Gesture recognition based on arm tracking for human-robot interaction

Markos Sigalas, Haris Baltzakis and Panos Trahanias
Institute of Computer Science
Foundation for Research and Technology - Hellas (FORTH)
E-mail: {msigalas, xmpalt, trahania} @ ics.forth.gr

Abstract—In this paper we present a novel approach for
hand gesture recognition. The proposed system utilizes upper
body part tracking in a 9-dimensional configuration space and
two Multi-Layer Perceptron/Radial Basis Function (MLP/RBF)
neural network classifiers, one for each arm. Classification is
achieved by buffering the trajectory of each arm and feeding
it to the MLP Neural Network which is trained to recognize
between five gesturing states. The RBF neural network is
trained as a predictor for the future gesturing state of the
system. By feeding the output of the RBF back to the MLP
classifier, we achieve temporal consistency and robustness to
the classification results.

The proposed approach has been assessed using several video
sequences and the results obtained are presented in this paper.

I. INTRODUCTION

Gesture recognition is an important, yet difficult task.
It is important because it is a versatile and intuitive way
to develop new, more natural and more human-centered
forms of human-machine interaction. At the same time, it is
difficult because it involves the solution of many challenging
subtasks, such as robust identification of hands and other
body parts, motion modeling, tracking, pattern recognition
and classification.

Early psycholinguistic studies [1], [2], initially targeting
sign language gestures, revealed that gestures can be char-
acterized based on four different aspects: shape, motion,
position and orientation. Therefore, all gesture recognition
approaches try to approach the problem by concentrating
on one or more of the above four aspects. Posture-based
approaches, for example, utilize static images, concentrating
only on the shape of the hand to extract features such as hand
contours, fingertips and finger directions [3], [4], [5], [6].
Temporal approaches, on the other hand, not only make use
of spatial features but also exploit temporal information such
as the path followed by the hand, its speed, etc [7], [8], [9],
[10]. Additionally, there is strong neurobiological evidence
which indicates that ongoing actions are interpreted by the
human visual system into sequences of motor primitives
(primitives of the human body motor control) [11]. Based on
this idea, various gesture recognition approaches [12], [13],
mostly within the robotics community, model and classify
gestures according to the acquired motor primitives.

Depending on the application needs, various classifica-
tion tools have been used for the recognition of gestures.
Some approaches [14], [15] utilize Hidden Markov Models
(HMMs) for the recognition process, as they offer rich
mathematical structures and provide efficient spatio-temporal
modeling. Particle filters have been also used in some gesture

recognition works [16], [17], due to their ability of real-time
estimation of nonlilnear, non-Gaussian dynamic systems.
Furthermore, a set of approaches model gestures as ordered
sequences of states in a spatio-temporal configuration and
classify them with a finite-state machine (FSM) [18], while
others exploit the adaptation ability of Neural Networks
(NNs) for the recognition of gestures. Some of the the most
commonly used NNs are Multi-Layer Perceptron (MLP) [19],
Time-Delay NNs [20] and Radial Basis Function (RBF) NNs
[21].

In this paper we present a specific approach for vision-
based hand gesture recognition, intended to support natural
interaction with autonomously navigating robots that guide
visitors in public places such as museums and exhibition
centers. The operational requirements of such an application
challenge existing approaches in that the visual perception
system should operate efficiently under totally unconstrained
conditions regarding occlusions, variable illumination, mov-
ing cameras, and varying background. Recognizing that the
extraction of features related to hand shape may be a very
difficult task, we propose a gesture recognition system that
emphasizes on the temporal aspects of the task. More specifi-
cally, the proposed approach exploits the extracted arm motor
primitives conveyed in the trajectory followed by user’s arms,
while the user performs gestures in front of a robot.

The proposed gesture recognition system is built upon
the human body tracker that we have proposed in [22].
According to this tracking approach, a nine parameter model
is employed to track both arms (4 parameters for each arm)
as well as the orientation of the human torso (one additional
parameter). In order to reduce the complexity of the problem
and to achieve real-time performance, the model space is
split into three different partitions and tracking is performed
separately in each of them. More specifically, an HMM is
used to track the orientation of the human torso in the 1D
space of all possible orientations and two different sets of
particles are used to track the four Degrees of Freedom (DoF)
associated with each of the two hands, using a particle filter-
based approach.

In the current work we propose a new method to classify
the arm trajectories, that is the sequences of motor primitives
(joint angles), produced by the above mentioned tracker, into
gestures by means of a combined MLP/RBF Neural Network
structure. The MLP is trained as a standard classifier while
the RBF neural network is trained as a predictor for the future
state of the system. By feeding the output of the RBF back
to the MLP classifier, we achieve temporal consistency and
robustness in the classification results.



