
PreScan: Towards Automating the
Preservation of Digital Objects

Yannis Marketakis
Computer Science

Department, University of
Crete

Institute Of Computer Science,
FORTH-ICS

GREECE
marketak@ics.forth.gr

Makis Tzanakis
Computer Science

Department, University of
Crete

Institute Of Computer Science,
FORTH-ICS

GREECE
tzanakis@ics.forth.gr

Yannis Tzitzikas
Computer Science

Department, University of
Crete

Institute Of Computer Science,
FORTH-ICS

GREECE
tzitzik@ics.forth.gr

ABSTRACT
The preservation of digital objects is a topic of prominent
importance for archives and digital libraries. However the
creation and maintenance of metadata is a laborious task
that does not always pay off immediately. For this reason
there is a need for tools that automate as much as possible
the creation and curation of preservation metadata. Such
an automation is important especially for emergent systems
and structures, like file systems, which are much more com-
plex and dynamic, in comparison to the traditional digital
archives. In this paper we propose a semi-automatic ap-
proach that binds in a flexible manner (a) automatically
extracted embedded metadata, (b) manually provided meta-
data, and (c) dependency management services. In addition
we elaborate on the problem of keeping the metadata repos-
itory up-to-date. Finally, we report our experiences from
developing and using such a system based on Semantic Web
technologies.

1. INTRODUCTION
The preservation of digital objects is a challenging task

for various organizations such as libraries, cultural institu-
tions, museums, archives, etc. Digital objects require con-
stant maintenance because they depend on both software
and hardware modules that are upgraded or replaced ev-
ery few years. Several aspects of the problem are being
studied including data/medium preservation strategies [10,
6, 17, 18], migration and encapsulation approaches [10, 22,
11, 8], work-flow and preservation approaches [19], theoreti-
cal attempts [5], cost-related strategies for data preservation
planning [15, 27, 4, 20, 25], standards [13], and there are
several preservation initiatives [7] and ongoing international
projects [1, 2].

Our objective is to assist the curation of archives of digital
objects. Specifically, we aim at providing services that help

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MEDES 2009 October 27-30, 2009, Lyon, France
Copyright 2008 ACM 978-1-60558-829-2/08/0003 ...$5.00.

archivists to check whether the archived digital artifacts re-
main functional, to identify hazards and the consequences of
probable losses or obsolescence risks. The majority of preser-
vation approaches rely on metadata. However the creation
and maintenance of metadata is a laborious task that does
not pay off immediately, especially if these metadata are use-
ful only for preservation purposes. For this reason there is a
need for tools that automate as much as possible the creation
and curation of preservation metadata. We would like to by-
pass the strict (often manual) ingestion process while at the
same being compatible with it. According to the traditional
approach, the ingestion phase starts with assigning identi-
fiers to the objects and then extracting/creating metadata
for these objects. These metadata can be expressed using
various metadata schemas and formats (like DIDL, METS,
etc) and usually the update/movement of a metadata record
is prohibited. We want to relax these constraints and auto-
mate the process of metadata extraction and management.
Automation is crucial for the preservation of emergent sys-
tems and structures, like file systems, which are much more
complex and dynamic, in comparison to the traditional dig-
ital archives.

We propose an approach where some of the metadata are
extracted automatically and periodic re-scans are used for
keeping them up-to-date. The user is able to view the ex-
tracted metadata and add additional knowledge. What we
propose is quite similar in spirit with the crawlers of Web
Search Engines. In our case we scan the file system, we
extract the embedded metadata and build an index. The
difference in our case is that we need to support (a) more ad-
vanced extraction services, (b) manual addition of metadata,
(c) more expressive representation frameworks for keeping
and exploiting the metadata (i.e. metadata schemas ex-
pressed in Semantic Web languages), (d) rescans that do
not start from scratch but exploit the previous status of the
index, and (e) associations with external sources (e.g. reg-
istries). The latter is important since the intelligibility of a
digital object depends on the availability of other digital ob-
jects. To this end we propose linking objects with external
sources and providing dependency management services for
identifying obsolescence risks.

The rest of this paper is organized as follows: Section
2 elaborates on the requirements. Section 3 reviews the
related work. Section 4 describes the architecture and the
functionality of the tool PreScan and reports experimental

- 404 -

Copyright 2009 ACM 978-1-60558-829-2/09/0010.$10.00.

results. Finally section 5 concludes and identifies issues that
are worth further work and research.

2. METADATA AND PRESERVATION RE-
QUIREMENTS

Metadata can be described as “structured, encoded data
that describe characteristics of information-bearing entities
to aid in the identification, discovery, assessment, and man-
agement of the described entities” 1. Table 1 shows some
examples of what can be considered as metadata.

