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Abstract— This paper describes a novel hand gesture recog-
nition system intended to support natural interaction with
autonomously navigating robots that guide visitors in museums
and exhibition centers. The proposed system utilizes upper body
part tracking and two neural network-based classifiers, one for
each arm. Tracking is performed in a 9-DoF configuration space
and it is facilitated by means of a probabilistic approach which
combines particle filters with hidden Markov models in order
to enable the simultaneous tracking of several hypotheses for
the body orientation and the configuration of each of the two
arms.

Given the arm trajectories in the configuration space, clas-
sification is facilitated separately for each arm by means of
a combined MLP/RBF neural network structure. The MLP is
trained as a standard classifier while the RBF neural network
is trained as a predictor for the future state of the system. By
feeding the output of the RBF back to the MLP classifier, we
achieve temporal consistency and robustness to the classification
results.

I. INTRODUCTION

Gesture recognition is an important, yet difficult task.
It is important because it is a versatile and intuitive way
to develop new, more natural and more human-centered
forms of human-machine interaction. Moreover, it is difficult
because it involves the solution of many challenging sub-
tasks such as robust identification of hands and other body
parts, motion modeling, tracking, pattern recognition and
classification.

Early psycholinguistic studies [1], [2], initially targeting
sign language gestures, revealed that gestures can be charac-
terized based on four different aspects: shape, motion, posi-
tion and orientation. All gesture recognition approaches try to
approach the problem by concentrating one way or another
on one or more of the above four aspects. Posture-based
approaches, for example, utilize static images, concentrating
only on the shape of the hand to extract features such as
hand contours, fingertips and finger directions [3], [4], [5],
[6]. Temporal approaches, on the other hand, not only make
use of spacial features but also exploit temporal information
such as the path followed by the hand, its speed, etc [7], [8],
[9], [10].

A category of approaches utilize 3D hand models for the
detection of hands in images. One of the advantages of these

methods is that they can achieve view-independent detection.
The employed 3D models should have enough degrees of
freedom to adapt to the dimensions of the hand(s) present in
an image. Different models require different image features
to construct feature-model correspondences. Point and line
features are employed in kinematic hand models to recover
angles formed at the joints of the hand [11], [12]. In [13],
a 3D model of the arm with 7 parameters is utilized. In
[14], a 3D model with 22 degrees of freedom for the whole
body with 4 degrees of freedom for each arm is proposed.
In [15], the user’s hand is modeled much more simply, as
an articulated rigid object with three joints comprised by the
first index finger and thumb.

In this paper we present a specific approach for vision-
based hand gesture recognition, intended to support natural
interaction with autonomously navigating robots that guide
visitors in public places such as museums and exhibition
centers. The operational requirements of such an application
challenge existing approaches in that the visual perception
system should operate efficiently under totally unconstrained
conditions regarding occlusions, variable illumination, mov-
ing cameras, and varying background. Recognizing that the
extraction of features related to hand shape may be very
difficult task, we propose a gesture recognition system that
emphasizes on the temporal aspects of the task. More specif-
ically, the proposed approach takes into account information
conveyed in the trajectory followed by user’s arms while the
user performs gestures in front of a robot.

The proposed gesture recognition system builds on our
previous work in model-based visual tracking of human
arms and body [16]. According to this tracking approach,
a nine parameter model is employed to track both arms (4
parameters for each arm) as well as the orientation of the
human torso (one additional parameter). In order to reduce
the complexity of the problem and to achieve real-time
performance, the model space is split into three different
partitions and tracking is performed separately in each of
them. More specifically, a Hidden Markov Model (HMM)
is used to track the orientation of the human torso in the
1D space of all possible orientations and two different sets
of particles are used to track the four Degrees of Freedom



(DoF) associated with each of the two hands, using a particle
filter-based approach.

Given the arm trajectories in the configuration space,
classification is facilitated separately for each arm by means
of a combined Multi Layer Perceptron/Radial Basis Function
(MLP/RBF) Neural Network structure. The MLP is trained
as a standard classifier while the RBF neural network is
trained as a predictor for the future state of the system. By
feeding the output of the RBF back to the MLP classifier,
we achieve temporal consistency and robustness in the clas-
sification results.

Sample experimental results presented in this paper, con-
firm the effectiveness and the efficiency of the proposed
approach, meeting the robustness and performance require-
ments of this particular case of human-robot interaction.

II. APPROACH OVERVIEW
A block diagram of the proposed gesture recognition

system is illustrated in Figure 1.

Fig. 1. Block diagram of the proposed approach for hand tracking and
gesture recognition. Processing is organized into three layers.

The first step of the approach is to extract hand and face
regions as skin-colored foreground blobs.

