
Mitos: Design and Evaluation of a DBMS-based Web Search Engine

Panagiotis Papadakos Yannis Theoharis Yannis Marketakis
Nikos Armenatzoglou Yannis Tzitzikas

Institute of Computer Science, FORTH-ICS, GREECE, and
Computer Science Department, University of Crete, GREECE

Email: {papadako, theohari, marketak, armenan, tzitzik}@ics.forth.gr

Abstract

Engineering a Web search engine offering effective and
efficient information retrieval is a challenging task. Mitos is
a recently developed search engine that offers a wide spec-
trum of functionalities. A rather unusual design choice is
that its index is based on an object-relational database sys-
tem. This paper discusses the benefits and the drawbacks of
this choice (compared to the classical inverted files), pro-
poses three different database representations, and reports
comparative experimental results. Two of these representa-
tions are one order of magnitude more space efficient and
two orders of magnitude faster in query evaluation, than the
plain relational representation.

1 Introduction

Mitos1(formerly known as grOOGLE) is a recently de-
veloped Web search engine that offers a wide spectrum of
functionalities. Synoptically, Mitos is equipped with an ad-
vanced stemmer for the Greek language, offers real time re-
sult clustering, advanced link analysis techniques (also for
spam page detection) and facet-based exploration services
[10]. For a detailed description of Mitos see [8].

Although the most widely used data structure for the in-
dex of an information retrieval (IR) system is the inverted
file (else called inverted index), the index of Mitos is based
on a DBMS (PostgreSQL). In this paper we discuss the ben-
efits and drawbacks of this choice. Specifically, we intro-
duce three different representations (database schemas) for
the index and we report some interesting comparative ex-
perimental results. In brief, the support of set-valued at-
tributes by object-relational DBMSs can offer significant
storage space savings and query evaluation speedup.

The rest of this paper is organized as follows: Section
2 discusses the benefits and drawbacks of using a DBMS,

1http://groogle.csd.uoc.gr:8080/mitos/

while Section 3 presents three possible database representa-
tions of Mitos index. Section 4 reports experimental results.
Finally, Section 5 concludes the paper and identifies issues
for further work and research.

2 DBMS versus Inverted Files

Most information retrieval systems and web search en-
gines use inverted files, which have been proven to be very
efficient for answering queries [3]. However, the last years
the scope of such systems is getting wider. For instance,
they should be able to handle structured documents (e.g.
XML), annotations/tags and multimedia data types. Fur-
thermore a plethora of new tasks, quite different from the
classical query evaluation task, are being performed: from
data mining algorithms and machine learning to collabora-
tive recommendation and filtering.

For these reasons, the index of an engine should be easily
extensible and able to accommodate various types of data.
In this paper we elaborate on building and managing the
index using a DBMS. Below we list some of the advantages
and drawbacks of this choice.

2.1 DBMS Advantages

Extensibility of Index Scope
The extension of the index schema with additional

columns and relations for widening the spectrum of the
functionalities offered is rather straightforward if a DBMS
is adopted. For instance, we can extend the index with var-
ious information, like users, dates, tags, metadata, and sup-
port more sophisticated queries and retrieval models.
Index Construction Process

As a DBMS handles the physical layer we do not have to
create and merge partial indices for constructing the index
of a big corpus (as we have to do if we adopt inverted files).
Index Maintenance

Many pages change or disappear rapidly [6], probably
more than 20% in a daily basis. Deleting the entries that

Panhellenic Conference on Informatics

978-0-7695-3323-0/08 $25.00 © 2008 IEEE

DOI 10.1109/PCI.2008.46

49

Repr. document word occurrence

PR [id:int, url:varchar, norm:float, rank:float] [id:int, name:varchar, df:int] [word id:int, doc id:int, tf:float]
OR [id:int, url:varchar, norm:float, rank:float] [id:int, name:varchar, df:int] [word id:int, occur:Array〈Point〉]

