Edmonton, Alberta, (2002)

25. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Chris-
tophides, V.: On detecting high-level changes in RDF/S KBs. In:
Proceedings of the 8th International Semantic Web Conference,
ISWC 2009, October 2009

26. PLANETS: Digital Preservation Research and Technology. HPRN-
CT-2002-00308. http://www.planets-project.eu

27. Rajasekar, A., Moore, R., Berman, F., Schottlaender, B.: Digital
preservation lifecycle management for multi-media collections. In:
Proceedings of the 8th International Conference on Asian Digital
Libraries, ICADL, vol. 3815, pp. 380–384, December (2005)

28. Rauch, C., Rauber, A.: Preserving digital media: towards a preser-
vation solution evaluation metric. In: Proceedings of the 7th Inter-
national Conference on Asian Digital Libraries, ICADL’04, pp.
203–212, Shanghai, China, (2004)

29. Rauch, C., Franz, P., Strodl, S., Rauber, A.: Evaluating preservation
strategies for audio and video files. In: Proceedings of the DELOS
Digital Repositories Workshop, Heraklion, Crete, Greece, (2005)

30. Ross, S., Hedstrom, M.: Preservation research and sustainable dig-
ital libraries. Int. J. Digit. Libr. 5(4), 317–324 (2005)

31. Stenzhorn, H., Srinivas, K., Samwald, M., Ruttenberg, A.: Sim-
plifying access to large-scale health care and life sciences data-
sets. Lect. Notes Comput. Sci. 5021, 864–868 (2008)

32. Strodl, S., Becker, C., Neumayer, R., Rauber, A.: How to choose a
digital preservation strategy: evaluating a preservation planning
procedure. In: Proceedings of the 2007 conference on Digital
libraries, pp. 29–38. ACM Press, New York (2007)

33. Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: An envi-
ronment for distributed ontology development based on depen-
dency management. In: Proceedings of the 2nd International
Semantic Web Conference, ISWC’03, pp. 453–468. Springer,
Berlin (2003)

34. The Technical Registry PRONOM (The National Archives). (http://
www.nationalarchives.gov.uk/pronom)

35. Theodoridou, M., Tzitzikas, Y., Doerr, M., Marketakis, Y., Meles-
sanakis, V.: Modeling and querying provenance by extending using
CIDOC CRM. J Distrib. Parallel Databases 27, 169–210 (2010)

36. Thibodeau, K.: Overview of technological approaches to digital
preservation and challenges in coming years. Council on Library
and Information Resources (CLIR). The State of Digital preserva-
tion: An International Perspective, April (2002)

37. Tzitzikas, Y.: Dependency Management for the preservation of dig-
ital information. In: Proceedings of the 18th International Confer-
ence on Database and Expert Systems Applications, DEXA’07,
Regensburg, Germany, September 2007. Springer-Verlag, Berlin
(2007)

38. Tzitzikas, Y.: On preserving the intelligibility of digital objects
through dependency management. In: Proceedings of the Interna-
tional Conference PV’2007. Ensuring the Long-Term Preservation
and Value Adding to Scientific and Technical Data, Oberpfaffenho-
fen, Munich, October (2007)

39. Tzitzikas, Y., Flouris, G.: Mind the (intelligibily) gap. In: Proceed-
ings of the 11th European Conference on Research and Advanced
Technology for Digital Libraries, ECDL’07, Budapest, Hungary,
September 2007. Springer-Verlag, Berlin (2007)

40. Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking RDF schema
elements (and its application in visualization). J. Univ. Comput.
Sci. 13(12), 1854–1880 (2007)

41. Vieira, M., Richardson, D.: Analyzing dependencies in large com-
ponent-based systems. In: Proceedings of the 17th IEEE Interna-
tional Conference on Automated Service Engineering, ASE’02.
IEEE Computer Society, Los Alamitos (2002)

42. Vieira, M., Dias, M., Richardson, D.J.: Describing dependencies
in component access points. In: Proceedings of the 23rd Interna-
tional Conference on Software Engineering, ICSE’01, pp. 115–
118, Toronto, Canada, (2001)

43. Walter, M., Trinitis, C., Karl, W.: OpenSESAME: an intuitive
dependability modeling environment supporting inter-component
dependencies. In: Proceedings of Pacific Rim International Sympo-
sium on Dependable Computing, pp. 76–83, Seoul, Korea, (2001)

44. XFDU development site. (http://sindbad.gsfc.nasa.gov/xfdu)
45. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the foundations

of computing deltas between rdf models. In: Proceedings of the
6th International Semantic Web Conference, ISWC/ASWC’07, pp.
637–651, Busan, Korea, November (2007)

123

http://www.ics.forth.gr/proj/isst/RDF/rdfquerying.pdf
http://www.planets-project.eu
http://www.nationalarchives.gov.uk/pronom
http://www.nationalarchives.gov.uk/pronom
http://sindbad.gsfc.nasa.gov/xfdu

	Dependency management for digital preservation using semantic web technologies
	Abstract
	1 Introduction
	2 Formal model (for intelligibility preservation)
	2.1 Basic Model
	2.2 Addition of types

	3 Intelligibility (dependency) management services
	3.1 Closures and gaps
	3.2 Updating dependencies
	3.3 Dependency management and ingestion quality control

	4 Modeling using Semantic Web Languages
	4.1 Core ontology for dependencies
	4.2 Extending the core ontology
	4.3 Combining COD with other ontologies

	5 Methodology
	6 Languages for preservation
	6.1 Syntax Description
	6.2 Semantic description
	6.3 Packaging
	6.4 Semantic Web Languages

	7 Implementations
	7.1 Web-based GUI
	7.2 Experimental evaluation
	7.2.1 Real data sets
	7.2.2 Synthetic data sets
	7.2.3 Measured tasks (description and algorithms)
	7.2.4 Implementation settings
	7.2.5 Results
	7.2.6 Implementation over SWKM

	7.3 Automating the ingestion of digital objects

	8 Related work
	9 Extensions of the model
	10 Concluding remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

