SCOC: High-Radix Switches Made of Bufferless Clos Networks

Nikolaos Chrysos', Cyriel Minkenberg', Mark Rudquist*, Claude Basso*, and Brian Vanderpool*

tIBM Research — Zurich, Switzerland
*IBM Systems & Technology Group, Rochester, USA

Abstract—In today’s datacenters handling big data and for
exascale computers of tomorrow, there is a pressing need for high-
radix switches to economically and efficiently unify the computing
and storage resources that are dispersed across multiple racks.
In this paper, we present SCOC, a switch architecture suitable
for economical IC implementation that can efficiently replace
crossbars for high-radix switch nodes. SCOC is a multi-stage
bufferless network with O(%z) cost, where m is a design param-
eter, practically ranging between 4 — 16. We identify and resolve
more than five fairness violations that are pertinent to hierar-
chical scheduling. Effectively, from a performance perspective,
SCOC is indistinguishable from efficient flat crossbars. Computer
simulations show that it competes well or even outperforms flat
crossbars and hierarchical switches. We report data from our
ASIC implementation at 32 nm of a SCOC 136 x136 switch, with
shallow buffers, connecting 25 Gb/s links. In this first incarnation,
SCOC is used at the spines of a server-rack, fat-tree network.
Internally, it runs at 9.9 Tb/s, thus offering a speedup of 1.45x,
and provides a fall-through latency of just 61 ns.

1. INTRODUCTION

Omnipresent since the early years of data communication
and parallel computing systems, crossbars have become virtu-
ally indispensable in modern off-chip and on-chip networks.
They are non-blocking and deterministically fair, thus of-
fering essential performance guarantees to system designers.
However, crossbars designs have two blocks that are hard to
scale: A datapath core, with 2N, long, multi-bit links and NV 2
crosspoints; and a scheduler block, with order O(/N 2) point-
to-point wires, and several, random-logic, arbitration units.
Typically, EDA tools can handle up to a fixed number of gates
per hard block or tile [17]. Having passed a threshold, the
placement and routing effort grows exponentially, which can
delay the design.

At the same time, in exascale supercomputers, but also in
warehouse-scale datacenters, there is a pressing need for high-
radix switches. The latter are advantageous building blocks,
because they lower the cost and the power consumption (fewer
chips, backplane wires, and cables). Additionally, they lower
the packet delay, and, because they enable networks with
fewer stages, they can provide more predictable performance
in communication-intensive workloads [15].

Three years back, our team decided to scale a server-rack
interconnect with a second-tier of high-radix spine switches
[7]1. When we tried to place and route a 32-port crossbar,
our EDA tools did not face difficulties [27], but the 136-port
crossbar that we were targeting was much tougher to build.

Nikolaos Chrysos is currently with Foundation For Research and Technol-
ogy (FORTH); email: nchrysos@ics.forth.gr

We first considered to apply bit slicing and manual placement,
but, eventually, we resorted to a hierarchical design for the
136-port crossbar, which our tools could handle seamlessly.

In this paper, we present Scalable Clos On-Chip (SCOC), a
switch node architecture that can be used as an efficient cross-
bar replacement. SCOC is a combined-input-output-queued
(CIOQ) switch [8] with virtual output queues (VOQs), built
around a bufferless, non-blocking, Clos network [9], with
cost that grows as O(%z) Integer m is a design parameter,
practically in the range of 4 — 16.

Whereas buffered fabrics are preferred for off-chip networks
[5], in this paper we show through the example of SCOC
that the situation is reversed inside the chip. The lack of
internal buffers allows SCOC to use packet-level multipathing,
which delivers consistent performance irrespective of the spa-
tial orientation in the workload. The catch, of course, is
that a bufferless Clos needs global scheduling [4], which, in
practice, performs sub-optimally. SCOC takes advantage of
the abundance of wires that are available on-chip to remedy
its scheduling inefficiencies using cheap on-chip speedup.
The combination of the two, packet-level multipathing and
speedup, empowers SCOC with remarkable performance.

The scheduling subunit of SCOC is also hierarchically or-
ganized. Using a gradual contention-resolution scheme, SCOC
reduces the number of requests per arbiter, and also trims
down the inter-arbiter connections, thus lowering the wiring
congestion inside the scheduling tile. SCOC features a times-
liced pipeline that computes port-level pairings and route-
assignments simultaneously. This scheduling pipeline is deep
enough to amortize the time complexity over multiple clock
cycles.