COR [id:int, url:varchar, norm:float, rank:float] - [word name:varchar,
occur:Array〈Point〉, df:int]

Table 1. Three different representations of the index

concern a particular document is a very expensive operation
in an inverted file. Specifically, its cost is in O(n) where
n the size of the collection in words. With a DBMS such
operation can be performed more efficiently (depending on
the adopted representation as it will be described later on).
Single Index

Classical IR systems use separate indices: one for an-
swering queries and one for updates. The second is the in-
dex of the recently crawled pages and when it is fully con-
structed (by merging all partial indices) it replaces the first
index. With a DBMS this distinction and duplication is not
necessary, i.e. we can have a single index (for both updating
and querying) as we do not have to create partial indices.
Distributed Query Processing

The advances in DBMS for multicore and clustered sys-
tems can transparently benefit IR systems that are built on
top. For instance, PostgreSQL can take advantage of more
than one available system CPUs/cores (e.g. for dispatch-
ing queries), while the ongoing project pgpool-II2 works on
supporting more advanced distributed query processing fea-
tures, such as the dispatching of parts of a query plan to the
available CPUs. Although Mitos currently runs on a single
machine, we plan to exploit the above functionalities.

2.2 DBMS Drawbacks

Higher Storage Space
Roughly an inverted file comprises entries of the form

(t, occ) where t is a term while occ stands for the occur-
rences of t in the corpus. Occurences may comprise only
document identifiers, or also the weight and/or the positions
(exact or block-based) of t in each document. Term occur-
rences occupy most of the space of the index and for this
reason special number encodings [1] are usually employed
to reduce the space required.

A straightforward implementation over a relational
DBMS would occupy much more space than an inverted
file. Consider for example the entry (t, {d1, d3, d5}). In
a relational DBMS that would be represented by three tu-
ples [t, d1], [t, d3], [t, d5] resulting in wasted space. Further-
more, special number encoding schemes are not currently
supported by DBMSs.
More I/O operations

Apart from the higher storage space requirements, we
expect the query response time to be higher for a DBMS
based index, since more I/O’s are expected to be needed.

2http://pgpool.projects.postgresql.org/

This has been experimentally verified in [8], where Mitos
was found less efficient than Terrier [7].

However, the adoption of set-valued attributes that are
offered by object-relational DBMSs (like PostgreSQL) can
alleviate these problems as we will describe in detail later
on. Specifically we will study the trade-off, between the
index size (and query evaluation times) and the ability of
the index to support multiple access paths, e.g. by term
versus by document. In the future we plan to compare such
DBMS indices with inverted files.

2.3 Term versus Document based access

To compute the answer of a query the index should pro-
vide efficient term-based access (this is what inverted files
offer). However there are some other tasks that require
document-based access and could be faster in a DBMS sys-
tem. Such queries implemented in Mitos include docu-
ment deletion (locate all those entries that concern a partic-
ular document), query expansion (retrieve the most highly
ranked terms that appear in the top-ranked documents) and
relevance feedback (retrieve the terms of the documents for
which the user provided feedback).

3 On DBMS-based Indices

3.1 The Indexer of Mitos

Mitos adopts the tf-idf weighting scheme. Therefore,
for each term we have to keep a) its document frequency
(df) in the collection and b) its term frequency (tf) for each
document. One of the main differences of Mitos compared
to other search engines is that it does not store the positions
terms appear in documents. Thus, when Mitos returns the
query results to the user, it parses the cached file of that
document, to find the ”best text” with respect to the query
terms. However, this is needed only for the documents that
lie in the result pages the user will visit. In this manner,
Mitos pays only for the relevant documents that the user
will visit. On the other hand, without storing term positions,
Mitos can’t support phrase queries and proximity operators.

3.2 DB Representations for Occurrences

Here we introduce three different database representa-
tions for the index (shown in Table 1). All three comprise

50

a relation document, that stores information about docu-
ments: for each document it keeps its identifier, its url, the
norm of its vector, and its PageRank score. The three repre-
sentations differ on how they store words and occurrences.
Below we describe each one of them.