Table 1: Examples of Metadata

Type Metadata

Book title, author, date of publication, subject, ISBN,
dimensions, number of pages, text language

Photographs date and time of capture, details of the camera
settings (focal length, aperture, exposure), coor-
dinates (geotagging)∗

Audio files album name, song title, genre, year, composer,
contributing artist, track number and album art

Relational
Databases

Database catalog storing information about the
names of tables and columns, the domains of val-
ues in columns, number of rows, etc

Software For example, in Java, the class file format con-
tains metadata used by the Java compiler and the
Java virtual machine to dynamically link classes
and to support reflection.

Web Pages Meta-tags, general purpose descriptions ex-
pressed using Semantic Web languages.

∗: Many digital cameras record metadata in exchangeable
image file format (EXIF)

Metadata can be stored either internally, i.e. in the same
file as the data, or externally, i.e. in a separate file. The for-
mer are usually called embedded, the latter detached. The
detached metadata are usually stored in a special repository.
Both approaches have advantages and disadvantages. One
benefit of the embedded metadata is that they are trans-
ferred with the data and thus their access and manipulation
is straightforward. However embedded metadata can cre-
ate redundancies and this approach does not allow holding
and managing all metadata together. On the other hand,
if the metadata are detached, then this means that they
are stored in a special repository. This approach has less
redundancy, we can support efficient metadata search, and
we can manipulate them efficiently, e.g. we can perform
bulk metadata updates. However, the way metadata are
linked to data should be treated with care as inconsistencies
may arise. Overall, to manage a corpus of digital objects
requires tackling several issues and problems. From our ex-
perience and analysis, we have identified the following basic
requirements:

• Automatic Scanning of file systems
We need systems that can operate like the crawlers of
Web search engines, i.e. scan the desired parts of the
file system (or network) according to a given config-
uration (regarding desired folders, extensions of files,
etc).

• Automatic Format Identification and Extraction
of Embedded Metadata
It is useful to extract the embedded metadata so that
to make them visible to the curators. Since several for-
mats contain embedded metadata we need to extract

1American Library Association, Task Force on Metadata
Summary Report, June 1999

them easily. Various format identification tools and
metadata extractors have been developed and can be
used for this purpose (e.g. JHOVE2, meta-extractor3,
Droid4).

• Support for Human-entered/edited Metadata
Users (or curators) should be able to add extra meta-
data to an already scanned file (apart from the auto-
matically extracted). For example one might want to
add extra metadata about provenance, digital rights,
or the context of the objects.

• Periodic Re-Scannings without loosing the human-
provided metadata
As the contents of the files change frequently we need
to update their metadata in a flexible manner. To this
purpose, periodic re-scannings are useful for ensuring
the freshness of the metadata. However the human-
provided metadata should be preserved.

• Referential Integrity services
If a file/folder is moved to another location we would
like to identify such changes in order to reflect them
to its detached metadata. This is important also for
ensuring that the human-entered metadata will be pre-
served.

• Dependency Management and
Intelligibility-preservation services
A digital object might depend directly or indirectly
on other modules. A module can be either a hard-
ware/software component, a file format etc. Therefore
we need to record such dependencies in order to facili-
tate tasks like: (a) the identification of the objects that
are in danger in case a module (e.g. a software com-
ponent or a format) is becoming obsolete (or has been
vanished), (b) the decision of what metadata need to
be captured and stored for a designated community,
and (c) the reduction of the metadata that have to be
archived, or delivered (as a response to queries) to the
users of that community.

• Exploitation of Existing Registries
External registries (like Pronom [26], GDFR [21], Reg-
istry of CASPAR) that contain information about file
formats and versions of software for each one of them,
should be exploited.

• Usability and Control of the Whole Process
The functionalities must be performed in a simple and
easy to use manner with the support of graphical user
interfaces.

3. RELATED WORK
There are only few related works. For instance, the work

presented in [11, 12] scans the filesystem, extracts the type
of the digital files and detects those files having obsolete
types. Its functionality relies on three registries: a software
version registry, a format registry, and a recommended for-
mat registry.

2http://hul.harvard.edu/jhove
3http://meta-extractor.sourceforge.net
4http://droid.sourceforge.net/wiki/index.php

- 405 -

Another approach based on migration is described in [9].
It adopts a SOA (Service-Oriented Architecture) for en-
abling the combination of different format detectors and reg-
istries to support automatic migration. The key difference
with our work is that we extract the embedded metadata,
we link them with data that enable dependency management
services and we focus on supporting the entire life-cycle of
metadata (i.e. the automatic identification of file removals
and movements).

