
Task-Based Dependency Management for the
Preservation of Digital Objects Using Rules

Yannis Tzitzikas, Yannis Marketakis, and Grigoris Antoniou

Computer Science Department, University of Crete,
Institute of Computer Science, Forth-ICS, Greece
{tzitzik,marketak,antoniou}@ics.forth.gr

Abstract. The preservation of digital objects is a topic of prominent
importance for archives and digital libraries. This paper focuses on the
problem of preserving the performability of tasks on digital objects. It
formalizes the problem in terms of Horn Rules and details the required
inference services. The proposed framework and methodology is more ex-
pressive and flexible than previous attempts as it allows expressing the
various properties of dependencies (e.g. transitivity, symmetry) straight-
forwardly. Finally, the paper describes how the proposed approach can
be implemented using various technologies.

1 Introduction

The preservation of digital objects is a topic of prominent importance for archives
and digital libraries. To support digital preservation, i.e. the curation of archives
of digital objects, requires tackling several issues. For instance, there is a need
for services that help archivists in checking whether the archived digital artifacts
remain functional, in identifying hazards and the consequences of probable losses
or obsolescence risks.

To tackle these requirements [11] showed how the needed services can be re-
duced to dependency management services, while [12] extended that model with
disjunctive dependencies. The key notions of these works is the notion of mod-
ule, dependency and profile. In a nutshell, a module can be a software/hardware
component or even a knowledge base expressed either formally or informally,
explicitly or tacitly, that we want to preserve. A module may require the avail-
ability of other modules in order to function, be understood or managed. We can
denote such dependency relationships as t > t′ meaning that module t depends
on module t′. A profile is the set of modules that are assumed to be known (avail-
able or intelligible) by a user (or community of users). Based on this model, a
number of services have been defined for checking whether a module is intelligi-
ble by a community, or for computing the intelligibility gap of a module. GapMgr1

and PreScan2 [9] are two systems that have been developed based on this model,
and have been applied successfully in the context of the EU project CASPAR3.
1 http://athena.ics.forth.gr:9090/Applications/GapManager/
2 http://www.ics.forth.gr/prescan
3 http://www.casparpreserves.eu/

S. Konstantopoulos et al. (Eds.): SETN 2010, LNAI 6040, pp. 265–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

6th Hellenic Conference on Artificial Intelligence. SETN'2010, Athens, Greece, 2010



266 Y. Tzitzikas, Y. Marketakis, and G. Antoniou

In the current work we extend that framework with task-based dependencies.
This extension allows expressing dependencies in a more systematic manner, i.e.
each dependency is due to one or more tasks. We found the extended frame-
work on Horn Rules and we sketch a methodology for applying it. The proposed
framework and methodology, apart from simplifying the disjunctive dependen-
cies of [12], is more expressive and flexible as it allows expressing the various
properties of dependencies (e.g. transitivity, symmetry) straightforwardly.

The rest of this paper is organized as follows. Section 2 introduces a running
example and discusses requirements. Section 3 contains background information
on Datalog. Section 4 introduces the proposed approach. Section 5 elaborates on
the inference services required for task-performability, risk-detection and com-
puting intelligibility gaps, and Section 6 discusses implementation choices. Sec-
tion 7 discusses related work, and finally, Section 8 concludes and identifies issues
that are worth further research.

2 Motivation and Requirements

Running Example. James has a laptop where he has installed the NotePad
text editor, the javac 1.6 compiler for compiling Java programs and JRE1.5 for
running Java programs (bytecodes). He is learning to program in Java and C++
and to this end, and through NotePad he has created two files, HelloWorld.java
and HelloWorld.cc, the first being the source code of a program in java, the
second of one in C++. Consider another user, say Helen, who has installed in
her laptop the Vi editor and JRE1.5.

Suppose that we want to preserve these files, i.e. to ensure that in future
James and Helen will be able to edit, compile and run these files. In general, to
edit a file we need an editor, to compile a program we need a compiler, and to
run the bytecodes of a Java program we need a Java Virtual Machine. To ensure
preservation we should be able to express the above.