(PR) Plain-Relational

This is the representation currently in use by Mitos.
The relation word stores the words, their identifiers and
their df (document frequencies). The relation occur-
rence stores triples of the form [word id, doc id, tf].
The main drawback of this representation is that each
word id is stored for each document in which it ap-
pears in. This duplication results in high storage space.

(OR) Object-Relational

This representation exploits the set-valued attributes
supported by PostgreSQL in order to reduce the space
occupied by occurrences. Specifically, it exploits the
point datatype offered by PostgreSQL for representing
the pairs 〈doc id, tf〉. For each word id an array of
points is stored. In this way each word id is stored
exactly once in the table occurrence.

(COR) Compact Object-Relational

This representation drops the relation word, since the
word id serves as a primary key in both word and oc-
currence tables, and moves the attributes word name
and df to occurrence table.

3.3 Bulk Index Creation/Updates

Initially, it seems that the benefits from using a DBMS
are at the expense of the data storage and retrieval efficiency.
The guarantee of the ACID properties, the concurrency con-
trol, the update of DBMS indices (e.g., B+Tree etc.) and
their possible reorganization on disc due to the insertion of
new tuples may harm the efficiency of the index.

In order to reduce the effect of these problems, we use
the copy function of PostgreSQL during the indexing cre-
ation. In this manner, we skip the concurrency control,
as well as several integrity constraints checks, while at the
same time we minimize the I/O’s needed to insert a spe-
cific amount of new tuples. Moreover, in case we want to
add a new document collection to an existing index, we first
drop the DBMS indices and then we insert the new tuples,
re-creating the indices at the end. In this manner, we pay
time only to compute the final indices, instead of comput-
ing temporal ones, that will need to be changed after the
next tuple(s) insertion. After all documents have been in-
dexed, for each document d we compute the norm (‖�d‖) of
its vector (�d) as defined by the tf-idf weighting scheme, and
store it in the norm field, in order to speed-up the evaluation
of a query at the searching phase.

Repr. Queries
PR qword SELECT id, df

FROM word
WHERE name=”informat” OR name = ”retriev”

qocc SELECT word id, doc id, tf
FROM occurrence
WHERE word id IN (informat id, retriev id)

qdoc SELECT id, norm, rank
FROM document
WHERE id IN(doc1, doc2, ..., docN)

OR qword SELECT id, df
FROM word
WHERE name=”informat” OR name = ”retriev”

qocc SELECT word id, doc id, tf
FROM occurrence
WHERE word id IN (informat id, retriev id)

qdoc SELECT id, norm, rank
FROM document
WHERE id IN(doc1, doc2, ..., docN)

COR qocc SELECT word name, occur, df
FROM occurrence
WHERE word name=”informat” OR name = ”retriev”

qdoc SELECT id, norm, rank
FROM document
WHERE id IN(doc1, doc2, ..., docN)

Table 2. Queries for each representation

3.4 Query Evaluation

Table 2 shows the queries needed according to the vector
space model for each representation, assuming the query
”information retrieval” (transformed to ”informat retriev”
because of stemming). The query qword is issued to get the
df values of the query terms, qocc to get the tf values of
the query terms in the documents they appear in, and qdoc

to get the norms and ranks of the corresponding documents.
In COR, issued queries are decreased by one, since the df
values are now stored in the occurrence table instead of the
word table used by the other two representations.