II. APPROACH OVERVIEW

A block diagram of the proposed gesture recognition
approach is illustrated in Figure 1.
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Figure 1. Block diagram of the proposed approach for hand tracking and
gesture recognition. Processing is organized into three layers.

The first step of the approach is to extract hand and face
regions as skin-colored foreground blobs. Then, assuming
a 4 DoF kinematic model for each arm and one additional
degree of freedom for the orientation ¢ of the user around
the vertical axis (see Figure 2), the pose of the user is
tracked in a 9 DoF model space. The resulting 9-parameter
tracking problem is tackled in realtime by fragmenting the
9-dimensional space into three sub-spaces; a 1D parameter
space for body orientation angle and two 4D spaces, one
for each hand. The body orientation angle ¢ is appropriately
quantized and tracked over time by means of an HMM.

Figure 2. The 9-parameter model used for the rotation of the body and the
pose of the user’s arms.

Table 1
DENAVIT-HARTENBERG PARAMETERS FOR THE 4-DOF MODEL OF THE
HUMAN ARM EMPLOYED IN OUR APPROACH.
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For every possible solution, a separate particle filter set is
employed for each arm. The result of each particle filter
is used to estimate the observation probability, which is
subsequently employed to update the HMM.

Classification is achieved by buffering the trajectory of
each arm (in its 4D configuration space) and feeding it
to a feed-forward MLP Neural Network which is trained
to recognize between five system states: idle (no gesture),
preparation (hand moving towards a gesture), pointing ges-
ture, hello (waiving) gesture, and retraction (hand retracting
from a gesture). The output of the MLP is passed though
an RBF which is trained as a predictor for the next state of
the system and fed back to the MLP in order to improve
temporal consistency and robustness of the achieved results.

More details regarding each of the above described mod-
ules are provided in the following sections. Specifically, due
to the fact that the tracker has been presented in a previous
work of ours [22], it will be briefly described in section
III. A thorough presentation of the classifier structure and
training follows in section IV, while section V contains
some illustrative experimental results of the proposed gesture
classification approach.

III. UPPER BODY TRACKING
A. Kinematic model

As already mentioned, for modeling the human body and
arms, a nine-DOF model, has been employed. This model,
which is similar to the one proposed in [23] is depicted in
Figure 2. According to this model, the human body, with the
exception of the arms, is assumed to be a rigid object with
only one degree of freedom corresponding to its orientation
¢. Both arms are assumed to be attached to this rigid body
at fixed locations (i.e. the shoulders) and they are modeled
by a 4-DoF kinematic model each. The kinematics of each
arm are defined as Denavit-Hartenberg parameters, shown in
table 1. 61, 05 and 03, are the angles corresponding to the
three DoFs of the shoulder and 6, corresponds to the angle
of the elbow. L; and Ly are the lengths of the upper arm
and the forearm, respectively, and are assumed fixed in our
implementation.

B. Detection of hand and face blobs

The first step of the proposed approach is to detect skin-
colored regions in the input images. For this purpose, a
technique similar to [24], [25] is employed. Initially, back-
ground subtraction [26] is used to extract the foreground



areas of the image. Then, the probability of belonging to
a skin-colored foreground area is computed for each pixel,
while a connected components labeling algorithm is used to
assign different labels to pixels that belong to different blobs.
Finally, a set of simple heuristics based on location and size
is used to characterize blobs as hand blobs and face blobs.

C. Model space partitioning and tracking

To track in the presented 9-DoF model space, the approach
presented in [22] has been assumed. According to this
approach, in order to reduce the complexity of the problem
and meet the increased computational requirements of the
task at hand, the model space is split into three different
partitions and tracking is performed separately in each of
them. More specifically, a Hidden Markov Model (HMM) is
used to track the orientation ¢ of the human body in the 1D
space and two different sets of particles are used to track the
four DoFs associated with each of the two arms.

The body orientation angle ¢ is appropriately quantized
and, for every possible solution, a separate particle filter
set is employed for each arm. The result of each particle
filter is used to estimate the observation probability, which
is subsequently employed to update the HMM. In other
words, the weights of the particles are used to calculate the
observation likelihood for a particular body orientation state.

To facilitate the implementation of the likelihood function
which is necessary in order to evaluate hypotheses in the
particle filter-based trackers, the kinematic model defined in
III-A is used, along with the camera perspective transfor-
mations. Forward kinematic equations are used to transform
the rotation of the human body and the angles of the arm
joints to 3D coordinates of the shoulder, the elbow and
the hand. Accordingly, camera projection transformations are
used to project the resulting 3D coordinates on the image
frame. The projected locations are evaluated according to
two different criteria: (a) Projected hand locations should be
close to observed skincolored blobs, and (b) projected elbows
and shoulders should be within foreground segments of the
image.