To this end we could use facts and rules. For example, we could state: A file
is editable if it is TextFile and a TextEditor is available. Since James has two
text files (HelloWorld.java, HelloWorld.cc) and a text editor (NotePad), we
can conclude that these files are editable by him. By a rule of the form: If a
file is Editable then its is Readable too, we can also infer that these two files are
also readable. We can define more rules in a similar manner to express more
task-based dependencies, such as compilability, runability etc. For our running
example we could use the following facts and rules:

1. NotePad is a TextEditor
2. VI is a TextEditor
3. HelloWorld.java is a JavaSourceFile
4. HelloWorld.cc is a C++SourceFile
5. javac1.6 is a JavaCompiler
6. JRE1.5 is a JavaVirtualMachine
7. A file is Editable if it is a TextFile and a TextEditor is available



Task-Based Dependency Management for the Preservation of Digital Objects 267

8. A file is JavaCombilable if it is a JavaSourceFile and a JavaCompiler is
available

9. A file is C++Combilable if it is a C++SourceFile and a C++Compiler is
available

10. A file is Compilable if it is JavaCompilable or C++Compilable
11. If a file is Editable then it is Readable

Lines 1-6 are actually facts while lines 7-11 define how various tasks are car-
ried out. Notice that some facts are valid for James while some other are valid
for Helen (the only fact that is not valid for James is 2, while for Helen only
2 and 6 hold). From these we can infer that James is able to compile the
file HelloWorld.java (using the lines 3,5,8,10) but he cannot compile the file
HelloWorld.cc (since there is no fact about C++Compiler for James). If James
send his TextFiles to Helen then she can only edit them but not compile them
since she has no facts about Compilers.

Requirements. In general, we have identified the following key requirements:
– Task-Performability Checking. In most cases, to perform a task we have

to perform other subtasks and to fulfil associated requirements for carrying
out these tasks (e.g. to have the necessary modules - in our running example
the necessary digital files). Therefore, we need to be able to decide whether a
task can be performed by examining all the necessary subtasks. For example
we might want to ensure that a file is runnable, editable or compilable.

– Risk Detection. The removal of a software module could also affect the
performability of other tasks that depend on it and thus break a chain of
task-based dependencies. Therefore, we need to be able to identify which
tasks are affected by such removals.

– Identification of missing resources to perform a task. When a task
cannot be carried out it is desirable to be able to compute the resources that
are missing. For example, if James wants to compile the file HelloWorld.cc,
his system cannot perform this task since there is not any C++Compiler.
James should be informed that he should install a compiler for C++ to
perform this task.

– Support of Task Hierarchies. It is desirable to be able to define task-type
hierarchies for gaining flexibility and reducing the number of rules that have
to be defined.

– Properties of Dependencies. Some dependencies are transitive, some are
not. Therefore we should be able to define the properties of each kind of
dependency.

3 Background: Datalog

Datalog is a query and rule language for deductive databases that syntactically
is a subset of Prolog. As we will model our approach in Datalog this section
provides some background material (the reader who is already familiar with
Datalog can skip this section).



268 Y. Tzitzikas, Y. Marketakis, and G. Antoniou

Syntax. The basic elements of Datalog are: variables (denoted by a capital let-
ter), constants (numbers or alphanumeric strings), and predicates (alphanumeric
strings). A term is either a constant or a variable. A constant is called ground
term and the Herbrand Universe of a Datalog program is the set of constants
occurring in it. An atom p(t1, ..., tn) consists of an n-ary predicate symbol p and
a list of arguments (t1, ..., tn) such that each ti is a term. A literal is an atom
p(t1, ..., tn) or a negated atom ¬p(t1, ..., tn). A clause is a finite list of literals, and
a ground clause is a clause which does not contain any variables. Clauses con-
taining only negative literals are called negative clauses, while positive clauses
are those with only positive literals in it. A unit clause is a clause with only
one literal. Horn Clauses contain at most one positive literal. There are three
possible types of Horn clauses, for which additional restrictions apply in Datalog:

– Facts are positive unit clauses, which also have to be ground clauses.
– Rules are clauses with exactly one positive literal. The positive literal is

called the head, and the list of negative literals is called the body of the rule.
In Datalog, rules also must be safe, i.e. all variables occuring in the head
also must occur in the body of the rule.