[23, 24] presents an approach for web page preservation. It
aims at enabling the web server as a just-in-time metadata-
extractor/generator. The archivist (or client) receives the
metadata of a web page at dissemination time (as an XML-
formatted response), and of course this adds an extra over-
head for the web-server. That work pre-supposes that all
digital files are placed in a web server and that the extended
web-server has been installed.

Empirical Walker [3] is probably the most similar tool
with PreScan. It also scans the file system, it determines
file formats, it analyzes file contents calculates checksums,
and associates external metadata. It also adopts JHOVE
as metadata extractor. Regarding file format identification,
Empirical Walker first assigns a MIME-type to every file
according to a mapping table (that maps file extensions to
MIME-types) and in a later phase it uses JHOVE to vali-
date the associated MIME-types and extract more techni-
cal metadata (only for those files that are supported from
JHOVE). However associating MIME-types based only on
the file-extensions is error-prone because file extensions are
often unreliable or missing. Furthermore, and in comparison
to our work, we allow the addition of user-provided meta-
data and we can output the resulting metadata in various
ways and formats also exploiting the expressive power of Se-
mantic Web languages. Specifically the resulting metadata
can be accessed or edited: (a) through the developed GUI,
(b) in txt format (in a human readable format), (c) in XML
which is directly output from JHOVE and (d) through a SW
repository.

Metadata Miner Catalogue5 is a commercial software tool
that lists files and folders summary information, extracts
file properties and their metadata and create reports in var-
ious formats (including XML, HTML and RDF according
to Dublin Core schema). Furthermore it identifies several
file formats but does not recognize the specific version of
that format. For example it will recognize a .doc file as a
Microsoft Word document but cannot identify whether it
is a Microsoft Word 6 document or a Microsoft Word 2003
document.

Table 2 compares our work (PreScan) with other tools
like Empirical Walker (EW), DROID, Metadata Extrac-
tor (ME) and Metadata Miner Catalogue (MMC). The
symbol n1 indicates file format identification but without
version information, while n2 indicates that some structural
dependencies are extracted (however no further details are
available).

Notice that PreScan is the only tool that allows file sys-
tem re-scans that protect the human-provided metadata,
and identifies file movements.

4. THE FUNCTIONALITY OF PreScan

PreservationScanner, for short PreScan, is a system that

5
http://peccatte.karefil.com/software/Catalogue/MetadataMiner.htm

Table 2: Comparison with related systems

PreScan EW Droid ME MMC
ReScan
with
preserva-
tion of
manual
metadata

X

Identification
of file
movements

X

Mapping
Confirma-
tion by the
user

X

Export to
RDF

X X

Exploitation
of format
registries

X(Pronom
+ Depen-
dencies)

X(Pronom)

Format
identifica-
tion

X X X Xn1 Xn1

Compliance
with de-
pendency
manage-
ment

X Xn2

we have developed based on the previously described re-
quirements. PreScan consists of four main components: the
scanner, a component responsible for scanning file systems,
the metadata extractor, a component for extracting the
embedded metadata of the scanned files, the repository
manager, a component for storing and managing these
metadata, and the controller, a component that controls
the entire process and metadata life-cycle. The overall archi-
tecture of the system is shown in Figure 1. We have adopted
a modular design with well-defined interfaces in order to be
able to extend or replace a component easily. For instance,
we can easily switch to another metadata extractor or use
different repository storage approaches (as we discuss later
on).

cmp PresScanner

Scanner Metadata Extractor

Repository Manager

Controller

Figure 1: The Component diagram of PreScan

4.1 Controller
The tool starts like an AntiVirus program, i.e. it starts

scanning all files and subfolders that originate from a cer-
tain folder (that is specified by the user). At the first scan
a metadata record is created for each encountered file and
stored through the Repository Manager. After the end of
the scan the user can browse the repository and add extra
metadata or edit the extracted ones. The difficult task is to
keep the repository consistent while the file system changes.
Recall that files are deleted, renamed or change positions
and new files are created. PreScan uses the full pathname
of a file as its identity. Let us consider the case where a

- 406 -

file is renamed. For sure we would not like to delete the
old metadata record of that file and create a new one since
we would loose all metadata that could have been entered
manually by the user. If at each scanning we keep a copy im-
age of the entire filesystem then at each subsequent scan we
can compare the contents of each encountered file with the
contents of the copied files of the previous scan in order to
identify file name/position changes. However to keep a copy
of the entire file system would be space consuming and the
comparison would be unacceptably slow. To overcome this
problem we compute and store the md5 checksum of the con-
tents of every scanned file inside its metadata record, which
is typically expressed as a fixed size hexadecimal number (32
digits). If a file does not change over time, then its md5 will
remain intact. Obviously the md5 of a file should be up-
dated whenever a file changes. We deal with file movements
in a similar way.

