
1

SCOC: High-Radix Switches Made of Bufferless Clos Networks
Nikolaos Chrysos†, Cyriel Minkenberg†, Mark Rudquist∗, Claude Basso∗, and Brian Vanderpool∗

†IBM Research – Zurich, Switzerland
∗IBM Systems & Technology Group, Rochester, USA

Abstract—In today’s datacenters handling big data and for
exascale computers of tomorrow, there is a pressing need for high-
radix switches to economically and efficiently unify the computing
and storage resources that are dispersed across multiple racks.
In this paper, we present SCOC, a switch architecture suitable
for economical IC implementation that can efficiently replace
crossbars for high-radix switch nodes. SCOC is a multi-stage
bufferless network with O(N

2

m
) cost, where m is a design param-

eter, practically ranging between 4− 16. We identify and resolve
more than five fairness violations that are pertinent to hierar-
chical scheduling. Effectively, from a performance perspective,
SCOC is indistinguishable from efficient flat crossbars. Computer
simulations show that it competes well or even outperforms flat
crossbars and hierarchical switches. We report data from our
ASIC implementation at 32 nm of a SCOC 136×136 switch, with
shallow buffers, connecting 25 Gb/s links. In this first incarnation,
SCOC is used at the spines of a server-rack, fat-tree network.
Internally, it runs at 9.9 Tb/s, thus offering a speedup of 1.45×,
and provides a fall-through latency of just 61 ns.

1. INTRODUCTION

Omnipresent since the early years of data communication
and parallel computing systems, crossbars have become virtu-
ally indispensable in modern off-chip and on-chip networks.
They are non-blocking and deterministically fair, thus of-
fering essential performance guarantees to system designers.
However, crossbars designs have two blocks that are hard to
scale: A datapath core, with 2N , long, multi-bit links and N2

crosspoints; and a scheduler block, with order O(N2) point-
to-point wires, and several, random-logic, arbitration units.
Typically, EDA tools can handle up to a fixed number of gates
per hard block or tile [17]. Having passed a threshold, the
placement and routing effort grows exponentially, which can
delay the design.

At the same time, in exascale supercomputers, but also in
warehouse-scale datacenters, there is a pressing need for high-
radix switches. The latter are advantageous building blocks,
because they lower the cost and the power consumption (fewer
chips, backplane wires, and cables). Additionally, they lower
the packet delay, and, because they enable networks with
fewer stages, they can provide more predictable performance
in communication-intensive workloads [15].

Three years back, our team decided to scale a server-rack
interconnect with a second-tier of high-radix spine switches
[7]. When we tried to place and route a 32-port crossbar,
our EDA tools did not face difficulties [27], but the 136-port
crossbar that we were targeting was much tougher to build.

Nikolaos Chrysos is currently with Foundation For Research and Technol-
ogy (FORTH); email: nchrysos@ics.forth.gr

We first considered to apply bit slicing and manual placement,
but, eventually, we resorted to a hierarchical design for the
136-port crossbar, which our tools could handle seamlessly.

In this paper, we present Scalable Clos On-Chip (SCOC), a
switch node architecture that can be used as an efficient cross-
bar replacement. SCOC is a combined-input-output-queued
(CIOQ) switch [8] with virtual output queues (VOQs), built
around a bufferless, non-blocking, Clos network [9], with
cost that grows as O(N

2

m). Integer m is a design parameter,
practically in the range of 4− 16.

Whereas buffered fabrics are preferred for off-chip networks
[5], in this paper we show through the example of SCOC
that the situation is reversed inside the chip. The lack of
internal buffers allows SCOC to use packet-level multipathing,
which delivers consistent performance irrespective of the spa-
tial orientation in the workload. The catch, of course, is
that a bufferless Clos needs global scheduling [4], which, in
practice, performs sub-optimally. SCOC takes advantage of
the abundance of wires that are available on-chip to remedy
its scheduling inefficiencies using cheap on-chip speedup.
The combination of the two, packet-level multipathing and
speedup, empowers SCOC with remarkable performance.

The scheduling subunit of SCOC is also hierarchically or-
ganized. Using a gradual contention-resolution scheme, SCOC
reduces the number of requests per arbiter, and also trims
down the inter-arbiter connections, thus lowering the wiring
congestion inside the scheduling tile. SCOC features a times-
liced pipeline that computes port-level pairings and route-
assignments simultaneously. This scheduling pipeline is deep
enough to amortize the time complexity over multiple clock
cycles.

Absorbingly, from a performance perspective, SCOC is
indistinguishable from efficient flat crossbars. Maintaining this
service level proved to be an uphill, but worthwhile struggle.
The gradual contention resolution and the asynchronous op-
eration of SCOC could seriously endanger the determinism
expected of correct operation. We drafted a set of microbench-
marks that helped us identify more than five violations of
fairness, and came up with practical solutions to resolve each
one of them.

We have implemented a 136-port SCOC switch, for 25
Gb/s ports, and m = 4. This number of ports was selected
in order to limit the periphery of the chip, which is dictated
by the I/O cores. The chip is a 32 nm ASIC designed using
standard EDA tools, operates at 454 MHz and consumes 150
Watt. Internally, the SCOC chip runs at approximately 9.9
Tb/s, thus over-provisioning the user bandwidth by a factor
s = 1.45, and provides a fall-through packet latency of just
61 ns. In retrospect, being able to synthesize the arbiters and

2

N

SCOC switch-chip topology for N ports and m = 4

m

r x r
mxm mxm

r = N/m r = N/m

Buffers at
input & output

 ports

Switches
are

bufferless

Fig. 1 SCOC (unidirectional Clos) topology for m = 4.

crossbars in an automated way enabled us to flexibly delve into
the design process, add enhancements, and examine different
system-level alternatives. If a semi- or full-custom approach
had been used instead, any changes or additions would have
incurred a significantly higher design cost.

A. Contributions & contents

In this paper, we make the following key contributions:

1) We present SCOC, a bufferless Clos network, suitable
for integrated circuit implementation, that can readily
replace crossbars in high-radix switches and networks
on-chip.

2) We identify and resolve the unfairness violations that
are pertinent to SCOC hierarchical scheduling, thus also
providing a valuable set of tools for similar designs.

3) We evaluate the route-allocation scheme of SCOC,
showing that, for large packets, it automatically con-
verges to a maximal solution. Additional results show
that SCOC is especially powerful under non-uniform
traffic patterns, outperforming both hierarchical [15],
[30] and flat crossbars.

4) We present the implementation of a 136×136 switch
chip for 25 Gb/s links.

The remainder of this paper is organized as follows. In
Sec. 2, we present the topology of SCOC and its hierar-
chical scheduler. Our fairness enhancement mechanisms are
described in Sec. 3. In Sec. 4, we first study the route-allocation
scheme of SCOC and present how it iteratively converges
to maximal solutions. Then, we use computer simulations to
evaluate our proposal and to compare it with other alternatives.
Section 5 outlines the implementation of our switch chip.
Finally, we discuss our design choices and related work in
Sec. 6, and conclude in Sec 7.