Absorbingly, from a performance perspective, SCOC is
indistinguishable from efficient flat crossbars. Maintaining this
service level proved to be an uphill, but worthwhile struggle.
The gradual contention resolution and the asynchronous op-
eration of SCOC could seriously endanger the determinism
expected of correct operation. We drafted a set of microbench-
marks that helped us identify more than five violations of
fairness, and came up with practical solutions to resolve each
one of them.

We have implemented a 136-port SCOC switch, for 25
Gb/s ports, and m = 4. This number of ports was selected
in order to limit the periphery of the chip, which is dictated
by the I/O cores. The chip is a 32 nm ASIC designed using
standard EDA tools, operates at 454 MHz and consumes 150
Watt. Internally, the SCOC chip runs at approximately 9.9
Tb/s, thus over-provisioning the user bandwidth by a factor
s = 1.45, and provides a fall-through packet latency of just
61 ns. In retrospect, being able to synthesize the arbiters and

SCOC switch-chip topology for N ports and m = 4
r=N/m m r = N/m
>

; ' : Wa
=1

12

<] ==

= &z
\/]

v

| SIS

N! Switches \\\{

| \ ‘| Buffers at
] 1/

are (VAN {input & output
i bufferless |\l - ! ports

vy v°

=

Fig. 1 SCOC (unidirectional Clos) topology for m = 4.

crossbars in an automated way enabled us to flexibly delve into
the design process, add enhancements, and examine different
system-level alternatives. If a semi- or full-custom approach
had been used instead, any changes or additions would have
incurred a significantly higher design cost.

A. Contributions & contents

In this paper, we make the following key contributions:

1) We present SCOC, a bufferless Clos network, suitable
for integrated circuit implementation, that can readily
replace crossbars in high-radix switches and networks
on-chip.

2) We identify and resolve the unfairness violations that
are pertinent to SCOC hierarchical scheduling, thus also
providing a valuable set of tools for similar designs.

3) We evaluate the route-allocation scheme of SCOC,
showing that, for large packets, it automatically con-
verges to a maximal solution. Additional results show
that SCOC is especially powerful under non-uniform
traffic patterns, outperforming both hierarchical [15],
[30] and flat crossbars.

4) We present the implementation of a 136x136 switch
chip for 25 Gb/s links.

The remainder of this paper is organized as follows. In
Sec. 2, we present the topology of SCOC and its hierar-
chical scheduler. Our fairness enhancement mechanisms are
described in Sec. 3. In Sec. 4, we first study the route-allocation
scheme of SCOC and present how it iteratively converges
to maximal solutions. Then, we use computer simulations to
evaluate our proposal and to compare it with other alternatives.
Section 5 outlines the implementation of our switch chip.
Finally, we discuss our design choices and related work in
Sec. 6, and conclude in Sec 7.

2. SCOC ARCHITECTURE

In this section we present the SCOC architecture. First, we
outline the topology of SCOC and its packet buffers. Second,
we describe the scheduler and its operation.

A. Network topology and packet buffering

SCOC is an on-chip network, with IV input and N output
ports, as shown in Fig. 1. Its topology is an (unfolded) three-
stage Clos, with m middle-stage switches, and r input (or
output) switches (or groups). Packet memory buffers are im-
plemented at input and output ports. Besides these memories,
the network is bufferless. We also considered to place buffers
inside the middle-stage crossbars: We rejected this alternative
to avoid its many small buffers as well as the blocking and the
out-of-order packet delivery that these introduce.

In arbitrary Clos networks, the number of ports per group
(“n”) can differ from m, but we consider them to be equal.
Thus, our network is rearrangeably non-blocking. The number
of crosspoints is minimized when m = \/N . However,
taking into account high-level chip-partitioning and scheduling
considerations, practical configurations of SCOC will likely
use m <L r.

A route is the end-to-end path of a packet from an input
to an output port that passes through a middle-stage switch—
there are no shorter paths. When referring to a particular input
or output group, we use the term route to also denote the point-
to-point, unidirectional link that connects it to a middle-stage
switch. There are m possible routes for each packet, and m
routes available to each input and output group.