3.5 PostgreSQL Indices

In order to provide more efficient access paths to the rela-
tions, we need to build appropriate PostgreSQL indices. Re-
garding document table, the access is done given the doc id,
i.e., an attribute of integer type. We have two choices for
the index type we can build on doc id attribute, namely ei-
ther B+Tree or Hash index. Regarding word table, the
access is done given the name. In that case, we can again
use a B+Tree or Hash index. Furthermore, we could ex-
ploit the Trie index, which has been implemented on top of
PostgreSQL, as a part of the SP-GiST index family [2, 4].
According to [5], the Trie index offers more than 150% per-
formance increase for exact search matches over to Post-
greSQL B+trees, and scales better regarding size. Finally,
about the occurrence table, once again, possible choices are
either a B+Tree or Hash index, on the word id attribute.
For the COR though, the word and occurrence tables have

51

Repr. doc. word occur. total copy time

PR 48.1 MB 12.2 MB 1.85 GB 1.916 GB 35351s
OR 48.1 MB 12.2 MB 93.7 MB 154 MB 681s

COR 48.1 MB - 96.1 MB 145.9 MB 569s

Table 3. DB size and copy times

been merged. So, since the access is done given the name
attribute, we can create either a B+Tree, Hash or Trie
index on it.

4 Experimental Results

The experiments were performed on a desktop PC with
a Pentium IV 3.4 GHz processor and 2 GB main memory,
on top of Linux distribution Ubuntu v8.04. We used Post-
greSQL v8.0.15 and gave to it 100,000 buffers (i.e. 860
MB). Our collection contained documents of various for-
mats (.html, .pdf, .doc, etc) crawled from our university3

and FORTH4 domains. Specifically, it comprises 155, 661
documents (mainly in Greek), 216, 449 distinct terms and
its total size is 28.5 GB.

4.1 Database Size and Copy Times

To compute the physical database size for each represen-
tation we consider that the PostgreSQL storage requirement
for string types is 4 Bytes plus the actual string size, while
the storage requirement for integers and floats (considering
the int4 and float4 types respectively) is 4 Bytes. In
addition, we should take into account the extra storage cost
per tuple due to an internal id of 40 bytes generated by Post-
greSQL to identify the physical location of a tuple within its
table (block number, tuple index within block).

Regarding document table (employed by all representa-
tions), the tuple size is Sd = 4 + (4 + uri.length ∗ 1) +
4 + 4 + 40 = 56 + uri.length Bytes. The total size of the
table equals Sd ∗ D, where D is the number of collection
documents. Similarly, each tuple of term table (employed
by PR and OR), takes St = 4 + (4 + name.length ∗
1) + 4 + 40 = 52 + name.length. The total table size
is St ∗ T , where T is the number of collection terms. Re-
garding occurrence table, for PR each tuple takes So1 =
4+4+4+40 = 52 Bytes. Considering that the size of type
point is 16 bytes (2 * sizeOf(float8))5, for OR each tuple
takes So2 = 4+(df ∗16)+40 = 44+16∗df Bytes, where
df is the document frequency of the term to which a tuple
corresponds. Finally, for COR each occurrence tuple takes
So3 = (4+word name.length∗1)+(df ∗16)+4+40 =
48 + word name.length + 16 ∗ df Bytes.

3http://www.uoc.gr
4http://www.forth.gr
5PostgreSQL version 8.3 supports arrays of composite types. Thus we

could create a composite type (holding an int4 and a float4 (8 bytes) instead
of the point type), reducing the memory size of the array to half

Repr. doc. word occur. time

PR using Hash 5.34 MB 16.02 MB 1.38 GB 280s
PR using B+Tree 2.67 MB 6.26 MB 638.21 MB 562s

OR using Hash 5.34 MB 16.02 MB 9.35 MB 5.1s
OR using B+Tree 2.67 MB 6.26 MB 3.72 MB 5.9s

COR using Hash 5.34 MB − 16.03 MB 1.7s
COR using B+Tree 2.67 MB − 6.26 MB 2.3s

Table 4. Indices size and Creation times

The sizes of the tables for each representation that corre-
spond to our collection can be seen in Table 3. The sizes of
the OR and COR are significantly smaller (more than one
order of magnitude), since the number of tuples (hence the
cost of the 40 Bytes for each tuple) for the occurrence table
is the same as the number of terms in the vocabulary. Thus
the times to copy the tables are significantly smaller for
the OR and COR, in comparison to PR, offering a much
more scalable solution, as far as indexing time and size are
concerned. In addition, to reduce the I/O overhead during
query evaluation for PR we clustered the occurrence table
on word id (clustering time is not included in Table 3).