The re-scanning process consists of two phases: the scan-
ning phase and the integration phase. At the first phase the
algorithm scans the filesystem. At the second phase (in-
tegration phase) the system tries to identify file additions,
modifications and deletions based on the contents signatures
(in our case md5), and asks from the user to verify the iden-
tified events.

Figure 2 sketches the algorithm of rescan. At first we re-
trieve the list of scanned files and for every file we encounter
we compare it with the list of the previously scanned files to
decide weather this file existed during the previous scan or
it is a new file. If a file existed in the previous scan and has
been changed since the last scan, we extract its new meta-
data and update the repository appropriately. PendingList
is used for keeping the files that were not present at the
previous scan (obviously these files are not associated with
any metadata record). Let sf be such a file. This means
that either: (a) sf is a new file, or (b) sf was moved from
another folder, or (c) sf is an old file that has been renamed
and PreScan cannot recognize it. In contrary, ObsoleteList
keeps metadata records that no longer correspond to a file
which means that either the specified file has been removed
or the file has been moved to another location. At a final
step we recognize file movements and removals by comparing
the content of the files in the PendingList and ObsoleteList
lists.

We have developed a GUI to aid users in establishing map-
pings between the elements of the pending and the obsolete
list. Figure 4 shows an indicative screendump. The upper
part of the window contains the new files that were found
during the re-scanning and the bottom part all possible map-
pings from files that were moved/renamed. In this particular
case we have 4 new files, 1 file movement and 1 file that was
renamed.

4.2 Metadata Extrator
For every file PreScan extracts and keeps its filetype, path,

owner, last modification date and size. Moreover we extract
and keep fileformat-specific embedded metadata. PreScan

uses JHOVE as a format detector and metadata extractor.
It recognizes several formats (AIIF, ASCII, BYTESTREAM,
GIF, HTML, JPEG, JPEG 2000, PDF, TIFF, UTF-8, WAVE,
XML) and Table 3 shows some of the extracted metadata
while Figure 3 shows a part of the JHOVE XML output
schema. The element repInfo contains a subelement prop-
erty that contains name-value pairs with technical informa-

tion about a file (i.e. for images it will contain ColorSpace
information, ExposureMode information, resolution etc).

Algorithm ReScan()
Input: Rep, Scanner, Extractor
Output: updated repository

1. PendingList = ObsoleteList = ∅
2. PreviousFiles = Rep.getAllFiles(ScannerConf)
3. CurFiles = Scanner.getScannedFiles(ScannerConf)
4. for each file f in CurFiles
5. if f ∈ PreviousFiles //f existed in the previous scan
6. if f .lastModified > Rep.getLastModified(f .path)
//f has changed
7. m=Extractor.extractMetadata(f .path)
8. Rep.update(f .path,m)
9. else //f is a ”new” file
10. PendingList = PendingList ∪{f}
11. end for
12. ObsoleteList = PreviousFiles \ CurrFiles
13. for each file f in PendingList
14. m=Extractor.extractMetadata(f.path)
15. of = ObsoleteList.getMatched(f .content)
// e.g. through MD5
16. if (of==null) then // nothing matched
17. Rep.add(f ,m)
18. PendingList = PendingList \ {f}
19. else
20. If UserVerifiesMapping(f , of) then
21. Rep.updateMetadata(of , f ,m)
22. PendingList = PendingList \ {f}
23. ObsoleteList = ObsoleteList \ {of}
24. end for
25. Rep.DeleteOldRecords(ObsoleteList)

Figure 2: The algorithm of PreScan

Figure 3: A fragment of the JHOVE output XML
schema

4.3 Repository Manager
The Repository Manager is responsible for storing and

updating the metadata records. The metadata record of
a file includes both the extracted and the human-provided
metadata. There are more than one choices regarding where
these metadata are stored. The options that are currently
supported are listed below (they are not mutually exclusive):

• (SF) For each scanned file its metadata record is cre-
ated and stored in a Specific Folder specified by the

- 407 -

Figure 4: The GUI for managing mappings

Table 3: Recognized formats and extracted meta-
data

Format Extracted Metadata

ALL For-
mats

ScanDate, FilePath, LastModificationDate, Size, Format,
Status, Module, MimeType

AIFF AudioDataEncoding, ByteOrder, FirstSampleOffset,
Hours, Minutes, Seconds, Sample, NumberOfSamples