Any packet from an input buffer is eligible for service. The
packets that belong to the same connection are serviced in
FIFO order, but are routed independently. Nevertheless, they
always arrive at output buffers in order, because no queuing
takes place inside the interconnect.

In our implementation, N = 136, m = 4, r = 34 and
s = 1.45. For this design point, it was feasible to implement
the (4) middle-stage crossbars as a single, four-times-wider (4-
way) TDM crossbar, instead of four separate ones. Thus, we
chose this alternative because our EDA tools could afford it. In
this implementation, each input buffer can feed an input of the
wide crossbar at full speed. This enables the multiple-transfers-
per-input method, discussed in Sec. 3. For larger configurations
(m > 4), it may be difficult to fit all middle-stage crossbars
into a single tile and to have this large input-buffer speedup.
However, as discussed in Sec. 4, the performance of SCOC
with m > 4 does not depend heavily on this optimization.

B. The scheduler of SCOC

Scheduling in SCOC is realized by per-group and per-port
arbiters that run asynchronously from one another, supporting
variable-size transfers. There are three main scheduling func-
tions: request, grant and accept, which complete in one clock
cycle each, and operate in a pipeline fashion.

The scheduling block, depicted for m = 4 in Fig. 2, is
partitioned into r request, r grant and r accept units. Each
of these units corresponds to an input or output group, and
implements the homonymous scheduling function.

Input to the request function are N arrays, one for each
input port. The array elements store the destination IDs and
the memory addresses of packets eligible for service at the
corresponding input buffer. They are logically connected in a
double-linked list, with the head pointing at the oldest packet.

Input group 1 (request unit)
generate requests merge requests

for all packets per output local outputs

Output group 1 (grant unit)
route requests to select output
to grant

Input group 1 (accept unit)
broadcast grants to select input
local inputs to accept

1G, binary-encoded 0G,

packet-dest IDs
E 1-hot requests
per-outp &

per-inp-group o

5
°
c
=
@

ol

~
decode dest o

- 1

decode dest

S

output intra-group arbiter

aprnas apcf

busy.
o

packet-arrival information

decode dest

output arbiters

O

round-robin

1G, input arbiters

EE

decoded dest

:

input intra-group arbiter

-
1-hot accepts
per-inp-group &
per-outp-group

1-hot grants decoded dest
per-outp-group & busy
per-inp-group . ® I I I |

decoded dest

3

e} decoded dest

oldest packet first

read selected packet from

I Input group r

input buffer memory

Output group r

Fig. 2 SCOC scheduling functions for m = 4. In SCOC, the output intra-group arbiters implement the oldest-link-first
(OLF) policy, and the input intra-group arbiters the random-selection policy. The output arbiters are round-robin (shown
are the next-to-server pointers), and the input arbiters, oldest-cell-first (OCF).

A scheduling cycle begins with a request phase. (In parallel,
the grant and the accept units are also working, but on
requests issued in the preceding and the penultimate clock
cycle, respectively.) Every input decodes the destination ID
of all packets in its array, and propagates the resulting bits
to their corresponding request merger. The per-destination
request mergers OR the requests coming from the local inputs.
Effectively, every input group presents one single-bit request
for every destination; in total, there are rx N request wires in
the scheduler.

The requests issued are available to their grant units in
the next clock cycle; therein, they are propagated to their
corresponding output arbiter. Every output arbiter may be
requested by up to r input groups; it selects one among them
using a next-to-serve, round-robin (RR) pointer. However, a
grant unit (corresponding to an output group) can issue at most
one grant per clock cycle. An output intra-group arbiter selects
one local (output) grant, and issues it to the corresponding
input group. We use an oldest-link-first (OLF) policy for this
task. OLF is implemented as LRG in [31], choosing the least
recently selected link. There are rx/N grant wires in the
system.

In the next clock cycle, up to /N output grants may arrive
at an accept unit (input group). These grants do not specify a
particular local input port and are thus broadcast to all. Each
input arbiter uses the oldest-cell-first (OCF) policy to accept
one grant. One or more inputs may concurrently accept grants
that come from one or more outputs. An input intra-group
arbiter selects one of among these inputs using the random
policy [3]. The accept unit then removes the corresponding
packet entry from its request array and issues a packet read
command to its memory buffer. The first word of the matched
packet will be transferred after two clock cycles.