2. SCOC ARCHITECTURE

In this section we present the SCOC architecture. First, we
outline the topology of SCOC and its packet buffers. Second,
we describe the scheduler and its operation.

A. Network topology and packet buffering
SCOC is an on-chip network, with N input and N output

ports, as shown in Fig. 1. Its topology is an (unfolded) three-
stage Clos, with m middle-stage switches, and r input (or
output) switches (or groups). Packet memory buffers are im-
plemented at input and output ports. Besides these memories,
the network is bufferless. We also considered to place buffers
inside the middle-stage crossbars: We rejected this alternative
to avoid its many small buffers as well as the blocking and the
out-of-order packet delivery that these introduce.

In arbitrary Clos networks, the number of ports per group
(“n”) can differ from m, but we consider them to be equal.
Thus, our network is rearrangeably non-blocking. The number
of crosspoints is minimized when m =

√
N . However,

taking into account high-level chip-partitioning and scheduling
considerations, practical configurations of SCOC will likely
use m� r.

A route is the end-to-end path of a packet from an input
to an output port that passes through a middle-stage switch—
there are no shorter paths. When referring to a particular input
or output group, we use the term route to also denote the point-
to-point, unidirectional link that connects it to a middle-stage
switch. There are m possible routes for each packet, and m
routes available to each input and output group.

Any packet from an input buffer is eligible for service. The
packets that belong to the same connection are serviced in
FIFO order, but are routed independently. Nevertheless, they
always arrive at output buffers in order, because no queuing
takes place inside the interconnect.

In our implementation, N = 136, m = 4, r = 34 and
s = 1.45. For this design point, it was feasible to implement
the (4) middle-stage crossbars as a single, four-times-wider (4-
way) TDM crossbar, instead of four separate ones. Thus, we
chose this alternative because our EDA tools could afford it. In
this implementation, each input buffer can feed an input of the
wide crossbar at full speed. This enables the multiple-transfers-
per-input method, discussed in Sec. 3. For larger configurations
(m > 4), it may be difficult to fit all middle-stage crossbars
into a single tile and to have this large input-buffer speedup.
However, as discussed in Sec. 4, the performance of SCOC
with m > 4 does not depend heavily on this optimization.

B. The scheduler of SCOC
Scheduling in SCOC is realized by per-group and per-port

arbiters that run asynchronously from one another, supporting
variable-size transfers. There are three main scheduling func-
tions: request, grant and accept, which complete in one clock
cycle each, and operate in a pipeline fashion.

The scheduling block, depicted for m = 4 in Fig. 2, is
partitioned into r request, r grant and r accept units. Each
of these units corresponds to an input or output group, and
implements the homonymous scheduling function.

Input to the request function are N arrays, one for each
input port. The array elements store the destination IDs and
the memory addresses of packets eligible for service at the
corresponding input buffer. They are logically connected in a
double-linked list, with the head pointing at the oldest packet.

3

1-hot requests
per-outp &

per-inp-group

OR

OR
OR

route requests to
local outputs

1-hot grants
per-outp-group &

per-inp-group

broadcast grants to
local inputs

select output
to grant

input arbiters output arbiters

select input
to accept

merge requests
per output

 binary-encoded
 packet-dest IDs

decode dest

decode dest

decode dest

decode dest

decoded dest

decoded dest

decoded dest

decoded dest
round-robin oldest packet first

OR

1-hot accepts
per-inp-group &
per-outp-group

IG1 OG1 IG1

Input group r Output group r

read selected packet from
input buffer memory

generate requests
for all packets

inputs
0

1

2

0

1

3

0

1

2

3

Input group 1 (request unit) Output group 1 (grant unit) Input group 1 (accept unit)

p
a
ck

e
t-

a
rr

iv
a
l
in

fo
rm

a
ti

o
n

o
u
tp

u
t

in
tr

a
-g

ro
u
p

 a
rb

it
e
r

in
p

u
t

in
tr

a
-g

ro
u
p

 a
rb

it
e
r

busy

idle

busy busy

Fig. 2 SCOC scheduling functions for m = 4. In SCOC, the output intra-group arbiters implement the oldest-link-first
(OLF) policy, and the input intra-group arbiters the random-selection policy. The output arbiters are round-robin (shown
are the next-to-server pointers), and the input arbiters, oldest-cell-first (OCF).

A scheduling cycle begins with a request phase. (In parallel,
the grant and the accept units are also working, but on
requests issued in the preceding and the penultimate clock
cycle, respectively.) Every input decodes the destination ID
of all packets in its array, and propagates the resulting bits
to their corresponding request merger. The per-destination
request mergers OR the requests coming from the local inputs.
Effectively, every input group presents one single-bit request
for every destination; in total, there are r×N request wires in
the scheduler.

The requests issued are available to their grant units in
the next clock cycle; therein, they are propagated to their
corresponding output arbiter. Every output arbiter may be
requested by up to r input groups; it selects one among them
using a next-to-serve, round-robin (RR) pointer. However, a
grant unit (corresponding to an output group) can issue at most
one grant per clock cycle. An output intra-group arbiter selects
one local (output) grant, and issues it to the corresponding
input group. We use an oldest-link-first (OLF) policy for this
task. OLF is implemented as LRG in [31], choosing the least
recently selected link. There are r×N grant wires in the
system.

In the next clock cycle, up to N output grants may arrive
at an accept unit (input group). These grants do not specify a
particular local input port and are thus broadcast to all. Each
input arbiter uses the oldest-cell-first (OCF) policy to accept
one grant. One or more inputs may concurrently accept grants
that come from one or more outputs. An input intra-group
arbiter selects one of among these inputs using the random
policy [3]. The accept unit then removes the corresponding
packet entry from its request array and issues a packet read
command to its memory buffer. The first word of the matched
packet will be transferred after two clock cycles.

Finally, the accept unit asserts an accept signal that termi-
nates to the selected grant unit. As in iSLIP, the accept signal
moves the next-to-serve pointer of the granting output arbiter
to one position following the accepting input group. In SCOC,
the accept also updates the state of the intra-group arbiter. The
grant unit remembers which local output issued the grant in

the preceding clock cycle; hence, there is no need for accept
signals to specify an output port—they only have to specify
an input-output group pair. In this way, we need r×r accept
wires, instead of r×N .