Assuming a 4 DoF kinematic model for each arm and one
additional degree of freedom for the orientation φ of the user
around the vertical axis (see Fig. 2), the pose of the user is
tracked in a 9 DoF model space. The resulting 9-parameter
tracking problem is tackled in realtime by fragmenting the
9-dimensional space into three sub-spaces; a 1D parameter
space for body orientation angle and two 4D spaces, one for
each hand. The body orientation angle φ is appropriately

Fig. 2. The 9-parameter model used for the rotation of the body and the
pose of the user’s arms

quantized and tracked over time by means of an HMM.
For every possible solution, a separate particle filter set is
employed for each arm. The result of each particle filter
is used to estimate the observation probability, which is
subsequently employed to update the HMM.

Classification is achieved by buffering the trajectory of
each arm (in its 4D configuration space) and feeding it
to a feed-forward MLP Neural Network which is trained
to recognize between five system states: idle (no gesture),
preparation (hand moving towards a gesture), pointing ges-
ture, hello (waiving) gesture, and retraction (hand retracting
from a gesture). The output of the MLP is passed though
an RBF which is trained as a predictor for the next state of
the system and fed back to the MLP in order to improve
temporal consistency and robustness of the achieved results.

More details regarding each of the above described mod-
ules are provided in the following sections.

III. DETECTION OF HAND AND FACE BLOBS

The first step of the proposed approach is to detect skin-
colored regions in the input images. For this purpose, a tech-
nique similar to [17], [18] is employed. Initially, background
subtraction [19] is used to extract the foreground areas of
the image. Then, for each pixel, P(s | c) is computed, which
is the probability that this pixel belongs to a skin-colored
foreground region s, given its color c.

This can be computed according to the Bayes rule as:

P(s | c) = P(s)
P(c)

P(c | s) (1)

where P(s) and P(c) are the prior probabilities of fore-
ground skin pixels and foreground pixels having color c,
respectively. Color c is assumed to be a 2D variable encoding
the U and V components of the YUV color space. P(c | s)
is the prior probability of observing color c in skin colored
foreground regions. All three components in the right side
of Eq.1 can be computed via offline training.
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Fig. 3. Blob detection. (a) Initial image, (b) Foreground pixels, (c) skin-
colored pixels, (d) resulting skin-colored blobs.

After probabilities have been assigned to each image
pixel, hysteresis thresholding is usand connected components
labeling are used to extract solid skin color blobs. Pixel
probabilities are initially thresholded by a “strong” threshold
Tmax to select all pixels with P(s | c) > Tmax. This yields
high-confidence skin-colored pixels that constitute the seeds
of potential blobs. A second thresholding step, this time
with a “weak” threshold Tmin is performed. During this step,
pixels with probability P(s | c)> Tmin where Tmin < Tmax, that
are immediate neighbors of already classified skin-colored
pixels, are recursively added to each blob.

A connected components labeling algorithm is then used
to assign different labels to pixels that belong to different
blobs. Size filtering on the derived connected components
is also performed to eliminate small, isolated blobs that are
attributed to noise.

A set of simple heuristics based on location and size is
used to characterize blobs as hand blobs and face blobs.

Results of the intermediate steps of this process are illus-
trated in Fig. 3. Figure 3(a) shows a single frame extracted
out of a video sequence that shows a man performing
various hand gestures in an office-like environment. Fig. 3(b)
shows the result of the background subtraction algorithm
and Fig. 3(c) shows skin-colored pixels after hysteresis
thresholding. Finally, the resulting blobs (i.e. the result of
the labeling algorithm) are shown in Fig. 3(d).

IV. TRACKING IN THE MODEL SPACE

A. Kinematic model

As already mentioned, for modeling the human body and
arms, a nine-DOF model, has been employed. This model,
which is similar to the one proposed in [20] is depicted in
Figure 2. According to this model, the human body, with the
exception of the arms, is assumed to be a rigid object with
only one degree of freedom corresponding to its orientation
φ . Both arms are assumed to be attached to this rigid body
at fixed locations (i.e. the shoulders) and they are modeled
by a 4-DoF kinematic model each. The kinematics of each

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE 4-DOF MODEL OF THE

HUMAN ARM EMPLOYED IN OUR APPROACH.

i αi−1 ai−1 di θi
1 +π/2 0 0 θ1−π/2
2 −π/2 0 0 θ2 +π/2
3 +π/2 0 L1 θ3 +π/2
4 −π/2 0 0 θ4−π/2
5 0 L2 0 0

arm are defined as Denavit-Hartenberg parameters, shown in
table I. θ1,θ2 and θ3, are the angles corresponding to the
three DoFs of the human shoulder and θ4 corresponds to the
angle of the elbow. L1 and L2 are the lengths of the upper
arm and the forearm, respectively. They are assumed fixed
in our implementation.