4.2 Indices Size and Creation Times

The sizes of the PostgreSQL indices for each representa-
tion are shown in Table 4. Unfortunately, we could not eval-
uate the Trie index, as it only accepts words of latin char-
acters and our UTF-8 encoded test collection mainly con-
tained greek documents. B+Tree indices are much more
space efficient than Hash indices (half size for occurrence
index in PR). Moreover, the creation times for OR and
COR indices are significantly lower than that of PR, lead-
ing also to smaller index sizes due to the small size of the
occurrence table.

4.3 Query Evaluation Times

To measure query evaluation times, we adopted the fol-
lowing scenario: for each of the three representations and
for each PostgreSQL index combination, we a) execute all
the queries of the corresponding representation with 1, 2,
3 and 4 terms, b) repeat the above queries 10 times and c)
calculate average times. The terms contained in the above
queries were different (for each of the 1, 2, 3 or 4-sized
queries) and they were selected based on their df . Specifi-
cally, we selected frequently occuring terms with a df value
about 45,000. The big number of documents that these
terms appear in, implies big overhead to the DBMS. Due
to the large number of doc ids passed in the IN list of the
qdoc queries, we encountered a PostgreSQL crash. We tack-
led this problem by dividing the IN list in blocks of 45,000
doc ids and submitting one query for each block of the
list. Subsequently we summed the times required by these
queries. We gathered the aforementioned times through the

52

Repr. 1 term 2 terms 3 terms 4 terms
qword qocc qdoc qword qocc qdoc qword qocc qdoc qword qocc qdoc

PR using Hash 0.212 30.477 2.250 0.2127 60.034 4.450 0.233 81.206 6.705 0.174 112.107 9.898
PR using B+Tree 0.196 35.338 2.118 0.219 63.460 4.556 0.228 88.889 6.802 0.164 123.049 9.894

OR using Hash 0.209 0.154 1.617 0.232 0.297 3.259 0.013 0.483 4.752 0.223 0.567 6.194
OR using B+Tree 0.194 0.152 1.655 0.246 0.295 3.214 0.013 0.488 4.680 0.202 0.586 6.142

COR using Hash − 0.183 1.698 − 0.341 3.277 − 0.536 4.769 − 0.613 6.175
COR using B+Tree − 0.168 1.641 − 0.310 3.190 − 0.513 4.706 − 0.597 6.112

Table 5. Query evaluation times (sec)

Aggregator6 toolkit which is written in Java. This means
that the measured times include the overhead of the JDBC
driver (version 8.0-322 JDBC 3), an overhead that also ex-
ists in the Mitos engine, since it is written in Java.

As one can observe from the times reported in Table
5, OR and COR representations are orders of magnitude
more efficient than PR, mainly due to the efficiency in oc-
currence table. More precisely, OR and COR are approx-
imately 200 times faster than PR for all queries, although
OR and COR index is only an order of magnitude (see Ta-
ble 3) smaller than PR index. This is due to the fact that
OR and COR indices, fit in main memory, so every page
that is fetched in memory, is constantly kept there. Compar-
ing OR and COR, we observe that COR is slightly faster
than OR. A common behaviour for all three representations
is the slow qdoc query times. This query is actually the bot-
tleneck for both OR and COR representations. This is due
to the long IN list as described earlier. In the future, we plan
to upgrade to PostgreSQL 8.3 which offers an optimized IN
operator, and to investigate whether we can reduce the over-
head of such queries by using temporary tables.