Weightage: Each output arbiter receives one “merged”
request from every input group. In this way, input groups
with many active ports are treated as a single port—see
microbenchmark 5 in Sec. 3. To resolve this, we introduce
a weightage method, which adds log2(m) control wires per
input-output group pair. In clock cycle cc, the input groups
use these wires to communicate the number of local inputs
(minus one if greater than zero) requesting output cc mod m.
Each output holds per-input-group weightage registers, which
are updated every m clock cycles. After issuing a grant to a
new input group, the output arbiter latches the corresponding
weightage value to a repeat variable. While greater than zero,
the ‘repeat’ variable is decremented by one with every grant
issued by the output to the same input group. If the ‘repeat’
variable is zero when the output receives an accept from
input group i, then we set the next-to-server RR pointer as
((i + 1) mod r); if the ‘repeat’ variable is greater than zero,
we move the next-to-serve pointer to the granted input group.
We decrement the ‘repeat’ variable on the grant phase rather
than wait for an accept: If an input group does not accept, then
it is likely that it also has traffic for other destinations; hence,
we legitimately decrement its “quota”. Also, if one or more of
the “first” grants are accepted by input group i, then we set
the next-to-serve pointer as (i + 1) mod r once the ‘repeat’
variable becomes zero, without waiting for a last accept.

C. Asynchronous operation
For asynchronous operation, the arbiter of a port or internal

link must be quiescent in clock cycles when its resource is
busy. For instance, a busy input should not issue requests if a
packet generated by a new scheduling cycle will clash with its
current transfer or with one that has been scheduled but not yet
commenced. We delegate this job to toggle switches (depicted
as “traffic lights” in Fig. 2), which filter out scheduling
messages during such busy periods.

4

scheduling window

output

"many-sided"
requestor

"engaged"
requestor

req

time

req

time

pck1

grant accepted

fake
grant accepted

fake

grant accepted

req

grant acc.

req
pck1

pck2

pck2 pck3

pck3

pck2

pck2

(a) baseline

(b) fake requests

grant acc.

pck3

pck3

scheduling
window

Fig. 3 In (a), the “many-sided” requestor is busy and
thus cannot issue requests while the output schedules;
effectively, the “engaged” requestor gets all grants. In (b),
by using fake requests, requestors can override their busy
status. The figure assumes that the first grant goes to the
“engaged” requestor. However, the second, third and fourth
grants are on spot. Although these grants are rejected by
the “many-sided” requestor, the output policy is to issue
them until one is accepted.

An input port becomes busy when it is matched in the accept
phase, an output port when it issues a grant (selected by the
intra-group arbiter) in the grant phase. Note that this grant may
not be accepted in the next clock cycle, but it would be unsafe
to have two outstanding grants. If a first grant is not accepted,
an output can issue a second one after two clock cycles. The
matched ports may safely revert to “idle” state four cycles (=
scheduling + memory read delay) before the last word of the
transferred packet enters the interconnect.

Fake requests: The asynchronous scheduling may com-
promise the fairness of SCOC. In particular, a “many-sided”
requestor, be it an input port or an input group that hosts
multiple connections, has a disadvantage against requestors
with only one connection: When the output port arbitrates,
the “many-sided” requestor may be busy, hence it may be
bypassed by the next-to-serve output pointer. We overcome
this implication by allowing busy units to issue fake requests.
An example is shown in Fig. 3. Although they may be granted,
fake requests cannot be accepted. Also, the output ports cannot
distinguish fake from non-fake requests. As with all grants,
the grants to busy requestors persist until one is accepted,
effectively until the requestor is idle. Note that fake requests
may result in wasted output grants. To reduce their number,
we allow up to one fake request per input.

D. Timesliced route allocation
Our scheduling obviates the need of separate, per-route,

request/grant/accept wires and of per-route arbiters. Instead,
it uses a single set of point-to-point wires and arbiters; these
are allocated to the per-route operations in a time-division
multiplexing (TDM) manner1.

1This route allocation is used for any implementation of the middle-stage
switches, be it m separate crossbars or a single m-way TDM one.

req grant accept
req

req

grant

pck1

 ts 0 ts 1 ts 2 ts 3 ts 0 ts 1 ts 2 ts 3 ts 0 ts 1 ts 2

req grant acceptpck 3:

 pck 1 uses route 0

Supercycle : m=4 timeslices (clock cycles)

 pck 3 route 1

req grant acceptpck 2: pck 2 route 0

memrd

memrd

memrd

Fig. 4 Timesliced route allocation for m = 4 and four
(4) independent middle-stage crossbars. Regarding packet
1, the output does not issue a grant in ts = 2 because
it issued one in the previous cycle—it could have issued
one in the next clock cycle, but there was no request to
grant; additionally, packet 1 does not issue a new request
in ts = 2, because it now accepts a grant.

Time is conceptually organized in supercycles, i.e., groups
of m consecutive clock cycles. Every supercycle consists of
m timeslices, equal to the number of middle-stage switches.
If we enumerate clock cycles with variable cc, then cc mod
m yields the index (or color) of the corresponding timeslice.
As shown in Fig. 4, a supercycle begins at every clock cycle
such that (cc mod m) = 0, and terminates together with clock
cycle (cc +m − 1). In the following, the current timeslice is
denoted by ts. Also, we may add an integer n ∈ [0,m− 1] to
ts, yielding timeslice (ts+ n) mod m.

In SCOC, the route of a packet matches the “color” of
the request clock cycle in the corresponding scheduling cycle.
Effectively, a grant issued by output group O in timeslice ts
attempts a transfer through the middle-stage switch (route)
with index ts+m− 1.

The input and output groups maintain an m-bit vector, AR,
to keep note of their available routes. Output group O issues
no grant when ARO[ts + m − 1] = “busy”. Similarly, with
selective requests, input group I does not issue requests when
ARI [ts] = “busy”. This routing mode can yield grossly unfair
schedules. To remedy this, we allow input groups to issue
“fake” requests on busy timeslices. To reduce the number of
wasted grants, i.e., grants issued to busy input groups, inputs
may issue fake requests only for their oldest packets, i.e., up
to one request each.

Note that routes are allocated on a per-packet basis. The
route of every packet depends on the stochastic distribution
of transfer finish times and on the contention at ports—a
packet that is not scheduled in one cycle may end up on
a different route. Although the packet route selection is not
strictly random, it is approximated as such by algorithm F
in Sec. 4.C. When speedup is employed, the transfer finish
times are wildly scattered in time. Effectively, combined with
a small speedup, our routing strategy behaves close to random
per-packet load-balancing, overcoming the limitations of static
routing schemes [6]. We were not able to find any “bad” traffic
permutation for SCOC, and we tested many hundreds, includ-
ing some well-known ones, like bit-reverse, bit-complement,
shuffle and transpose.