– A goal clause is a negative clause which represents a query to the Datalog
program to be answered.

In Datalog, the set of predicates is partitioned into two disjoint sets, EPred
and IPred. The elements of EPred denote extensionally defined predicates, i.e.
predicates whose extensions are given by the facts of the Datalog programs (i.e.
tuples of database tables), while the elements of IPred denote intensionally
defined predicates, where the extension is defined by means of the rules of the
Datalog program. Furthermore, there are built-in predicates like e.g. =, �=, <,
which we do not discuss explicitly here.

If S is a set of positive unit clauses, then E(S) denotes the extensional part of
S, i.e. the set of all unit clauses in S whose predicates are elements of EPred. On
the other hand, I(S) = S−E(S) denotes the intensional part of S (clauses in S
with at least one predicate from IPred). Now we can define a Datalog program
P as a finite set of Horn clauses such that for all C ∈ P , either C ∈ EPred or C
is a safe rule where the predicate occurring in the head of C belongs to IPred.

So far, we have described the syntax of pure Datalog. In order to allow also for
negation, we consider an extension called stratified Datalog. Here negated literals
in rule bodies are allowed, but with the restriction that the program must be
stratified. For checking this property, the dependency graph of a Datalog program
P has to be constructed. For each rule in P , there is an arc from each predicate
occuring in the rule body to the head predicate. P is stratified iff whenever
there is a rule with head predicate p and a negated subgoal with predicate q,
then there is no path in the dependency graph from p to q.

Semantics. The Herbrand base (HB) of a Datalog program is the set of all
possible ground unit clauses that can be formed with the predicate symbols and
the constants occurring in the program. Furthermore, let EHB denote the ex-
tensional and IHB the intensional part of HB. An extensional database (EBD)



Task-Based Dependency Management for the Preservation of Digital Objects 269

is a subset of EHB, i.e. a finite set of positive ground facts. In deterministic
Datalog, a Herbrand interpretation is a subset of the Herbrand base HB. For
pure Datalog, there is a least Herbrand model such that any other Herbrand
model is a superset of this model. Stratified Datalog is based on a closed-world
assumption. If we have rules with negation, then there is no least Herbrand
model, but possibly several minimal Herbrand models, i.e. there exists no other
Herbrand model which is a proper subset of a minimal model. Among the differ-
ent minimal models, the one chosen is constructed in the following way: When
evaluating a rule with one or more negative literals in the body, first the set
of all answer-facts to the predicates which occur negatively in the rule body
is computed (in case of EDB predicates these answer-facts are already given),
followed by the computation of the answers to the head predicates. For stratified
Datalog programs, this procedure yields a unique minimal model. The minimum
model computed in this way is often called the perfect Herbrand model.

4 Proposed Approach

In brief, digital files are represented by EDB facts. Task-based dependencies (and
their properties) are represented as Datalog rules and facts. Profiles (as well as
particular software archives or system settings) are represented by EDB facts.
Datalog query answering and methods of logical inference (i.e. deductive and
abductive reasoning) are exploited for enabling the required inference services
(performability, risk detection, etc).

4.1 Digital Files and Type Hierarchies

Digital files and their types are represented as EDB facts. The two files of our
running example will be expressed as:

JavaFile(HelloWorld.java).
C++File(HelloWorld.cc).