Finally, the accept unit asserts an accept signal that termi-
nates to the selected grant unit. As in iSLIP, the accept signal
moves the next-to-serve pointer of the granting output arbiter
to one position following the accepting input group. In SCOC,
the accept also updates the state of the intra-group arbiter. The
grant unit remembers which local output issued the grant in

the preceding clock cycle; hence, there is no need for accept
signals to specify an output port—they only have to specify
an input-output group pair. In this way, we need rxr accept
wires, instead of rx V.

Weightage: Each output arbiter receives one “merged”
request from every input group. In this way, input groups
with many active ports are treated as a single port—see
microbenchmark 5 in Sec. 3. To resolve this, we introduce
a weightage method, which adds log,(m) control wires per
input-output group pair. In clock cycle ce, the input groups
use these wires to communicate the number of local inputs
(minus one if greater than zero) requesting output cc mod m.
Each output holds per-input-group weightage registers, which
are updated every m clock cycles. After issuing a grant to a
new input group, the output arbiter latches the corresponding
weightage value to a repeat variable. While greater than zero,
the ‘repeat’ variable is decremented by one with every grant
issued by the output to the same input group. If the ‘repeat’
variable is zero when the output receives an accept from
input group ¢, then we set the next-to-server RR pointer as
((i + 1) mod r); if the ‘repeat’ variable is greater than zero,
we move the next-to-serve pointer to the granted input group.
We decrement the ‘repeat’ variable on the grant phase rather
than wait for an accept: If an input group does not accept, then
it is likely that it also has traffic for other destinations; hence,
we legitimately decrement its “quota”. Also, if one or more of
the “first” grants are accepted by input group i, then we set
the next-to-serve pointer as (¢ + 1) mod r once the ‘repeat’
variable becomes zero, without waiting for a last accept.

C. Asynchronous operation

For asynchronous operation, the arbiter of a port or internal
link must be quiescent in clock cycles when its resource is
busy. For instance, a busy input should not issue requests if a
packet generated by a new scheduling cycle will clash with its
current transfer or with one that has been scheduled but not yet
commenced. We delegate this job to toggle switches (depicted
as “traffic lights” in Fig. 2), which filter out scheduling
messages during such busy periods.

scheduling window e

output [PERTINSESS pck2 <o pek3 oo
re re re
"many-sided" a q !
requestor
"engaged" grant acceptedk grant acc. - grant acc.
requestor pck2 pe
(a) baseline time
pckl <--» pck2 w-cee-o-- > pck3
req
I)u {[lgrant accepted
fake fake . é. pck3
grant accepted scheduling
pck2 window
time

(b) fake requests

Fig. 3 In (a), the “many-sided” requestor is busy and
thus cannot issue requests while the output schedules;
effectively, the “engaged” requestor gets all grants. In (b),
by using fake requests, requestors can override their busy
status. The figure assumes that the first grant goes to the
“engaged” requestor. However, the second, third and fourth
grants are on spot. Although these grants are rejected by
the “many-sided” requestor, the output policy is to issue
them until one is accepted.

An input port becomes busy when it is matched in the accept
phase, an output port when it issues a grant (selected by the
intra-group arbiter) in the grant phase. Note that this grant may
not be accepted in the next clock cycle, but it would be unsafe
to have two outstanding grants. If a first grant is not accepted,
an output can issue a second one after two clock cycles. The
matched ports may safely revert to “idle” state four cycles (=
scheduling + memory read delay) before the last word of the
transferred packet enters the interconnect.

Fake requests: The asynchronous scheduling may com-
promise the fairness of SCOC. In particular, a “many-sided”
requestor, be it an input port or an input group that hosts
multiple connections, has a disadvantage against requestors
with only one connection: When the output port arbitrates,
the “many-sided” requestor may be busy, hence it may be
bypassed by the next-to-serve output pointer. We overcome
this implication by allowing busy units to issue fake requests.
An example is shown in Fig. 3. Although they may be granted,
fake requests cannot be accepted. Also, the output ports cannot
distinguish fake from non-fake requests. As with all grants,
the grants to busy requestors persist until one is accepted,
effectively until the requestor is idle. Note that fake requests
may result in wasted output grants. To reduce their number,
we allow up to one fake request per input.