An example is shown in Fig. 4. Packets 1 and 3 belong to
the same connection whereas packet 2 to a different one. As
can be seen, the input issues two requests for packet 1, but the
output only one grant. The input accepts the grant for packet 1

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat Hiera Crrd Scoc -X1

00-20
00-30
10-30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat Hiera Crrd Scoc -X2

00-10
02-10
01-20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat Hiera Crrd Scoc -X3

00-10
00-20
01-20
02-20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat Hiera Crrd Scoc -X4

00-20
01-21
10-21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat Hiera Crrd Scoc -X5

00-20

01-20

02-20

03-21

10-20

11-21

12-21

0

0

2
0
0

0
1 3

λ = 0.5

λ = 1.0

λ = 0.5

(a) scenario 1

0

0

1
0

0 1

2
λ = 1.0

3
2

(b) scenario 2

λ = 1.0

0
0 1
2

0

0

1

2

(c) scenario 3

0
0
1

λ = 1.00
1

0
0

(d) scenario 4

λ = 1.0

0

0
1
2
3

0
11

2

(e) scenario 5

Fig. 5 Fairness microbenchmarks (I). (Top) Per-connection normalized throughputs. (Bottom) Traffic scenarios; in all but
scenario 1, connections arrive at full line rate. In these experiments, Flat uses the same speedup as SCOC, i.e., 1.45×.

in ts 2. Packet 1 is transferred through the middle-stage switch
0, which matches the timeslice of the corresponding request.
Packet 3 is transferred immediately after packet 1; however it
uses a different route—1 vs. 0.

3. SCOC IS AS FAIR AS A FLAT CROSSBAR IS

SCOC is designed to replace flat crossbars in high-
performance switch chips. To qualify for the task, SCOC
has to maintain the same fairness levels as flat crossbars.
We used a series of microbenchmarks to test and improve
its fairness. Below, we use them as guides to expose the
potential fairness issues and to present how we resolved the
latter in our architecture. These microbenchmarks have been
reproduced in hardware, validating the fairness properties of
our implementation. The results presented below are generated
by a C++ model that accurately simulates the implementation
of SCOC.

A. Microbenchmarks
In this section, besides the performance of SCOC, we also

evaluate (i) Flat (synchronous) crossbars with a speedup of
1.45×, running one iteration of iSLIP [18], (ii) hierarchical
crossbars (Hiera) [15], [30] and (iii) CRRD [23], a scheduled
Clos network, also discussed in Sec.6. In all systems, the
buffers per input are shared among the local VOQs [32] and
can store up to 16 packets. For CRRD, because the inputs in
the same group share their VOQs, we assume that they also
share their buffers.
Microbenchmark 1: In our first scenario, shown in Fig. 5(a),
two connections, originating from input 00 (i.e., port 0 in group
0), target two outputs, 20 and 30. Output 30 is also requested
by input 10. The throughputs are shown at the top of the
chart. Both Flat and Hiera yielded the expected (fair) rates,

i.e., approximately 0.5 to each connection. CRRD was unfair
in this scenario, assigning a higher rate to input 10. SCOC
performs identical to Flat. However, to achieve this, we first
had to tweak the scheduler. Because scheduling in SCOC is
asynchronous, the input (00) of two connections may often
be busy while one of its output targets (30) is scheduling.
Effectively, input 10 is likely to have an advantage—label X1
in Fig. 5(a).

We came up with two ways to overcome this limitation, both
of which yield the expected result: (i) issuing fake requests
from busy inputs; and (ii) allow multiple concurrent transfers
per input. In our implementation, each input buffer can afford
reading up to four packets in parallel, in a TDM fashion,
i.e., alternating between (words from different) packets in
contiguous timeslices. We preferred the second alternative,
because, as described in Sec. 4.E, it also improves the small-
packet throughput (a similar observation is also made in [21]).
Microbenchmark 2: In our second scenario, Fig. 5(b), we
set up three connections coming from different ports in the
same input group. One of them targets output 20 and the other
two target output 01. Again, Flat and Hiera yield fair rates. In
contrast, CRRD severely penalizes the connection from input
0. SCOC performs as well as Flat does. Label “X2” shows the
performance of SCOC using RR instead of random selection
at input intra-group arbiters: Because input 1 is served at full
rate, when a grant arrives from output 10, the next-to-serve RR
pointer usually points to input 2; effectively, in our simulations,
input 2 gets nearly all grants from output 10, leaving input 0
to starve. SCOC resolves this problem using a random arbiter
for input port selection. OLF also works fine in this scenario,
but it fails in the next one.
Microbenchmark 3: Consider the scenario in Fig. 5(c). Three
inputs in the same group target output 20. One of them also
targets output 10. As can be seen, SCOC, using random input

6

port selection, yields the fair throughputs with an accuracy
better than 3%. In contrast, OLF (“X3”) treats the two con-
nections that come from input 0 badly. This penalty is not that
heavy (18% accuracy), but when we simulated larger input
buffers (1K packets vs. 16), OLF nearly starved connection
00→20: Because input 0 also accepts grants from output 10,
it has the lowest (OLF) priority when a grant arrives from
20. With 16-packet buffers, the input immediately drains off
buffers once 01→20 starves; effectively, connection 01→10 is
also not served, which breaks this destructive loop. In our
simulations, with “X3”, the two connections from input 0
stabilized at equal, but still suboptimal rates. Hiera and CRRD
also failed in this scenario.
Microbenchmark 4: In our next scenario, Fig. 5(d), three
connections from two different input groups target two outputs
in group 2. Label “X4” assumes an alternative grant policy
for SCOC: First, an output group uses a RR arbiter to select
which input group should receive the next grant; second, it
picks a local output that can grant the selected input group.
At first sight, this policy seems legitimate. However, it can be
grossly unfair in the current scenario. Similarly to scenario 2,
the problem is that the next-to-serve pointer of the RR arbiter
may “bend towards” a particular input group. Here, it usually
points to input group 1, because input group 0 is served at full
line rate by output 20.

SCOC uses a reverse order to allocate grants: First, the RR
arbiter at each output port selects one of the requesting input
groups; second, the output inter-group arbiter selects one of the
outputs using OLF. We also considered RR instead of OLF,
but for the conveniently small numbers of ports per group in
SCOC (m ≤ 16), OLF can be implemented at no significant
cost and is more precise than RR. SCOC also performs well
with random output port selection—see mode 2 in Sec. 4.D.
Nevertheless, we prefer OLF because it is more deterministic.