Figures 3(a) and 3(b) demonstrate the operation of the
tracker at hand. Left images illustrate the operation of the
particle filter trackers that correspond to a specific value
of the orientation angle while the images in the center
contain samples projected on the 3D space (using forward
kinematics, as described above). The corresponding sample
projections on the image plane are depicted on the left
images. Finally, sample orientation histograms, as tracked by
the HMM, are depicted in the images on the right. The values
of each histogram cell correspond to the probability of this
specific orientation being the correct orientation.

IV. GESTURE CLASSIFICATION

As observed in [27], gestures are dynamic processes that
typically consist of three phases: preparation, stroke and
retraction. The preparation and retraction phases consist of
arm movement from and towards the resting position, before
and after the gesture, respectively. These phases have been
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Figure 3. Operation of the tracker; The first image of each row depicts
the particle filter sets for a specific orienatation angle. The second image
shows multiple hypotheses generated from the tracker, while the third one,
illustrates a HMM histogram corresponding to a specific frame.

found to be similar in content between many common ges-
tures and therefore contribute little to the gesture recognition
process. The stroke phase is the one that contains most of
the information that characterizes a gesture.

Based on the above observations our system has been
designed to recognize five different gesturing states:

« Idle. No gesture is performed,

o Preparation phase.

« Pointing gesture,

o Hello gesture. The user is waiving using his/her arm.
o Retraction phase.

The mentioned states correspond to two different strokes
(pointing and hello gestures), the accompanying phases
(preparation and retraction) and the idle phase. The transi-
tions between the above-mentioned states are illustrated in
Figure 5. As illustrated, apart from the normal preparation-
stroke-retraction state transition, an arm may perform two
sequential gestures without the need to pass from the resting
position.

The motor primitives, provided by the above described
tracker, are used in order to model each of the gesture states
and, therefore, to train the gesture classifier. This implies
that each gesture state is modeled as a sequence of arm
joint angles. This representation facilitates the classification
proccess, since it is not affected by factors such as the shape
and size of the human and the arm, the body orientation, or
the speed and duration of the performed gesture.

As described above, the employed tracker provides mul-
tiple configuration hypotheses. However, in this work we
assume that the pose with the highest probability is the
one closest to the actual pose of the human in the scene.
Therefore, the sequence of joint angles of the most probable
arm will be fed as input to the classifier.

Classification is achieved by buffering the trajectory of
each arm (in its 4D configuration space) and feeding it to
a feed-forward MLP neural network which is trained to
recognize between the five system states. The output of
the MLP is passed through an RBF neural network which
is trained as a predictor for the next state of the system
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Figure 4. Gesture state transitions.

and fed back to the MLP in order to improve temporal
consistency and robustness of the achieved results. In other
words, the MLP is responsible for the initial classification of
the gesture, while the RBF assures for valid state transitions.
This classification structure is graphically illustrated in the
lower part of Figure 1. As implied in Figure 1, the same
structure is employed separately for gesture recognition in
each arm.

A. The MLP

The MLP neural network is mainly responsible for ges-
ture recognition and classification, according to the trained
patterns. It consists of the input layer, the output layer and
two hidden layers. Since gestures are dynamic procedures,
i.e. having temporal context, a sort of history is needed to
be provided to the classifier. In our experiments, a history of
10 frames proved to be adequate. Therefore, the input layer
consists of 44 neurons; 40 neurons are used to provide input
about the trajectory of the arm (4 parameters per frame, 10
frames history) and the rest 4 neurons are used to provide
the prediction for the next state of the system, which is fed
back by the RBF neural network. Finally, the output layer
consists of 4 neurons encoding the five possible states of the
system.

B. The RBF

The input layer of the RBF network consists of four
neurons which are connected to the output of the MLP. The
output of the RBF Network also consists of four neurons and
it is fed back to the MLP. Given the output of the MLP, the
RBF is trained to provide a prediction for the next state of
the system.

The intuition behind this is simple: one can think of a
gesture as a state transition process with acceptable and
unacceptable state transitions (Figure 4). However, due to
possible discontinuities in the MLP input data (caused by
erroneous tracking or lost frames in the video), the output
(of the MLP) can itself present discontinuities, translated
into unacceptable state transitions, as well. The RBF network
restricts unacceptable transitions and smooths out outliers at
the output of the MLP.

C. Network training

For training the proposed classifier, a dataset consisting of
12 sequences was used. This dataset contains six examples
of each of the two considered gestures. In each of these
sequences all three phases of a gesture appear, together with
cases where none of the phases is performed or when both
hands are acting simultaneously. The dataset was divided into
two subsets, of 6 sequences each. The first subset contained
sequences from each of two gestures and it was used to train
the MLP neural network while the second subset was used
to train the RBF network. Using the two subsets, the training
of the system has been done in two steps.