The types of the digital files can be organized hierarchically. Such taxonomies can
be represented with appropriate rules. For example to define that every JavaFile
is also a UTF8Filewe must add the following rule UTF8File(X) :- JavaFile(X).
Each file can be associated with more than one type. In general we could capture
several features of the files (apart from types) using predicates (not necessarily
unary), e.g. ReadOnly(HelloWorld.java), LastModifDate(HelloWorld.java,
2008-10-18). Also note that in place of the filenames, we could use any string
that can be used as an identity of these files (e.g. file paths, URIs, DOIs, etc).

4.2 Software Components

Software components can be described analogously, e.g.:



270 Y. Tzitzikas, Y. Marketakis, and G. Antoniou

AsciiEditor(NotePad). | C++Compiler(gcc).
AsciiEditor(vi). | JVM(jre1.5win).
JavaCompiler(javac 1.6). | JVM(jre1.6linux).

Again predicates are used for expressing the types of the software components.
The above set of facts may correspond to the software components available in
a particular computer.

4.3 Task-Dependencies

We will also use (IDB) predicates to model tasks and their dependencies. Specif-
ically, for each real world task we define two intensional predicates: one (which is
usually unary) to denote the task, and another one (with arity greater than 2) for
denoting the dependencies the task. For instance, Compile(HelloWorld.java)
will denote the task of compiling HelloWorld.java. Since the compilability
of HelloWorld.java depends on the availability of a compiler (specifically a
compiler for the Java language), we can express this dependency using a rule
of the form: Compile(X) :- Compilable(X,Y) where the binary predicate
Compilable(X, Y ) is used for expressing the appropriateness of a Y for compil-
ing a X . For example, Compilable(HelloWorld.java, javac 1.6) expresses
that HelloWorld.java is compilable by javac 1.6. It is beneficial to express
such relationships at the class level (not at the level of individuals), specifically
over the types (and other properties) of the digital objects and software compo-
nents, i.e. with rules of the form:

Compilable(X,Y) :- JavaFile(X), JavaCompiler(Y).
Compilable(X,Y) :- C++File(X), C++Compiler(Y).
Runable(X,Y) :- JavaClassFile(X), JVM(Y).
EditableBy(X,Y) :- JavaFile(X), AsciiEditor(Y).

Relations of higher arity can also be employed according to the requirements,
e.g.:

Runnable(X) :- Runnable(X,Y,Z)
Runnable(X,Y,Z) :- JavaFile(X), Compilable(X,Y), JVM(Z)

4.4 Task Hierarchies

We have already seen how file type hierarchies can be expressed using rules. We
can express hierarchies of tasks in a similar manner. The motivation is the need
for enabling deductions of the form: ”if we can do task A then certainly we can
do task B”. For example:

Read(X) :- Edit(X).
Read(X) :- Compile(X).

The first rule means that if we can edit something then certainly we can read
it too. Alternatively, or complementarily, we can define such deductions at the
”dependency” level, e.g.:



Task-Based Dependency Management for the Preservation of Digital Objects 271

Readable(X,Y) :- EditableBy(X,Y).
Intelligible(X,Y) :- ReadableBy(X,Y).

4.5 Properties of (Task) Dependencies

We can also express other properties of task dependencies (e.g. transitivity, sym-
metry, etc). For example, from Runnable(a.class, JVM) and Runnable(JVM,
Windows) we might want to infer that Runnable(a.class, Windows). Such in-
ferences can be specified by a rule of the form: Runable(X,Y) :- Runnable(X,Z),
Runnable(Z,Y). As another example,
IntelligibleBy(X,Y) :- IntelligibleBy(X,Z), IntelligibleBy(Z,Y). This
means that if x is intelligible by z and z is intelligible by y, then x is intelligible by
y. This captures the assumptions of the dependency model described in [11] (i.e.
the transitivity of dependencies).

4.6 Profiles

A profile is a set of facts, describing the modules available (or assumed to be
known) to a user (or community). For example, the profiles of James and Helen
can be expressed as two sets of facts:

James | Helen

---------------------------+------------

AsciiEditor(NotePad). | AsciiEditor(Vi).

JavaCompiler(javac 1.6). | JVM(jre1.5Win).