In microbenchmark 3, we saw that OLF at input groups
may starve connections when it selects which input port will
get the next grant. At input groups, the OLF intra-group arbiter
effectively distributes the output grants to competing inputs. In
contrast, there is no such scarce resource at output groups: All
output ports can issue grants at full speed.
Microbenchmark 5 touches the “Achilles’ heel” of most
hierarchical schedulers. As shown in Fig. 5(e), two input
groups, 0 and 1, target two outputs of group 2. Group 0
has three inputs targeting output 0 and one targeting output
1; group 1 has one input targeting output 0 and two for
output 1. As can be seen, Flat and SCOC distribute the rates
properly, according to the output fair shares. However, both
Hiera and CRRD fail to do so. The same holds also for “X5”,
i.e., SCOC before applying the weightage method. Hiera and
CRRD naively merge the requests coming from flows of the
same input group, thus compromising fairness. Actually, with
CRRD, three flows are starving in Fig. 5(e). We observed
that, using more buffers, CRRD can reach the (suboptimal)
performance of Hiera and of “X5”.
Microbenchmark 6 demonstrates why we avoid selective
requests. As shown in Fig. 6(a), two connections target des-
tination 20. One comes from an almost empty input group
(0), whereas the other has three neighbors, targeting different

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat Hiera Crrd Scoc -X6

00-20

01-30

02-40

03-50

10-20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Flat -1.0x Hiera Crrd Scoc

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

00-10
00-12
01-10
01-11
02-11

λ = 1.0

0

0
1
2

0 2

3

0 3

0 4

0 501

(a) scenario 6

λ = 1.0

0
0 1
2

0
1
2
1

(b) scenario 7

Fig. 6 Fairness microbenchmarks (II).

outputs. With selective requests (“X6”), the connection coming
from the “busy” group cannot get its fair share at the output:
When output 20 selects a new packet, input group 0 can
be busy transferring, thus missing the chance for a grant. In
SCOC, the input group issues “fake” requests when it is busy,
thus the output will grant it at its round-robin (RR) turn. This
grant will be rejected, but the output will not update its next-
to-serve pointer until the busy input group becomes available
and accepts. Using this mechanism, SCOC achieves fair rates.
Microbenchmark 7 adapts a traffic scenario from [18] by
locating all active inputs (and outputs) in the same group. The
scenario, shown in Fig. 6(b), stresses iSLIP: Without speedup,
Flat allocates a suboptimal rate of around 0.33 to all connec-
tions (label “1.0×”). SCOC achieves the same performance as
Flat with speedup. Both Hiera and CRRD deviate from that,
with the latter actually starving three connections.

In this section, we presented a subset of the many fairness
microbenchmarks we have considered. With proper policies
in place, SCOC succeeded in all of them. In contrast, as we
demonstrated, Hiera and CRRD failed in several of them.

4. SCOC IS EFFICIENT

SCOC features a rearrangeably non-blocking topology,
which it fully exploits using per-packet multipathing. Hence,
it has all that it needs to be efficient. However, many packets
may compete for a limited number of internal links. The
optimal solution for the corresponding route-allocation task
involves edge coloring in bipartite multi-graphs [12] [4]. Being
distributed to per-port and per-group arbiters, the scheduler of
SCOC is non-optimal. In this section, we evaluate how well it
performs.

7

input groups output groups
grant

requests

output ports

input ports

0

1

2

Fig. 7 Example of route assignments for m = 4. For
the sake of clarity, only three input and output groups
are shown (outer circles with colored quadrants). Each
quadrant corresponds to a route (middle-stage switch).
Filled circles indicate busy ports, sending or receiving
a packet in parallel to the ongoing arbitration—their
orientation within their group is determined solely by the
route they are using.

A. Route allocation: the performance
For a packet to be transferred in SCOC, the corresponding

input and output groups must agree on a route available to
both. Let <(G) denote the set of available routes at input or
output group G.

With fake requests, i.e., the default operation in SCOC, input
groups do not expose their route availability to output groups.
On their part, output groups reserve one available route for
every grant they issue, and communicate their selection to the
granted input. An input group may receive multiple grants,
spanning from 1 to m different routes. It can accept up to m
of them, one per route in <(i) and per local port, but rejects
grants on routes that are busy.

Some examples of route assignments for m = 4 are shown
in Fig. 7. Input and output groups are depicted with colored
circles and routes with quadrants. Filled circles indicate busy
ports, occupying their surrounding route (quadrant); their ori-
entation is determined solely by the route they are using.

Input group 0 requests some port(s) in output group 0, which
grants one, proposing the “topmost” route (quadrant). This
grant is accepted as the topmost route is also available at input
group 0. Input group 1 requests output groups 0 and 1, both
of which propose the “leftmost” route. The input group can
accept only one of these grants. Finally, output group 1 offers
the “bottommost” route to input group 2. Because this route
is busy for input group 2, this grant is rejected.

Every non-accepted grant introduces a “bubble” in the
scheduling pipeline. SCOC deals with the ensuing throughput
penalty by

1) using a small internal speedup, s,
2) iterating the scheduling handshake, and
3) adhering to good schedules.
As we discuss below, mechanisms (2) and (3) are imple-

mented implicitly by the workings of the scheduler, and incur
zero hardware cost.

B. Scheduling iterations
We name scheduling cycle the sequence of request, grant,

accept and memory read operations that are associated with

req gr ac

scheduling iterations

2

3

clock cycles

packet A (busy)

packet B (busy)
idle

req gr ac
req gr ac

1
 time slot 1 time slot 2

1

2

3

1

2

3

1

2

3

1

2

3

2

1

2

3

1

2

3

2

3

1 1

2

3

failed

synchronous

asynchronous

inset

requests for
packet B

pck A pck B

(a)

1

2

3

4

5

1 2 3 4 5 6 7 8 9

P
ow

er
, P

Scheduling iterations, k

E
ffe

ct
iv

e
ite

ra
tio

ns
 =

 m
ax

 P

Power
Effective iterations

1

2

3

4

5

t=8

t=7

t=6

t=5

t=4

t=3

t=2

t=1

(b)

Fig. 8 (a) Packet B could have been scheduled in the first
scheduling iteration, but instead it succeeds in the third
one, i.e., two clock cycles later. For comparison (as shown
by the inset), with synchronous crossbars, an analogously
suboptimal schedule costs one or more time-slots (packet
times) of idle time. (b) Effective iterations for various
packet transfer times, t.

the input and output ports of a particular packet and which are
executed in contiguous clock cycles. A successful scheduling
cycle sets up the transfer of a packet from its input buffer to the
target output. Iterative crossbar schedulers repeat the request-
grant-accept handshake to augment the crossbar configuration
of a single time-slot with additional port pairs [3] [18]. An
analogous effect takes place in SCOC, but instead of packing
more operations into a specified time budget (i.e., a time-slot),
SCOC spreads them in time.

As shown in Fig. 8(a), packets in input buffers may push
requests into the scheduling pipeline of SCOC in every clock
cycle until they are transferred. Because the independent port-
level arbiters may produce suboptimal configurations, a packet
B may not be transferred after a first scheduling cycle although
the corresponding ports stay idle. In this case, B may be
scheduled in one of the next scheduling cycles, which finish
after i (≥ 1; 2 in the figure) clock cycles. We can think of these
contiguous scheduling cycles as extra scheduling iterations. If
Bs is the size of packet B and w the width of the datapath, both
measured in bytes, there will be i idle clock cycles followed
by t = dBs

w e busy ones. Obviously, the overhead is negligible
for sufficiently large packets.