B. Model space partitioning and tracking

To track in the 9-DoF model space presented in the
previous section, the approach presented in [16] has been
assumed. According to this approach, in order to reduce the
complexity of the problem and meet the increased computa-
tional requirements of the task at hand, the model space is
split into three different partitions and tracking is performed
separately in each of them. More specifically, a Hidden
Markov Model (HMM) is used to track the orientation φ of
the human body in the 1D space of all possible orientations
and two different sets of particles are used to track the four
DoFs associated with each of the two arms using a particle
filtering approach.

To facilitate the implementation of the HMM, the body ori-
entation angle φ is appropriately quantized (50 quantization
levels were used in our implementation). For every possible
solution, a separate particle filter set is employed for each
arm. The result of each particle filter is used to estimate
the observation probability, which is subsequently employed
to update the HMM. This means that the weights of the
particles are used to calculate the observation likelihood for
a particular body orientation state.

To facilitate the implementation of likelihood function
which is necessary in order to evaluate hypotheses in the
particle filter-based trackers, the kinematic model defined in
the previous section is used, along with the camera perspec-
tive transformations. More specifically, forward kinematic
equations are used to transform the rotation of the human
body and the angles of the arm joints to 3D coordinates for
each joint (shoulder, elbow and hand). Accordingly, camera
projection transformations are used to project the resulting
3D coordinates of the joints on the image frame. The
projected joint locations are evaluated by comparing them
with actual observations according to two different criteria:
(a) Projected hand locations should be close to observed skin-
colored blobs, and (b) projected elbows and shoulders should
be within foreground segments of the image.

Figures 4(a) and 4(b) demonstrate the operation of the
particle filter trackers that correspond to a specific value
of the orientation angle (“0” in both cases). On the right
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Fig. 4. Operation of the tracker; (a,b) Particle filter sets for a specific
orientation angle, (c) A HMM histogram corresponding to a specific frame.

parts of the two images are the samples projected on the
3D space (using forward kinematics, as described above).
The corresponding sample projections on the image plane are
depicted on the left. Figure 4(c) depicts a sample orientation
histogram as tracked by the HMM. The values of each
histogram cell correspond to the probability of this specific
orientation being the correct orientation.

V. GESTURE CLASSIFICATION

As observed in [21], gestures are dynamic processes that
typically consist of three phases: preparation, stroke and
retraction. The preparation and retraction phases consist of
arm movement from and towards the resting position, before
and after the gesture, respectively. These phases have been
found to be similar in content between many common ges-
tures and therefore contribute little to the gesture recognition
process. The stroke phase is the one that contains most of
the information that characterizes a gesture.

Based on the above observations our system has been
designed to recognize five different gesturing states:
• Idle. No gesture is performed,
• Preparation phase.
• Pointing gesture,
• Hello gesture. The user is waiving using his hand.
• Retraction phase.

The mentioned states correspond to two different strokes
(pointing and hello gestures), the accompanying phases

(preparation and retraction) and the idle phase. The tran-
sitions between the above-mentioned states are illustrated in
Figure 5.

Fig. 5. Gesture state transitions.

Classification is achieved by buffering the trajectory of
each arm (in its 4D configuration space) and feeding it to
a feed-forward MLP Neural Network which is trained to
recognize between the five system states. The output of the
MLP is passed though an RBF neural network which is
trained as a predictor for the next state of the system and fed
back to the MLP in order to improve temporal consistency
and robustness of the achieved results.

This classification structure is graphically illustrated in the
lower part of Figure 1. As implied in Figure 1, the same
structure is employed separately for gesture recognition in
each arm.

A. The MLP

The MLP neural network is mainly responsible for ges-
ture recognition and classification, according to the trained
patterns. It consists of the input layer, the output layer and
two hidden layers. The output layer consists of 4 neurons
encoding the five possible states of the system. The input
layer consists of 44 neurons; 40 neurons are used to provide
input about the trajectory of the arm (4 parameters per frame,
10 frames history) and the rest 4 neurons are used to provide
the prediction for the next state of the system, which is fed
back by the RBF neural network.

B. The RBF

The input layer of the RBF network consists of four
neurons which are connected to the output of the MLP. The
output of the RBF Network also consists of four neurons and
it is fed back to the MLP. Given the output of the MLP, the
RBF is trained to provide a prediction for the next state of
the system.