JVM(jre1.5Win). |

Synopsis. Methodologically, for each real world task we define two intensional
predicates: one (which is usually unary) to denote the task, and another one
(which is usually binary) for denoting the dependencies of task (e.g. Read,
Readable). Figure 1 depicts the partitioning of the various facts and rules. For
instance, all services regarding James should be based on James’box plus the
boxes at the upper level.

File Type Taxonomy

(primitive types: EDB predicates,

higher types: IDB predicates)

Digital files

Task Taxonomy

(IDB predicates)

Profile

James

Digital files

Profile

Helen

Digital files

Profile

...

Task Dependencies

and their properties

(IDB predicates or arity ≥ 2)

Fig. 1. Logical partitioning



272 Y. Tzitzikas, Y. Marketakis, and G. Antoniou

5 Reasoning Services

Here we describe how the reasoning services described at Section 2 can be realized
in the proposed framework.

– Task-Performability. This service aims at answering if a task can be per-
formed by a user/system. It relies on query answering over the Profiles of
the user. E.g. to check if HelloWorld.cc is compilable we have to check if
HelloWorld.cc is in the answer of the query Compile(X).

– Risk-Detection. Suppose that we want to identify the consequences on ed-
itabilityafter removing amodule, sayNotePad.Todo sowe cando the following:
1. We compute the answer of the query Edit(X), and let A be the returned
set of elements.
2. We delete NotePad from the database and we do the same. Let B be the
returned set of elements4.
3. The elements in A \B are those that will be affected.

– Computation of Gaps (Missing Modules). There can be more than
one way to fill a gap due to the disjunctive nature of dependencies since the
same predicate can be the head of more than one rules (e.g. the predicate
AsciiEditor in the example earlier). The gap is actually the set of facts
that are missing and are needed to perform a task. To this end we must
find the possible explanations (the possible facts) that entail a consequence
(in our case a task). For example some possible explanations for the compi-
lability of a JavaFile is the existence of the available compilers. In order to
find the possible explanations of a consequence we can use abduction [8,4,5].
Abductive reasoning allows inferring an atom as an explanation of a given
consequence. For example assume that the file HelloWorld.cc is not compi-
lable. Abduction will result all the possible C++ Compilers as explanations
for the compilability of the file.

6 Implementation and Application Issues

There are several possible implementation approaches. Below we describe them
in brief:
Prolog is a declarative logic programming language, where a program is a set
of Horn clauses describing the data and the relations between them. The pro-
posed approach can be straightforwardly expressed in Prolog. Furthermore and
regarding abduction there are several approaches that either extend Prolog [2]
or augment it [3] and propose a new Programming Language.

The Semantic Web Rule Language (SWRL) [7] is a combination of OWL
DL and OWL Lite [10] with the Unary/Binary Datalog RuleML5. SWRL provides
the ability to write Horn-like rules expressed in terms of OWL concepts to infer
new knowledge from existing OWL KB. For instance, each type predicate can be
4 In Prolog we could use the retract feature.
5 http://ruleml.org



Task-Based Dependency Management for the Preservation of Digital Objects 273

expressed as a class.Eachprofile can be expressed as anOWL classwhose instances
are the modules available to that profile (we exploit the multiple classification of
SW languages). Module type hierarchies can be expressed through subclassOf re-
lationships between the corresponding classes. All rules regarding performability
and the hierarchical organization of tasks can be expressed as SWRL rules.

In a DBMS-approach all facts can be stored in a relational database, while
Recursive SQL can be used for expressing the rules. Specifically, each type pred-
icate can be expressed as a relational table with tuples the modules of that type.
Each profile can be expressed as an additional relational table, whose tuples
will be the modules known by that profile. All rules regarding task performa-
bility, hierarchical organosis of tasks, and the module type hierarchies, can be
expressed as datalog queries. Note that there are many commercial SQL servers
that support the SQL:1999 syntax regarding recursive SQL (e.g. Microsoft SQL
Server 2005, Oracle 9i, IBM DB2).