ASCII LineEndings
GIF GraphicRenderingBlocks, LogicalScreenWidth, Log-

icalScreenHeight, ColorResolution, BackGroundCol-
orIndex, PixelAspectRatio, CompressionScheme, Trans-
parencyFlag, ImageWidth, ImageLength, BitsPerSample

HTML PrimaryLanguage, OtherLanguages, Title, MetaTags ,
Frames , Links, Scripts, Images , Citations, De-
finedTerms, Abbreviations , Entities, UnicodeEntity-
Blocks

JPEG CompressionType, ScanerManufacturer, ScannerModule-
Name, ImageWidth, ImageLength, BitsPerSample, Sam-
plesPerPixel, PixelAspectRatioX, PixelAspectRatioY,
Precision, ColorSpace, PixelXdimension, PixelYdimen-
sion, DateTimeOriginal, DateTimeDigitized, Exposure-
Time, LigthSource, Flash, FileSource, SceneType, Sat-
uration, Sharpness

JPEG 2000 Brand, MinorVersion, Compatibility, precedence, XSize,
YSize, BitsPerSample, SamplesPerPoxel, Creator

PDF PageLayout, PageMode, Creator, Producer, Creation-
Date, Fonts

TIFF ByteOrder, CompresiionScheme, SamplingFrequency,
XSamplingFrequency, YSamplingFrequency, Im-
ageWidth, ImageLength, BitsPerSample, Samples-
PerPixel

UTF-8 LineEndings, Additional Control Characters, Num-
berOfCharacters, UnicodeCodeBlocks

WAVE SchemaVersion, AudioDataEncoding, FrameCount,
TimeBase, videoField, CountingMode, Hours, Minutes,
Seconds, Frames, SampleRate, NumberOfSamples,
NumChannels

XML Version, Encoding, StandAlone, DTD, Schemas,Root,
NameSpaces, Notations, CharacterReferences, Entities,
ProcessingInstructions, Comments

user.

• (OF) For each scanned file its metadata record is cre-
ated and stored in the same folder with the Original
scanned file.

• (KB) The contents of the metadata records of scanned
files are stored in a Semantic Web-based Knowledge
Base. In that case the Repository Manager also offers
querying services.

The extracted metadata of a digital file that are stored
using the repository manager and can be later viewed or en-
riched by the user. For example assume that PreScan scans
a file named forth20090115.jpg. It extracts various meta-
data about that file (e.g. image resolution, date, informa-
tion about the digital camera captured this photo etc.) and
stores them in the repository. Later on the user can enrich
these metadata by adding human provided metadata such
as a description for that photograph (e.g. ”FORTH cake
event in 15-01-2009”). Now suppose that this file is moved
to another location. At the next scan, PreScan will identify
this change and will update its metadata record with the
new file location. Therefore the (user-provided) metadata
for that file will not get lost. In case the KB option has
been adopted, the user can also search for a file by query-
ing the repository according to the extracted information.
For example we could search for a photograph with descrip-
tion about ”FORTH cake event” or photographs taken by a
specific digital camera, etc.

4.3.1 Architecture of Ontologies
Recall that JHOVE outputs the extracted metadata in

XML format. These files can be stored in a XML database
and then queried using XQuery. Instead of having an XML-
based framework an alternative approach is to define an on-
tology that allows expressing all the extracted metadata and
can exploit the inheritance semantics of RDFS.

Regarding the adopted ontology a good choice is to adopt
CIDOC CRM and extensions of that ontology. CIDOC Con-
ceptual Reference Model (ISO 21127) is a core ontology
describing the underlying semantics of database schemata
and structures from all museum disciplines, archives and li-
braries. One recent extension of this ontology is CIDOC
CRM Digital6 which is appropriate for digital objects since

6http://cidoc.ics.forth.gr/rdfs/caspar/cidoc digital2.3.rdfs

- 408 -

it contains extensions for capturing the properties and the
provenance (creator, derivation chain) of digital objects. For
example Figure 5 shows how two images (their metadata)
are modeled. The PNG image was derived by converting a
JPG image. The figure also shows information about the
converter and the conversion. Such metadata may be added
by users or by a workflow management system.