We want to estimate the effective iterations, taking into
account the “idling time” of iterations relative to the packet
transfer time t. The first iteration comes for free, but every
subsequent iteration consumes one clock cycle. Assuming that
i iterations produce an aggregate positive work (force) i at a
pace (velocity) t

t+i−1 , then the product of the two measures
power Pt(i) = i · (t

t+i−1). The work produced levels off
after i = t iterations. We define the effective iterations as
κt = maxiPt(i).

Figure 8(b) plots the power Pt(i) and the effective iterations
κt as a function of t. As can be seen, for t = 1, κt = 1. For
t = 2, κt is between 1− 2, and between 4− 5 for t = 8.

C. Iterating to a maximal route allocation
Next, we quantify how iterations improve the non-optimal

route assignments of SCOC. We consider port-level permu-
tation traffic to eliminate the effects of port contention—this
does not remove the contention among groups.

8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

1248163264128
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

maximal allocation
ρ from Eq. (1)

m= #middle switches = #ports / group

r= #groups = #ports / middle switch = N / m

algo. F, 8 iter
algo. F, 4 iter
algo. F, 3 iter

algo. F, 1 iter
algo. F, 2 iter

(a) N = 128

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128

81632641282565121024

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

m = #middle switches = #ports / group

r= #groups = #ports / middle switch = N / m

(b) N = 1024

Fig. 9 Throughput of routing algorithms F and F ′ (max-
imal allocation) for N = 128 and 1024 ports, and varying
number of middle-stage switches m.

Let πo denote the sourcing input of output o, OGo the output
group of output o, and IGπo

the input group of input πo.
Consider the following algorithm, F , which assigns routes to
connections πo→o, o ∈ [0, N − 1].
init. Mark that the set of matched connections S = ∅. Also,

initialize <(IGg) = {x ∈ [0,m− 1]}, <(OGg) = {x ∈
[0,m−1]} for all groups g, and select a random ordering
of outputs φ.

1. Iterate through steps 2-4 for k times.
2. Visit all unmatched outputs in the order dictated by φ.
3. For each visited output o (πo = i), select route m′ from
<(OGo) uniformly and at random,

4. If m′ ∈ <(IGi), then S = S ∪ (i→o), <(IGi) =
<(IGi) \m′, and <(OGo) = <(OGo) \m′.

Steps 2-4 emulate the routing assignments in SCOC: Output
o knows that the granted packet can reach it from the middle-
stage m′, but is totally unaware of the situation at the first
leg of the route, because input groups may issue requests on
busy timeslices. Effectively, input i may reject the output grant.
Similarly to SCOC, algorithm F uses iterations to ameliorate
the allocation of routes, without modifying already routed
connections.

Incapable of backtracking, routing algorithm F converges
to a maximal route allocation. A route allocation is maximal
if, for every pending connection, the sets of available routes
at the corresponding input and output groups are disjoint.
Routing algorithm F can be adapted to compute a maximal
match from the first iteration: Modify step 3 so that every
output randomly selects a route m′ from <(OGo) ∩ <(IGi),
immediately continuing with the next output in φ if m′ = ∅.
We name this routing algorithm, first proposed in [11] [4],
F ′. In SCOC, this is analogous to the selective-request mode,
where input groups issue requests only when they are available.
This may improve the throughput, but, as seen in Sec. 3, can
be unfair.

Figure 9(a,b) compares SCOC route allocation, F , with
maximal route allocation (F ′). The throughput of these al-
gorithms is computed after they terminate as |S|/N . Each
reported value is the average throughput of 20,000 randomly
selected permutations [16]. We also plot the expected through-
put of F with one iteration, ρ, which is estimated by the
following formula (for brevity, we do not present its derivation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

40 80 120 160 320

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

Packet size (bytes)

no speedup
speedup 1.453x

(a) N = 128 (mode 1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

40 80 120 160 320

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

Packet size (bytes)

no speedup, mode1
no speedup, mode2

(b) N = 256

Fig. 10 Throughput of SCOC under random-permutation
traffic for m = 4, and varying packet size.

here):

ρ =
1

1 + m−1
2·m

. (1)

As can be seen, for m � N , Eq. (1) agrees closely with the
results obtained by running algorithm F . For these practical
values of m (≤ 16), the throughput is independent of the
switch size N . When m = 4, it is approximately 0.69 for
k = 1, and builds up to 0.77 for k = 2 and to 0.80 for
k = 3 iterations. However, there is practically no gain from
additional iterations, as we are already pretty close to the
maximal performance.

It is interesting to see what happens when m = N . In this
case, we have N -port input and output groups, and N single-
port switches in the middle. As shown in Fig. 9(a), for m =
N = 128, the throughput is full from the first iteration, because
there are no routing conflicts. The same also happens at the
other end of the spectrum: When m = 1, the topology becomes
a flat crossbar (single-port groups). But already as m = 2,
routing conflicts appear, pulling down the performance of both
F and of maximal route allocation.

In Fig. 10(a), we present the throughput of SCOC for
m = 4, tested here under random permutation traffic using
our C++ switch model. Each data point is the average taken
from 100 randomly selected permutations. We repeated these
experiments for N = 256 and 512, and the performance did
not change, as also anticipated by the above-mentioned results.

The datapath width is 40B, as in our implementation.
Therefore, 40B packets are transmitted in one, 80B in two,
and 320B in eight clock cycles (t = 8). From Fig. 8(c), the
effective iterations in SCOC are (κt =)1, between 1− 2, and
close to 4, respectively. The corresponding throughputs without
speedup are 0.687 and 0.73, and 0.77, which match the results
of algorithm F for m = 4 in Fig. 9. In contrast, when using a
marginal speedup of s = 1.45, the throughput is close to full
for all packet sizes examined.

Although we present here the average performance for many
permutations, when using speedup, the throughput was full in
all permutations we examined. Essentially, SCOC implements
a per-packet load-balancing scheme, and its performance does
not depend on the orientation of the traffic pattern.

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

la
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Load (fraction of capacity)

Scoc
Hiera
Hiera’

Flat

(a) Uniform

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

la
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Load (fraction of capacity)

(b) Partitioned

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

la
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Load (fraction of capacity)

(c) Diagonal

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

la
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Load (fraction of capacity)

(d) Logdiagonal

Fig. 11 Load-delay performance of SCOC, Flat (without speedup) and Hierarchical crossbar for various traffic patterns.

D. Adhering to good matches

Figure 10(b) plots the throughput of SCOC without speedup
for two different modes of operation. Mode 1 is the default
mode that uses the Oldest Link First (OLF) policy to select
among the output subports that can concurrently issue grants.
Mode 2 uses the random policy for the same task. As can
be seen, the throughput of mode 2 exceeds that of mode 1
substantially. This is explained below.

With asynchronous scheduling, when a packet transfer
finishes, the corresponding input and output ports become
available at the same time, while other ports may be busy
transferring; hence, the now released ports are likely to match
again [25]. In our simulations, we observed that the fewer the
idle ports in SCOC, the longer will the existing port pairings
persist. Thus, if the scheduler finds a configuration with many
busy ports, it is likely that it will hold on to it until the relevant
VOQs drain away. In the experiment of Fig. 10(b), mode 2
unlocked this potential more frequently than mode 1 did.