Just indicatively, Table 1 synopsizes the various implementation approaches.

Table 1. Implementation Approaches

What DB-approach Semantic Web-approach

ModuleType predicates relational table class
Facts regarding Module (and
their types)

tuples class instances

DC Profile relational table class
DC Profiles Contents tuples class instances
Task predicates IDB predicates predicates appearing in rules
Task Type Hierarchy datalog rules, or isa if

an ORDBMS is used
subclassOf

Performability datalog queries (recur-
sive SQL)

rules

7 Related Work

There are many dependency management related works but only a few focus
on task-based dependencies. Below we discuss in brief some of these works. [1]
proposes a static deployment system for ensuring the success of two tasks: in-
stallation and deinstallation. It is based on a dependency description language,
where the requirements of a service are expressed in first order predicate lan-
guage in conjunctive normal form. The success of installation guarantees that
once a component is installed successfully it will work properly while the success
of deinstallation ensures that the system remains safe after the removal of a com-
ponent. [6] defines four types of dependencies: goal, soft goal, task and resource
dependencies. The first three types determine the conditions or the particular
ways under which a specific goal or task can be attained. Furthermore it de-
scribes several properties, for soft goal dependencies, that determine the best
approach to be followed. Finally it categorizes components to light (replaceable



274 Y. Tzitzikas, Y. Marketakis, and G. Antoniou

components) and heavy (components on which others strictly depend). In brief,
we can say that all these approaches are less flexible and extensible (in terms of
task and dependency modeling) than the approach that we propose.

8 Concluding Remarks

We showed how rules can be employed for advancing the dependency manage-
ment services that have been proposed for digital preservation. We reduced the
problem to Datalog-based modeling and query answering. One issue that is worth
further research is to investigate whether the way abduction is supported by ex-
isting systems (e.g. [2,3]) is adequate for the problem at hand.

Other issues that are important for applying this model successfully in real
settings is how modularity is supported and what kind of assisting tools are
needed for managing and administrating the underlying sets of facts and rules.

References

1. Belguidoum, M., Dagnat, F.: Dependency Management in Software Component
Deployment. Electronic Notes in Theoretical Computer Science 182, 17–32 (2007)

2. Christiansen, H., Dahl, V.: Assumptions and abduction in Prolog. In: 3rd Inter-
national Workshop on Multiparadigm Constraint Programming Languages, Mul-
tiCPL, Citeseer, vol. 4 (2004)

3. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with
assumptions and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 159–173. Springer, Heidelberg (2005)

4. Console, L., Dupre, D.T., Torasso, P.: On the relationship between abduction and
deduction. Journal of Logic and Computation 1(5), 661 (1991)

5. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the
ACM (JACM) 42(1), 3–42 (1995)

6. Franch, X., Maiden, N.A.M.: Modeling Component Dependencies to Inform their
Selection. In: 2nd International Conference on COTS-Based Software Systems.
Springer, Heidelberg (2003)

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (May
2004), http://www.w3.org/Submission/SWRL/

8. Kakas, A.C., Kowalski, R.A., Toni, F.: The Role of Abduction in Logic Program-
ming. In: Handbook of Logic in Artificial Intelligence and Logic Programming:
Logic programming, p. 235 (1998)

9. Marketakis, Y., Tzanakis, M., Tzitzikas, Y.: PreScan: Towards Automating the
Preservation of Digital Objects. In: Procs. of the Intern. Conf. on Management of
Emergent Digital Ecosystems MEDES 2009, Lyon, France (October 2009)

10. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview
(2004), http://www.w3.org/TR/owl-features/

11. Tzitzikas, Y.: Dependency Management for the Preservation of Digital Information.
In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp.
582–592. Springer, Heidelberg (2007)

12. Tzitzikas, Y., Flouris, G.: Mind the (Intelligibily) Gap. In: Kovács, L., Fuhr, N.,
Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 87–99. Springer, Heidelberg
(2007)