C1 Digital Object
Crete.jpg

S2 used as source
(was source for)

C1 Digital Object
Crete.png

C3 Formal Derivation
JPG2PNG conversion

C1 Digital Object
CreteSmall.png

C3 Formal Derivation

JPG2PNG conversion low res

P94 has created
(was created by)

P94 has created
(was created by)

S2 used as source
(was source for)

E29 Design or Procedure
JPG2PNG Algorithm X

E54 Dimension
CreteSmall.png Resolution

P43 has dimension
(is dimension of)

P90 has value

E60 Number
300

E54 Dimension
Crete.png Resolution

P43 has dimension
(is dimension of)

P90 has value

E60 Number
600

P33 used specif ic technique
(was used by)

E62 String
color depth=24
resolution = 600

compression level = 5P3 has note

E55 Type

Parameter List

P3.1 has type

E62 String
color depth=24
resolution = 300

compression level = 5

P3 has note

P3.1 has type

Figure 5: JPG2PNG Converter using CIDOC CRM
Digital Ontology

CIDOC CRM

Other domain specific
specializations

metadata
layer

CIDOC CRM DIGITAL
COD (Core Ontology for Dependencies)

Automatically
Extracted
Metadata

Manually
provided
Metadata

COD descriptions
(registry of

formats and
dependencies)

schema
layer

Figure 6: Architecture of SW Ontologies and Data

Figure 6 shows the general architecture of ontologies that
we propose. On top we have CIDOC CRM, then we have
CIDOC CRM Digital. Under that we have COD (Core On-
tology for Dependencies)7, which is an ontology for express-
ing dependencies. In brief, COD allows expressing (typed)
modules as well as (typed) dependencies between these mod-
ules. In addition, it allows expressing designated community
profiles, for short profiles, indicating those modules that are
assumed to be known by a community. Figure 7 shows a
part of that ontology (for more see [29, 30]). Finally we
have domain-specific extensions.

The instance layer contains the automatically extracted
metadata, the manually provided metadata and COD-based
descriptions. The later capture information about file for-
mats and software modules that were loaded by exporting
the contents of the Pronom registry and correspond to the

7http://cidoc.ics.forth.gr/rdfs/caspar/module schema.rdfs

repository of GapMgr8 In this way the information about the
scanned files are linked with the descriptions of these for-
mats. Specifically each scanned file/module is assigned a
unique module identifier which in our case is the path of the
file. Some of the dependencies of these modules are auto-
matically extracted based on their type (i.e. PreScan.jpeg
dependsOn JPEG Module), but the user can easily add
more dependencies or edit the existing ones by using the
GapMgr API or the GWT application.
GapMgr is a tool that is based on the same repository

and relies on COD. In brief, GapMgr offers: (a) a program-
matic interface written in Java offering methods for depen-
dency management (GapMgr API), (b) two different imple-
mentation of the API: the first is a main memory imple-
mentation where the persistence layer is a plain file-system
based, the second is an implementation over the SWKM (Se-
mantic Web Knowledge Middleware)9, and (c) an end-user
Web-based application developed over GWT (Google Web
Toolkit)10 which can work with both implementations of the
API. Figures 8 and 9 shows some indicative screendumps.
The first one for defining (adding, changing or deleting) de-
pendencies, the last one for computing intelligibility-aware
packages [29].

COD (Core Ontology for
Dependencies)

Taxonomy of
Module types

CIDOC CRM Digital

Figure 7: COD Ontology

Regarding the physical layer, the metadata according to
the previous architecture can be stored as plain files in RDF/XML
format (or Trig) for the options SF and OF. For the KB op-
tion, we can keep them in in a SW-based repository (like
SWKM). The benefits of adopting a SW-based repository is
that we can benefit from its validation mechanism (to keep
the descriptions consistent), and its declarative query and
update languages [14, 16]. In addition, the user can browse
the SWKM repository through StarLion [28]11.

Regarding the transformation from XML to RDF PreScan

parses the output of JHOVE and produces instances of an
ontology that extends COD ontology expressed in RDF. In
future we plan to investigate methods for making more easy

8GapMgr is one of the key components of the CASPAR
project.
9http://athena.ics.forth.gr:9090/SWKM/

10http://code.google.com/webtoolkit
11http://www.ics.forth.gr/∼tzitzik/starlion/

- 409 -

Table 4: Time Performance of the Scanning process

DataSets Time (sec)
Files html/ wave/ ascii/ jpeg/ pdf unknown Extract MD5 Store Overall

xml aiff utf8 gif

10 2 2 1 4 1 1 3.2 2.5 0.8 9.2

102 19 11 7 36 8 19 26.8 46.4 1.8 77.0

103 201 115 56 251 103 274 632.6 (∼11 min) 487.2 (∼9 min) 15.7 1139.2 (∼19 min)

104 2123 1096 922 4629 594 636 5654.0 (∼95 min) 2636.1 (∼44 min) 365.0 (∼7 min) 8667.4 (∼145 min)

105 34069 1207 25467 13478 1240 24539 30066.1 (∼8.5 hr) 2849.3 (∼48 min) 2277.5 (∼38 min) 35230.8 (∼10 hr)

Typology of
dependencies

Typology of
modules

dependencies

Figure 8: GapMgr GUI for managing dependencies

Selection of
modules

Selection of
profiles

Computation
of gap

Figure 9: GapMgr GUI for computating the intelligi-
bility gap

the mapping of the JHOVE-extracted metadata to instan-
tiations of CIDOC CRM Digital.