A downside of such asynchronous scheduling is described in
[25]. By drifting towards existing port pairings, asynchronous
scheduling can induce prolonged starvation under pathologi-
cal scenarios. The short input buffers of SCOC, its internal
speedup, and an aging mechanism that is used as a last resort,
eliminate this possibility.

E. Synthetic traffic

Next, we measure SCOC’s delay and throughput perfor-
mance under various synthetic traffic patterns. Our computer
simulation model follows SCOC implementation for m = 4.

The packet delay is measured from the time that the first bit
arrives at the switch input until the time it departs at its output.
The network is warmed up before collecting measurements.
Each computer simulation is repeated at least five times,
for different random seeds. Below we present the average
performance value of interest from these five simulations.
Unless otherwise noted, we assume a 128-port switch, with
25 Gb/s links. Our baseline packet size is 288B2.

2Chosen as an adequately large value that is also not necessarily a multiple
of the datapath width: In SCOC, such large packets performed identically,
despite their exact alignment. In our server-rack fabric, this is also a very
frequent size of the segments (internal packets) that carry the payload of
1500B Ethernet frames.

Figure 11 presents the delay versus load for SCOC, Flat
(without speedup) and Hiera. Flat has the same buffers as
SCOC (16 packets per input and output port), and Hiera is
a 128-port hierarchical crossbar switch implemented using
256 8-port subswitches [15], [30]. If Hiera’s subswitches have
buffers for bs packets per input each, then each Hiera input can
store a total of 16 · bs packets. Thus, for a fair comparison, (i)
we set bs = 1, in which case Hiera has the same input buffers
as the other systems, and (ii) we also consider Hiera’, which
has (bs =)16× larger buffers.

SCOC implements cut-through, with a fall-through packet
latency of 61 ns: Approx. 15 ns per direction for SERDES
and clock domain crossing, and 15 cycles at 454 MHz for
crossbar and link receive/send logic. The packet delay inside
the Hiera chip is approximately 25 cycles at 800 MHz [15],
i.e., 32 ns, but this does not include the chip interfacing delays.
We assume that the SERDES and packet processing delays are
small, yielding the same fall-through latency as SCOC (61 ns).
Flat uses store-and-forward; thus, the delay of 288B packets
at 25 Gb/s links cannot get below 92 ns.

Figure 11(a), for uniform traffic, shows that Hiera and SCOC
perform identically, both tolerating a load up to 0.9—although
they can both go higher, we decided to not present data for
very high loads3. Flat performs considerably worse, (i) because
it does not have speedup, and (ii) because the iSLIP algorithm
fails to desynchronize when the input packet buffers can
hold only 16 packets each: For successful desynchronization,
inputs must hold packets for all destinations. Effectively, the
throughput of Flat is limited at around 0.61, and, as can be
seen in the figure, its delays are much higher at even lower
loads.

Having examined all-to-all traffic, we now consider a parti-
tioned workload, wherein end nodes, e.g., servers or cores,
work in groups. In Fig 11(b), we partition the 128 switch
ports into 16 groups of eight, and apply uniform, all-to-all
traffic within every group. As can be seen, both Hiera and
Hiera’ saturate close to 0.65 load. This happens because we
purposely aligned the boundaries of the groups with those of
the subswitches [15]. Because it has larger buffers, the delay of
Hiera’ caps that of Hiera close to and after the saturation point.
In contrast, the performance of SCOC is not affected by the

3The simulations sometimes take too long to converge at high loads;
moreover, long-lasting overloads are not tolerated in operational units.

10

partitioning. A (folded-)Clos network, with arbitrary routing,
may perform badly depending on the orientation (principal
permutation) of the traffic pattern [6]. However, this is not
the case for SCOC, thanks to its per-packet load balancing.

Figures 11(c,d) examine non-uniform traffic patterns. With
diagonal traffic, every input i steers two thirds of its load to
output (i + 1) mod N and the remaining one third to output
i mod N . With logdiagonal (or power2) traffic, every port i
sends to all other ports, but sends twice as much traffic to port
i as to (i+1) mod N , and so on. As can be seen, SCOC still
outperforms Flat and delivers 15-20% higher throughput than
Hiera.

Next, we use an unbalanced traffic model from [29]: Every
end-node i is associated with a second end-node, i.e., its
primary sink, and with a third end-node, i.e., its primary
source. Let sink(·) be the permutation that maps every end-
node to its primary sink. The results are present in Fig. 12.
Along the x-axis, the traffic pattern changes gradually: For
point u = 0, it is uniformly destined, for u = 1, it is directed
(permutation), and for the values in between, there is a variable
mix of directed and uniform traffic. In this test, sink is the
identity permutation.

In Fig.12(a), we compare SCOC with Flat and CRRD. As
can be seen, SCOC outperforms Flat even when the latter uses
a speedup s = 1.45×. This happens because, as discussed
in Sec. 4.B, the scheduling pipeline of SCOC implicitly
implements multiple iterations for large packets, whereas that
of Flat does not. As mentioned above, the throughput of Flat
with no speedup is limited under uniform traffic (u = 0)
because it lacks adequate buffers. The same happens to CRRD,
but here the throughput is even lower. As can be seen, when
we increased the buffers in CRRD by a factor of 32×, its
throughput under uniform traffic got almost full. However,
because of the sharing of the input buffers, its throughput is
really low for intermediate values of u. We also tested the
throughput of CRRD with large buffers and a speedup equal
to that of SCOC (1.45×). As can be seen, its throughput can
still get more than 2× worse than that of SCOC.

Figure 12(b) presents the throughput of SCOC as a function
of the packet size. We examine 40B, 85B, 120B and 288B
packets, which are frequent segment sizes in our server-rack
fabric. With the exception of 85B packets, the performance of
SCOC generally increases with the packet size. 85B packets
are padded in 120B ones and transmitted in three clock cycles
(t = 3 words), hence introducing a slowdown of 85/120;
however, because they are larger, they achieve almost the same
performance as 40B, despite the slowdown.

For 85B packets, we test the selective-request mode (“X6”),
which offers a marginal throughput benefit over SCOC, be-
cause it does not issue fake requests. We also present the
performance of SCOC if we allow an unlimited number of
fake requests—SCOC allows only one per input. As can be
seen, the performance is affected by these many fake requests,
because many more grants are rejected.