The intuition behind this is simple: one can think of a
gesture as a state transition process with acceptable and
unacceptable state transitions (Figure 5). However, due to
possible discontinuities in the MLP input data (caused by
erroneous tracking or lost frames in the video), the output
(of the MLP) can itself present discontinuities, translated



to unacceptable state transitions, as well. The RBF network
restricts unacceptable transitions and smooths out outliers at
the output of the MLP.

C. Network training

For training the proposed classifier, a dataset consisting of
12 sequences was used. This dataset contains six examples
of each of the two cosidered gestures. In each of these
sequences all three phases of a gesture appear, together with
cases where none of the phases is performed or when both
hands are acting simultaneously. The dataset was divided into
two subsets, of 6 sequences each. The first subset contained
3 sequences from each of two gestures and it was used to
train the MLP neural network while the second subset was
used to train the RBF network. Using the two subsets, the
training of the system was done in two steps.

Training of the MLP was performed by minimizing the
mean of the squared error using the Levenberg-Marquardt
algorithm. To train the RBF network, the sequences used for
training the MLP cannot be used because they are known to
the classifier. Thus, the second training set is used.

VI. RESULTS

During our experiments, 3 sequences for each gesture,
different from the ones used during the training step, have
been tested. The examined scenarios contained both gestures
performed by one arm only and by both hands simultane-
ously. Our main target was to study whether sequences of
arm kinematic configurations contain enough information to
describe a gesture, given the fact that no other information
about the location of the arm has been used.

The proposed approach performed very well in all test
cases. Four illustrative examples are depicted in Figure 6. In
Figures 6(a) and 6(b) the user performs a right hand gesture
that is correctly classified by the employed Neural Network
structure. Figures 6(c) and 6(d) present two additional exam-
ples where the user gestures with both hands simultaneously.

Table II presents quantitative results obtained with the em-
ployed datasets. The TP figures shown in table II correspond
to the percentage of correctly classified frames (True Positive
classifications). Similarly, FP and FN figures correspond to
percentages of false positive and false negative classified
frames.

As can easily be observed, the successful recognition ratio
does not drop below 86% while the false negative percentage
remains in low levels as well. Further experiments have
been conducted by eliminating the RBF neural network from
the classification structure. In these cases the percentage of
false positive decisions for the preparation and retraction
phase was higher than 15%. Evidently, the utilization of the
RBF network has greatly contributed to the robustness of
the classifier by filtering out temporal inconsistencies in the
output of the MLP.

VII. CONCLUSION

In this paper, we have presented a novel temporal gesture
recognition system intended for natural interaction with

Fig. 6. Recognition and classification of gestures performed by one or both
hands simultaneously. The left image depicts a 2D view from one camera
of the stereo pair, while the right image shows the 3D representation (of
the left image). The output of the classifier has been superimposed on the
images for the sake of clarity. (a)The right arm prepares to perform a gesture.
(b)The right hand performs a “pointing” gesture. (c)Both hands perform a
“hello” gesture. (d)Both hands retract from the stroke phase.

TABLE II
GESTURE CLASSIFIER QUANTITATIVE RESULTS. TP:TRUE POSITIVES,

FP: FALSE POSITIVES, FN: FALSE NEGATIVES.

Preparation Pointing
TP FP FN

88.46% 11.54% 6.47%
TP FP FN

86.48% 13.52% 2.08%

Hello Retraction
TP FP FN

96.91% 3.09% 1.41%
TP FP FN

86.04% 13.96% 6.21%



autonomous robots that guide visitors in museums and ex-
hibition centers. The proposed gesture recognition system
builds on our previous work on vision based tracking and
more specifically on a probabilistic tracker capable to track
both hands and the orientation of the human body on a nine-
parameter configuration space.

Dependable tracking, combined a novel, two-stage neural
network structure for classification, facilitates the definition
of a small and simple hand gesture vocabulary that is both
robustly interpretable and intuitive to humans. Experimental
results presented in this paper, confirm the effectiveness and
the efficiency of the proposed approach, meeting the run-time
requirements of the task at hand.

Nevertheless, and despite the vast amount of relevant
research efforts, the problem of efficient and robust vision-
based recognition of natural hand gestures in unprepared
environments still remains open and challenging, and is
expected to remain of central importance in human-robot
interaction in the forthcoming years. In this context we
intend to continue our research efforts towards enhancing the
current system. At first we plan to redesign the classification
structure in order to take into account the multiple hy-
potheses provided by the employed tracker. This is expected
to increase classification accuracy since errors in the early
processing stages (tracking) are not propagated to later stages
(classification). Additionally the training and test datasets
will be expanded to include richer gesture vocabularies and
larger intra-gesture variation. Finally, we intend to include a
more sophisticated algorithm to classify skin colored blobs
to hands and faces. This will allow our system to cope with
more complex cases where multiple users simultaneously
interact with the robot.
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