4.4 Evaluation of PreScan

Regarding efficiency, the extraction of the embedded meta-
data depends on the type and the size of the file. In general,
the bigger the size of a file is, the more time it takes to be
scanned. Unknown filetypes (i.e. filetypes that are not rec-
ognized by JHOVE) are identified as BYTESTREAM mod-
ules and only the basic metadata (1st row in Table 3) are
extracted.

We performed some experiments over various datasets.
Table 4 summarizes the results of the evaluation. For every
dataset we report the total time for the scanning process as
well as the time for every subtask. For every dataset we also
report the number of the different files comparing to the to-
tal files of the set. As we can see the more time-consuming
tasks is the metadata extraction and the computation of
MD5 checksum. Clearly, these two tasks are independent
from the repository mode (Section 4.3). However, the Over-
all time depends on the repository mode adopted. Here we
have used the SF option and stored the metadata records as
XML documents. We have noticed that the entire process
takes about 10 hours for 100 thousand files.

5. CONCLUDING REMARKS
This paper described the design and implementation of

a digital preservation system that automatically extracts
the embedded metadata of digital objects, binds them with
manually provided, and supports processes for ensuring the
freshness of the metadata repository without loosing the hu-
man provided metadata. Regarding the metadata repository
it supports a Semantic Web approach based on an architec-
ture of ontologies appropriate for interoperability and for
enabling dependency management services that assist the
preservation of the intelligibility of the digital objects. The
Alpha release of PreScan is available to download and use
12.

What we have proposed is quite similar in spirit with the
crawlers of Web Search Engines (recall the differences men-
tioned at the introductory section), an approach that is fea-
sible and appropriate for dynamic digital ecosystems.

In future we foresee the creation of specialized preserva-
tion scanners for various kinds of digital objects (e.g. for
documents, software, videos, etc), and the provision of ex-
tractors from the publishers of formats to allow plugging
them automatically to systems like PreScan.

Acknowledgements Motivation for this work is the ongoing

EU project CASPAR (FP6-2005-IST-033572).

12http://www.ics.forth.gr/prescan/

- 410 -

6. REFERENCES
[1] “CASPAR (Cultural, Artistic and Scientific knowledge for

Preservation, Access and Retrieval), FP6- 2005-IST-033572
(http://www.casparpreserves.eu/)”.

[2] “PLANETS - Digital Preservation Research and
Technology, HPRN-CT-2002-00308
(http://www.planets-project.eu)”.

[3] R. Anderson, H. Frost, N. Hoebelheinrich, and K. Johnson.
The AIHT at Stanford University: Automated preservation
assessment of heterogeneous digital collections. D-Lib
Magazine, 11:12, 2005.

[4] Carl Carl and Andreas Rauber. “Preserving digital media:
Towards a preservation solution evaluation metric”. In
Procs of the ICADL’2004, pages 203–212, Shanghai, China,
2004.

[5] James Cheney, Carl Lagoze, and Peter Botticelli. “Towards
a Theory of Information Preservation”. In Procs of the 5th
European Conference on Research and Advanced
Technology for Digital Libraries, ECDL ’01:, pages
340–351, London, UK, 2001. Springer-Verlag.

[6] B.F. Cooper and H. Garcia-Molina. InfoMonitor:
unobtrusively archiving a World Wide Web server.
International Journal on Digital Libraries, 5(2):106–119,
2005.

[7] M. Day. Integrating Metadata Schema Registries with
Digital Preservation Systems to Support Interoperability: a
Proposal. DC 2003: Supporting Communities of Discourse
and Practice-Metadata Research & Applications, Seattle,
Washington (USA), September 28-October, 2, 2003.

[8] M. Ferreira, A.A. Baptista, and J.C. Ramalho. An
intelligent decision support system for digital preservation.
International Journal on Digital Libraries, 6(4):295–304,
2007.

[9] M. Ferreira, A.A. Baptista, and J.C. Ramalho. A
Foundation for Automatic Digital Preservation. 2008.