D. Timesliced route allocation

Our scheduling obviates the need of separate, per-route,
request/grant/accept wires and of per-route arbiters. Instead,
it uses a single set of point-to-point wires and arbiters; these
are allocated to the per-route operations in a time-division

multiplexing (TDM) manner’.

I'This route allocation is used for any implementation of the middle-stage
switches, be it m separate crossbars or a single m-way TDM one.

| Supercycle : m=4 timeslices|(clock cycles)

IO WS 721 30| 45101 k51 | 52 | s 3
Crea igrant iaccept mpmm_ 5

L req gt !

—_— ,_,__/ I'X : ' H . . ' '
| pekl! jpck 3:) req égrant ‘accept memrd§ pck 3 route 1
' ! 'pck 2:! req !grant accept:memrd| pck 2 route 0

Fig. 4 Timesliced route allocation for m = 4 and four
(4) independent middle-stage crossbars. Regarding packet
1, the output does not issue a grant in ts = 2 because
it issued one in the previous cycle—it could have issued
one in the next clock cycle, but there was no request to
grant; additionally, packet 1 does not issue a new request
in ts = 2, because it now accepts a grant.

Time is conceptually organized in supercycles, i.e., groups
of m consecutive clock cycles. Every supercycle consists of
m timeslices, equal to the number of middle-stage switches.
If we enumerate clock cycles with variable cc, then cc mod
m yields the index (or color) of the corresponding timeslice.
As shown in Fig. 4, a supercycle begins at every clock cycle
such that (cc mod m) = 0, and terminates together with clock
cycle (cc +m — 1). In the following, the current timeslice is
denoted by ts. Also, we may add an integer n € [0, m — 1] to
ts, yielding timeslice (ts + n) mod m.

In SCOC, the route of a packet matches the “color” of
the request clock cycle in the corresponding scheduling cycle.
Effectively, a grant issued by output group O in timeslice ¢s
attempts a transfer through the middle-stage switch (route)
with index ts +m — 1.

The input and output groups maintain an m-bit vector, AR,
to keep note of their available routes. Output group O issues
no grant when ARp[ts + m — 1] = “busy”. Similarly, with
selective requests, input group I does not issue requests when
ARj[ts] = “busy”. This routing mode can yield grossly unfair
schedules. To remedy this, we allow input groups to issue
“fake” requests on busy timeslices. To reduce the number of
wasted grants, i.e., grants issued to busy input groups, inputs
may issue fake requests only for their oldest packets, i.e., up
to one request each.

Note that routes are allocated on a per-packet basis. The
route of every packet depends on the stochastic distribution
of transfer finish times and on the contention at ports—a
packet that is not scheduled in one cycle may end up on
a different route. Although the packet route selection is not
strictly random, it is approximated as such by algorithm F
in Sec. 4.C. When speedup is employed, the transfer finish
times are wildly scattered in time. Effectively, combined with
a small speedup, our routing strategy behaves close to random
per-packet load-balancing, overcoming the limitations of static
routing schemes [6]. We were not able to find any “bad” traffic
permutation for SCOC, and we tested many hundreds, includ-
ing some well-known ones, like bit-reverse, bit-complement,
shuffle and transpose.

An example is shown in Fig. 4. Packets 1 and 3 belong to
the same connection whereas packet 2 to a different one. As
can be seen, the input issues two requests for packet 1, but the
output only one grant. The input accepts the grant for packet 1

w

Flat Hiera Crrd Scoc -X1 Flat Hiera Crrd Scoc -X2

Flat Hiera Crrd Scoc -X3

o
©
=]
Ny
NN
GG

0
Flat Hiera Crrd Scoc -X4 Flat Hiera Crrd Scoc -X5

(b) scenario 2

(a) scenario 1

(c) scenario 3

(d) scenario 4 (e) scenario 5

Fig. 5 Fairness microbenchmarks (I). (Top) Per-connection normalized throughputs. (Bottom) Traffic scenarios; in all but
scenario 1, connections arrive at full line rate. In these experiments, Flat uses the same speedup as SCOC, i.e., 1.45x.

in ts 2. Packet 1 is transferred through the middle-stage switch
0, which matches the timeslice of the corresponding request.
Packet 3 is transferred immediately after packet 1; however it
uses a different route—1 vs. 0.