Regarding the DBMS indices, we can conclude that
Hash indices are the best choice for PR while B+Tree
indices for COR. For OR both of them have almost equiv-
alent performance. For a bigger collection though, B+Tree
indices could be a better choice also for PR and OR, due
to their smaller index size.

5 Conclusions

In this paper we elaborated on using object-relational
DBMSs for managing a Web search engine index. Specif-
ically we proposed and evaluated three different represen-
tations. COR was found to be the most efficient, being
one order of magnitude less space costly and two orders of
magnitude faster in query evaluation compared to PR. In
future work, we plan to compare the efficiency of B+Tree
index with a tree − Trie index [9] that has been proposed
to index relationships with set-value attributes. Moreover,
we need to evaluate the cost of document-based access in
OR and COR againtst PR. Finally we plan to compare the
DBMS-approach with the classical inverted file on the same
collection.

6http://www.csd.uoc.gr/∼andreou

References

[1] V. N. Anh and A. Moffat. ”Inverted Index Compression Us-
ing Word-Aligned Binary Codes”. Information Retrieval,
8(1):151–166, 2005.

[2] W. G. Aref and I. F. Ilyas. ”SP-GiST: An Extensible
Database Index for Supporting Space Partitioning Trees”. J.
Intell. Inf. Syst., 17(2-3):215–240, 2001.

[3] R. Baeza-Yates and B. Ribeiro-Neto. ”Modern Information
Retrieval”. Addison Wesley, May 1999.

[4] M. Y. Eltabakh, W. G. Aref, and R. Eltarras. ”To Trie or
Not to Trie? Realizing Space-partitioning Trees inside Post-
greSQL: Challenges, Experiences and Performance”. Tech-
nical Report TR-05-008, Department of Computer Science,
Purdue University, USA, April 2005.

[5] M. Y. Eltabakh, R. Eltarras, and W. G. Aref. ”Space-
Partitioning Trees in PostgreSQL: Realization and Perfor-
mance”. In ICDE ’06: Proceedings of the 22nd Interna-
tional Conference on Data Engineering (ICDE’06), page
100, Washington, DC, USA, 2006. IEEE Computer Society.

[6] T. L. Harrison and M. L. Nelson. ”Just-In-Time Recovery
of Missing Web Pages”. In HYPERTEXT ’06: Proceedings
of the seventeenth conference on Hypertext and hypermedia,
pages 145–156, New York, NY, USA, 2006. ACM.

[7] I. Ounis, C. Lioma, C. Macdonald, and V. Plachouras. ”Re-
search Directions in Terrier”. Novatica/UPGRADE Special
Issue on Web Information Access, Ricardo Baeza-Yates et al.
(Eds), Invited Paper, 2007.

[8] P. Papadakos, G. Vasiliadis, Y. Theoharis, N. Arme-
natzoglou, S. Kopidaki, Y. Marketakis, M. Daskalakis,
K. Karamaroudis, G. Linardakis, G. Makrydakis, V. Pa-
pathanasiou, L. Sardis, P. Tsialiamanis, G. Troullinou,
K. Vandikas, D. Velegrakis, and Y. Tzitzikas. ”The
Anatomy of Mitos Web Search Engine”. CoRR, In-
formation Retrieval, abs/0803.2220, 2008. Available at
http://arxiv.org/abs/0803.2220.

[9] M. Terrovitis, S. Passas, P. Vassiliadis, and T. Sellis. ”A
Combination of Trie-trees and Inverted Files for the Index-
ing of Set-valued Attributes”. In CIKM ’06: Proceedings
of the 15th ACM international conference on Information
and knowledge management, pages 728–737, New York, NY,
USA, 2006. ACM Press.

[10] Y. Tzitzikas, N. Armenatzoglou, and P. Papadakos. ”FleX-
plorer: A Framework for Providing Faceted and Dynamic
Taxonomy-based Information Exploration”. In Procs of
FIND’2008 (at DEXA ’08), Turin, Italy, Sept. 2008 (to ap-
pear).

53