[10] M. Hedstrom. Digital Preservation: A Time Bomb for
Digital Libraries. Computers and the Humanities,
31(3):189–202, 1997.

[11] J. Hunter and S. Choudhury. PANIC: an integrated
approach to the preservation of composite digital objects
using Semantic Web services. International Journal on
Digital Libraries, 6(2):174–183, 2006.

[12] Jane Hunter and Sharmin Choudhury. A semi-automated
digital preservation system based on semantic web services.
In JCDL ’04: Proceedings of the 4th ACM/IEEE-CS joint
conference on Digital libraries, pages 269–278, New York,
NY, USA, 2004. ACM Press.

[13] International Organization For Standardization. “OAIS:
Open Archival Information System – Reference Model”,
2003. Ref. No ISO 14721:2003.

[14] G. Karvounarakis, V. Christophides, and D. Plexousakis.
Querying Semistructured (Meta)data and Schemas on the
Web: The case of RDF & RDFS. Technical Report 269,
ICS-FORTH, 2000. Available at:
http://www.ics.forth.gr/proj/isst/RDF/rdfquerying.pdf.

[15] K.H. Lee, O. Slattery, R. Lu, X. Tang, and V. McCrary.
The State of the Art and Practice in Digital Preservation.
Journal of Research-National Institute of Standards and
Technology, 107(1):93–106, 2002.

[16] M. Magiridou, S. Sahtouris, V. Christophides, and
M. Koubarakis. ”RUL: A Declarative Update Language for
RDF”. In Procs. 4th Intern. Conf. on the Semantic Web
(ISWC-2005), Galway, Ireland, November 2005.

[17] P. Maniatis, M. Roussopoulos, TJ Giuli, D.S.H. Rosenthal,
and M. Baker. The LOCKSS peer-to-peer digital
preservation system. ACM Transactions on Computer
Systems (TOCS), 23(1):2–50, 2005.

[18] M.L. Nelson, F. McCown, J.A. Smith, and M. Klein. Using
the web infrastructure to preserve web pages. International
Journal on Digital Libraries, 6(4):327–349, 2007.

[19] Arcot Rajasekar, Reagan Moore, Fran Berman, and Brian
Schottlaender. Digital preservation lifecycle management

for multi-media collections. In ICADL, pages 380–384,
2005.

[20] Carl Rauch, Pavuza Franz, Stephan Strodl, and Andreas
Rauber. “Evaluating Preservation Strategies for Audio and
Video Files”. In Procs of the DELOS Digital Repositories
Workshop, Heraklin, Crete, Greece, May 2005.

[21] GDFR (Global Digital Format Registry).
(http://www.gdfr.info).

[22] S. Ross and M. Hedstrom. Preservation research and
sustainable digital libraries. International Journal on
Digital Libraries, 5(4):317–324, 2005.

[23] J.A. Smith and M.L. Nelson. A quantitative evaluation of
dissemination-time preservation metadata. In Proceedings
of the 12th European conference on Research and Advanced
Technology for Digital Libraries, pages 346–357. Springer,
2008.

[24] J.A. Smith and M.L. Nelson. Creating preservation-ready
web resources. D-Lib Magazine, 14(1/2):1082–9873, 2008.

[25] S. Strodl, C. Becker, R. Neumayer, and A. Rauber. How to
choose a digital preservation strategy: evaluating a
preservation planning procedure. In Proceedings of the 2007
conference on Digital libraries, pages 29–38. ACM Press
New York, NY, USA, 2007.

[26] The technical registry PRONOM (The National Archives).
(http://www.nationalarchives.gov.uk/pronom).

[27] K. Thibodeau. Overview of Technological Approaches to
Digital Preservation and Chall enges in Coming Years. The
State of Digital Preservation: An International
Perspective, 2002.

[28] Y. Tzitzikas, D. Kotzinos, and Y. Theoharis. On Ranking
RDF Schema Elements (and its Application in
Visualization). Journal of Universal Computer Science,
13(12):1854–1880, 2007.

[29] Yannis Tzitzikas. “Dependency Management for the
Preservation of Digital Information”. In Procs of the 18th
International Conference on Database and Expert Systems
Applications, DEXA’2007, Regensburg, Germany,
September 2007. Springer-Verlag.

[30] Yannis Tzitzikas and Giorgos Flouris. “Mind the
(Intelligibily) Gap”. In Procs of the 11th European
Conference on Research and Advanced Technology for
Digital Libraries, ECDL’07, Budapest, Hungary,
September 2007. Springer-Verlag.

- 411 -