3. SCOC 1S AS FAIR AS A FLAT CROSSBAR IS

SCOC is designed to replace flat crossbars in high-
performance switch chips. To qualify for the task, SCOC
has to maintain the same fairness levels as flat crossbars.
We used a series of microbenchmarks to test and improve
its fairness. Below, we use them as guides to expose the
potential fairness issues and to present how we resolved the
latter in our architecture. These microbenchmarks have been
reproduced in hardware, validating the fairness properties of
our implementation. The results presented below are generated
by a C++ model that accurately simulates the implementation
of SCOC.

A. Microbenchmarks

In this section, besides the performance of SCOC, we also
evaluate (i) Flat (synchronous) crossbars with a speedup of
1.45x, running one iteration of iSLIP [18], (ii) hierarchical
crossbars (Hiera) [15], [30] and (iii)) CRRD [23], a scheduled
Clos network, also discussed in Sec.6. In all systems, the
buffers per input are shared among the local VOQs [32] and
can store up to 16 packets. For CRRD, because the inputs in
the same group share their VOQs, we assume that they also
share their buffers.

Microbenchmark 1: In our first scenario, shown in Fig. 5(a),
two connections, originating from input Oy (i.e., port 0 in group
0), target two outputs, 29 and 3y. Output 3 is also requested
by input 1o. The throughputs are shown at the top of the
chart. Both Flat and Hiera yielded the expected (fair) rates,

i.e., approximately 0.5 to each connection. CRRD was unfair
in this scenario, assigning a higher rate to input 1. SCOC
performs identical to Flat. However, to achieve this, we first
had to tweak the scheduler. Because scheduling in SCOC is
asynchronous, the input (0g) of two connections may often
be busy while one of its output targets (3p) is scheduling.
Effectively, input 1 is likely to have an advantage—label X1
in Fig. 5(a).

We came up with two ways to overcome this limitation, both
of which yield the expected result: (i) issuing fake requests
from busy inputs; and (ii) allow multiple concurrent transfers
per input. In our implementation, each input buffer can afford
reading up to four packets in parallel, in a TDM fashion,
i.e., alternating between (words from different) packets in
contiguous timeslices. We preferred the second alternative,
because, as described in Sec. 4.E, it also improves the small-
packet throughput (a similar observation is also made in [21]).

Microbenchmark 2: In our second scenario, Fig. 5(b), we
set up three connections coming from different ports in the
same input group. One of them targets output 2y and the other
two target output 0;. Again, Flat and Hiera yield fair rates. In
contrast, CRRD severely penalizes the connection from input
0. SCOC performs as well as Flat does. Label “X2” shows the
performance of SCOC using RR instead of random selection
at input intra-group arbiters: Because input 1 is served at full
rate, when a grant arrives from output 1y, the next-to-serve RR
pointer usually points to input 2; effectively, in our simulations,
input 2 gets nearly all grants from output 1y, leaving input 0
to starve. SCOC resolves this problem using a random arbiter
for input port selection. OLF also works fine in this scenario,
but it fails in the next one.

Microbenchmark 3: Consider the scenario in Fig. 5(c). Three
inputs in the same group target output 23. One of them also
targets output 1o. As can be seen, SCOC, using random input

port selection, yields the fair throughputs with an accuracy
better than 3%. In contrast, OLF (“X3”) treats the two con-
nections that come from input 0 badly. This penalty is not that
heavy (18% accuracy), but when we simulated larger input
buffers (1K packets vs. 16), OLF nearly starved connection
00—2¢: Because input 0 also accepts grants from output 1o,
it has the lowest (OLF) priority when a grant arrives from
2¢. With 16-packet buffers, the input immediately drains off
buffers once 01 —2¢ starves; effectively, connection 01— 1 is
also not served, which breaks this destructive loop. In our
simulations, with “X3”, the two connections from input 0
stabilized at equal, but still suboptimal rates. Hiera and CRRD
also failed in this scenario.