Training of the MLP was performed by minimizing the
mean of the squared error using the Levenberg-Marquardt
algorithm. To train the RBF network, the sequences used for
training the MLP cannot be used because they are known to
the classifier. Thus, the second training set is used.

V. EXPERIMENTAL RESULTS

We conducted a set of experiments, using 9 sequences
for each gesture, different from the ones used during the
training step. The examined scenarios contained both gestures
performed by one arm only and by both hands simultane-
ously. Our main target was to study whether sequences of
arm kinematic configurations contain enough information to
describe a gesture, given the fact that no other information
about the location of the arm has been used.

The training dataset is composed of a set of simple
sequences depicting a single human performing various ges-
tures, as illustrated in Figure 5. To evaluate the results of our
approach we used a different dataset containing sequences of
various humans in different scenes. The proposed approach
performed very well in all test cases, even with the presence
of large intra-gesture variations in duration, speed and/or arm
trajectory. This provides a strong evidence that despite the
differences on the way a gesture is performed, the sequence
of motor primitives remains the same amongst the same
gestures

Eight illustrative examples are depicted in Figure 6. The
presented experiments, have been conducted upon 4 different
sequences, containing various indoor scenes with different
persons performing gestures with one or both arms simul-
taneously. As observed, the proposed classification approach
was able to successfully cope with intra-person variabilities
in shape, size and orientation, as well as with the aforemen-
tioned intra-gesture variations. This conclusion also implies
that the classification is not affected by small tracking errors.
For example in Figures 6(g) and 6(h) the arm performing
the Pointing gesture is not completely extended, however
the recognition was successful. That is because its not the
accuracy in joint angle computations which is important but,
rather, the abstract pattern of the arm’s trajectory. For the
sake of clarity, the output of the classifier (bitcode) has been
superimposed on the images. This bitcode is a representation
of the output of the neural network classifier.

Table II presents quantitative results obtained with the em-
ployed datasets. The TP figures shown in table II correspond
to the percentage of correctly classified frames (True Positive



Table 11
GESTURE CLASSIFIER QUANTITATIVE RESULTS. TP: TRUE POSITIVES,
FP: FALSE POSITIVES, FN: FALSE NEGATIVES.

Gesture TP FP FN
Preparation | 88.46% 11.54% 6.47%
Pointing 86.48% 13.52% 2.08%
Hello 9691% 3.09% 1.41%
Retraction | 86.04% 13.96% 6.21%
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Figure 5. Sample images from the training dataset.

classifications). Similarly, FP and FN figures correspond to
percentages of false positive and false negative classified
frames.

As can easily be observed, the successful recognition ratio
does not drop below 86% while the false negative percentage
remains in low levels as well. Further experiments have been
conducted by eliminating the RBF neural network from the
classification structure. In these cases the percentage of false
positive decisions for the preparation and retraction phase
was higher than 15%. This is justified by the fact that these
phases are practically identical (with reverse trajectories) and
the lack of state transition control would lead to misclassi-
fications -this is not the case for the Hello gesture since its
trajectory is easily distinguished. Evidently, the utilization of
the RBF network has greatly contributed to the robustness of
the classifier by filtering out temporal inconsistencies in the
output of the MLP.

VI. CONCLUSIONS

In this paper we have presented a novel temporal gesture
recognition system intended for natural interaction with au-
tonomous robots that guide visitors in museums and exhibi-
tion centers. The proposed gesture recognition system builds
on our previous work on a probabilistic tracker capable to
track both hands and the orientation of the human body on
a nine-parameter configuration space.

Dependable tracking, combined with a novel, two-stage
neural network structure for classification, facilitates the
definition of a small and simple hand gesture vocabulary
that is both robustly interpretable and intuitive to humans.
Additionally, the use of motor primitives (joint angles), for
the modeling and classification of each gesture, provides

shape, size and orientation invariance as well as gesture speed
and duration independability. Experimental results presented
in this paper, confirm the effectiveness and the efficiency of
the proposed approach, meeting the run-time requirements of
the task at hand.

Nevertheless, and despite the vast amount of relevant
research efforts, the problem of efficient and robust vision-
based recognition of natural hand gestures in unprepared
environments still remains open and challenging, and is
expected to remain of central importance in human-robot
interaction in the forthcoming years. In this context we intend
to continue our research efforts towards enhancing the current
system. At first we plan to redesign the classification structure
in order to take into account the multiple hypotheses provided
by the employed tracker. This is expected to increase classi-
fication accuracy since errors in the early processing stages
(tracking) are not propagated to later stages (classification).
Additionally the training and test datasets will be expanded
to include richer gesture vocabularies and larger intra-gesture
variation. Finally, we intend to include a more sophisticated
algorithm to classify skin colored blobs to hands and faces.
This will allow our system to cope with more complex cases
where multiple users simultaneously interact with the robot.
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