Microbenchmark 4: In our next scenario, Fig. 5(d), three
connections from two different input groups target two outputs
in group 2. Label “X4” assumes an alternative grant policy
for SCOC: First, an output group uses a RR arbiter to select
which input group should receive the next grant; second, it
picks a local output that can grant the selected input group.
At first sight, this policy seems legitimate. However, it can be
grossly unfair in the current scenario. Similarly to scenario 2,
the problem is that the next-to-serve pointer of the RR arbiter
may “bend towards” a particular input group. Here, it usually
points to input group 1, because input group 0 is served at full
line rate by output 2.

SCOC uses a reverse order to allocate grants: First, the RR
arbiter at each output port selects one of the requesting input
groups; second, the output inter-group arbiter selects one of the
outputs using OLF. We also considered RR instead of OLF,
but for the conveniently small numbers of ports per group in
SCOC (m < 16), OLF can be implemented at no significant
cost and is more precise than RR. SCOC also performs well
with random output port selection—see mode 2 in Sec. 4.D.
Nevertheless, we prefer OLF because it is more deterministic.

In microbenchmark 3, we saw that OLF at input groups
may starve connections when it selects which input port will
get the next grant. At input groups, the OLF intra-group arbiter
effectively distributes the output grants to competing inputs. In
contrast, there is no such scarce resource at output groups: All
output ports can issue grants at full speed.

Microbenchmark 5 touches the “Achilles’ heel” of most
hierarchical schedulers. As shown in Fig. 5(e), two input
groups, 0 and 1, target two outputs of group 2. Group 0
has three inputs targeting output 0 and one targeting output
1; group 1 has one input targeting output 0 and two for
output 1. As can be seen, Flat and SCOC distribute the rates
properly, according to the output fair shares. However, both
Hiera and CRRD fail to do so. The same holds also for “X5”,
i.e., SCOC before applying the weightage method. Hiera and
CRRD naively merge the requests coming from flows of the
same input group, thus compromising fairness. Actually, with
CRRD, three flows are starving in Fig. 5(e). We observed
that, using more buffers, CRRD can reach the (suboptimal)
performance of Hiera and of “XS5”.

Microbenchmark 6 demonstrates why we avoid selective
requests. As shown in Fig. 6(a), two connections target des-
tination 2p. One comes from an almost empty input group
(0), whereas the other has three neighbors, targeting different

1) .2 | 1 go-lo —
- — - -
091 950 509 0? 1§
0.8 0p-4, m— '530'8
0.7 03'50 8 0.7 | 02 11
06| lo20 mem= £06 1
05 2051
0.4 % 0.4
03 EO03 |
o1 201] | |
.0 L .0 .
Flat Hiera Crrd Scoc -X6 Flat -1.0xHiera Crrd Scoc

)
©)
@
@Aém @

(a) scenario 6

(b) scenario 7

Fig. 6 Fairness microbenchmarks (II).

outputs. With selective requests (“X6”), the connection coming
from the “busy” group cannot get its fair share at the output:
When output 2y selects a new packet, input group 0 can
be busy transferring, thus missing the chance for a grant. In
SCOC, the input group issues “fake” requests when it is busy,
thus the output will grant it at its round-robin (RR) turn. This
grant will be rejected, but the output will not update its next-
to-serve pointer until the busy input group becomes available
and accepts. Using this mechanism, SCOC achieves fair rates.
Microbenchmark 7 adapts a traffic scenario from [18] by
locating all active inputs (and outputs) in the same group. The
scenario, shown in Fig. 6(b), stresses iSLIP: Without speedup,
Flat allocates a suboptimal rate of around 0.33 to all connec-
tions (label “1.0x”’). SCOC achieves the same performance as
Flat with speedup. Both Hiera and CRRD deviate from that,
with the latter actually starving three connections.

In this section, we presented a subset of the many fairness
microbenchmarks we have considered. With proper policies
in place, SCOC succeeded in all of them. In contrast, as we
demonstrated, Hiera and CRRD failed in several of them.

4. SCOC IS EFFICIENT

SCOC features a rearrangeably non-blocking topology,
which it fully exploits using per-packet multipathing. Hence,
it has all that it needs to be efficient. However, many packets
may compete for a limited number of internal links. The
optimal solution for the corresponding route-allocation task
involves edge coloring in bipartite multi-graphs [12] [4]. Being
distributed to per-port and per-group arbiters, the scheduler of
SCOC is non-optimal. In this section, we evaluate how well it
performs.

input groups output groups
t

0 ;—’t =
requests -
wests - 4@

input ports _ ¢
-

-
1 €2 L.

_-
-
 “output ports

L il
2 .,/

Fig. 7 Example of route assignments for m = 4. For
the sake of clarity, only three input and output groups
are shown (outer circles with colored quadrants). Each
quadrant corresponds to a route (middle-stage switch).
Filled circles indicate busy ports, sending or receiving
a packet in parallel to the ongoing arbitration—their
orientation within their group is determined solely by the
route they are using.

A. Route allocation: the performance

For a packet to be transferred in SCOC, the corresponding
input and output groups must agree on a route available to
both. Let (G) denote the set of available routes at input or
output group G.

With fake requests, i.e., the default operation in SCOC, input
groups do not expose their route availability to output groups.
On their part, output groups reserve one available route for
every grant they issue, and communicate their selection to the
granted input. An input group may receive multiple grants,
spanning from 1 to m different routes. It can accept up to m
of them, one per route in R(¢) and per local port, but rejects
grants on routes that are busy.

Some examples of route assignments for m = 4 are shown
in Fig. 7. Input and output groups are depicted with colored
circles and routes with quadrants. Filled circles indicate busy
ports, occupying their surrounding route (quadrant); their ori-
entation is determined solely by the route they are using.

Input group 0 requests some port(s) in output group 0, which
grants one, proposing the “topmost” route (quadrant). This
grant is accepted as the topmost route is also available at input
group 0. Input group 1 requests output groups 0 and 1, both
of which propose the “leftmost” route. The input group can
accept only one of these grants. Finally, output group 1 offers
the “bottommost” route to input group 2. Because this route
is busy for input group 2, this grant is rejected.

Every non-accepted grant introduces a ‘“bubble” in the
scheduling pipeline. SCOC deals with the ensuing throughput
penalty by

1) using a small internal speedup, s,

2) iterating the scheduling handshake, and

3) adhering to good schedules.

As we discuss below, mechanisms (2) and (3) are imple-
mented implicitly by the workings of the scheduler, and incur
zero hardware cost.

B. Scheduling iterations

We name scheduling cycle the sequence of request, grant,
accept and memory read operations that are associated with

[
packet A (busy) < Idle

5 5
® Effective iterations
-~ Power

packet B (busy)

a
x
]
£

scheduling iterations 1 | 2 | 3 inset synchronous

B Lk Ea Rt BEE B B time slot 1 ,,_time slot 2 L AT N
reg| gr | ac @ @ @faited @ 5
rec| gr [ac 7 ¢ 3t ES
&l req| gr |ac @ @ O><® &

asynchronous

0o okEg

requesfws. .for s
clock cycles

Effective iterations
N

packet B
D—@ @ 2 1%
@ G Q@ @ 1 56 7 89
@—B®0 @ Scheduling iterations, k
(a) (b)

Fig. 8 (a) Packet B could have been scheduled in the first
scheduling iteration, but instead it succeeds in the third
one, i.e., two clock cycles later. For comparison (as shown
by the inset), with synchronous crossbars, an analogously
suboptimal schedule costs one or more time-slots (packet
times) of idle time. (b) Effective iterations for various
packet transfer times, t.

the input and output ports of a particular packet and which are
executed in contiguous clock cycles. A successful scheduling
cycle sets up the transfer of a packet from its input buffer to the
target output. Iterative crossbar schedulers repeat the request-
grant-accept handshake to augment the crossbar configuration
of a single time-slot with additional port pairs [3] [18]. An
analogous effect takes place in SCOC, but instead of packing
more operations into a specified time budget (i.e., a time-slot),
SCOC spreads them in time.

As shown in Fig. 8(a), packets in input buffers may push
requests into the scheduling pipeline of SCOC in every clock
cycle until they are transferred. Because the independent port-
level arbiters may produce suboptimal configurations, a packet
B may not be transferred after a first scheduling cycle although
the corresponding ports stay idle. In this case, B may be
scheduled i