The capability of multiple transfers per input is the main
performance benefit gained by having a single 4-way TDM
crossbar in place of four independent crossbars. In Fig. 12(b),
we examine designs that cannot afford multiple transfers

Flat s1.45x

Flat

Scoc

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.25 0.5 0.75 1

Th
ro

ug
hp

ut

Unbalance factor, u

32x bufs, s1.4532x bufs

Crrd

(a) Various systems: 288B.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1

Th
ro

ug
hp

ut

Unbalance factor, u

120B, 288B,
and 120B noMT

40B noMT

85B

85B-X6

40B

Three matching plots for

85B selective requests

85B40B

85B unlimited fake req

(b) SCOC: varying packet size.

Fig. 12 Throughput under uniform (u = 0), unbalanced
(0 < u < 1), and directed (u = 1) traffic.

per input (label noMT). For 40B packets (i.e., single word-
transfers), the throughput loss is significant, going from 0.8 to
0.65; however, for large packets, e.g., 120B, there is virtually
no performance penalty.

Not presented so far are results for mixed-size packets. We
have examined a bimodal packet-size distribution, consisting
of 90% 40B and 10% 288B packets. The throughput of SCOC
exceeded 0.92 for any unbalance factor u < 1, and was full for
u = 1. We have also tested SCOC using flow (message) size
distributions from operational datacenters [2]. In these tests,
SCOC outperformed hierarchical and flat crossbars with equal
speedup.
Scalability: We have repeated many the above-mentioned
experiments for 256- and 512-port switches using m = 4.
The performance of Flat and of CDDR depends on the radix
of the switch, worsening with more ports. In contrast, the
performance of SCOC is nearly independent of the switch size.
Many non-TDM middle-stage switches (m > 4): The results
presented so far assumed a single 4-way TDM middle-stage
crossbar. The performance of SCOC does not change consid-
erably if we use four independent middle-stage crossbars. The
only performance benefit of the TDM crossbar is the increased
memory read throughput (multiple transfers per input) that
comes with it. As shown in Fig. 12(b), lacking this extra
“input speedup” affects the throughput by as much as 15%
under small-packet workloads. However, this penalty can be
mitigated by slightly increasing the frequency, f , and hence
the speedup of the switch.

Furthermore, the timesliced route allocation of SCOC in-
troduces some non-negligible bandwidth overhead, which in-
creases with m: The scheduler can allocate a link (route) l on
a packet transfer at most once every m cycles; thus, link l will
idle for packet transfers that terminate before completing an in-
teger number of supercycles. Additional analysis and computer
simulations—not presented here for brevity—suggest that the
overhead can be managed by increasing the frequency of the
chip, f , and decreasing the datapath width of the individual
crossbars, w: A 256-port SCOC switch, for m = 16, w = 4B
and f = 1.56 GHz, offering a speedup of 2 for 25 Gb/s
links, achieves close to full throughput under both uniform
and unbalanced traffic for packet sizes as small as 64B. This

11

result is without multiple transfers per input—instead, busy
input ports issue fake requests for their head-of-line (HOL)
packet.

F. Experiments in fat-tree networks
A separate C++ model of our SCOC chip was developed

and integrated into our performance model of a server-rack
fabric [7]. This is a buffered fat-tree fabric that segments
network packets into variable-size units, and forwards the
latter using segment-level multipathing. Still in the design
phase, we extensively tested the server-rack fabric under
many workloads, e.g., micro-bursts, all-to-all and many-to-one
(fan-in) communication, standard switch benchmarks, etc, for
various packet (and thus segment) sizes. Whenever we ran
into an unexpected performance issue, we tested the spines
by replacing the SCOC module with that of a flat VOQ
crossbar, using a speedup of two, to examine the impact. In
all cases, the problem was located somewhere else in the
design. SCOC was never found to undermine the performance
of the system. These tests further validate that SCOC performs
virtually identical to efficient flat crossbars when employed in
large networks.

5. THE SCOC SWITCH CHIP

We have implemented the SCOC architecture in a 32
nm ASIC. The SCOC chip is used in a spine-leaf server-
rack fabric, providing dense connectivity among leaf nodes.
Following the current trends in datacenter networks, SCOC
has small input (16-packet) and output (12-packet) buffers;
packets can be of any size up to 320B. Additionally, SCOC
implements a preferable VOQ organization—not presented
here for brevity—, with a cost that grows with the number
of packets per input instead of the much larger number of
switch ports.

The SCOC chip supports 136 bidirectional ports running at
25 (28 raw) Gb/s links. Parameter m = 4, therefore there are
r = 34 input and output groups (or quads). Instead of four 34-
port middle-stage crossbars, we have implemented a single but
four times wider 34-port crossbar. This is a 40-byte crossbar
that implements four (4) slower crossbars in a TDM fashion:
In clock cycle cc, it carries payload words from packets that
would be routed through the middle-stage switch cc mod 4.
Effectively, a packet of t words is transmitted in 4 · t cycles.

The chip actually contains two 136-port SCOC switches, one
for data (payload) traffic and one for end-to-end (ETE) con-
trol traffic, e.g., requests, grant-credits and acknowledgments.
These ETE messages have a fixed size of 10B. Similarly to
the data crossbar, the ETE crossbar groups the ports in quads,
but has a single, 10-byte-wide, middle-stage switch. It also has
a slightly simpler hierarchical scheduler, allowing arbitration
only to the two oldest packets per input. The ETE input buffers
can hold up to 256 messages.

The floorplan of the chip is depicted in Fig. 13. There
are 136 high-speed serial (HSS) I/O cores in the periphery
of chip. The data crossbar and the ETE crossbar, as well as
their schedulers, are mainly located in the inner area. The data
(ETE) crossbar has a size of 2.5×2.5 (1.2×1.2) mm2, and its

 pck bufs+mux's

chip i/o

34 quads

1
8

.4

m
m

7.7 mm 1
4

.7
 m

m2 xbars

2 arbiters

data xbar arbiter

ETE arbiter xbar

+

Fig. 13 Floorplan (left) and picture (right) of the
136×136×25 Gb/s SCOC switch chip.

scheduler of 2.6×2.6 (2×2) mm2; 34 (1.6×1 mm2) quads are
positioned around them, each responsible for the queuing and
the switching functions within an input and output group.

The chip has a die of 18.4x18.4 mm2, uses 45 million gates
(20% are for test and clock circuity), 11 metal layers, runs at
454 MHz, and consumes around 150 Watt. Of these 150 W,
130 W is consumed by the HSS cores, or about 1 W per link
(approximately 1 W / 28 Gb/s = 36 pJ/bit). The entire chip
flow, including synthesis, test logic insertion, placement, clock
insertion, PD re-synthesis, routing, and timing closure, took six
weeks. In contrast, synthesizing the data crossbar arbiter on an
8-core (190 GB) workstation was possible in only 36 h.

The SCOC chip provides a speedup of 1.45×. This speedup
was selected early in the design phase after evaluating the
expected efficiency of our routing: As described in Sec. 4.C,
for m = 4, the throughput of SCOC without speedup can
be as low as 0.70; therefore, a speedup of 1.45× remedies
the routing inefficiencies. We did not push our EDA tools to
achieve a higher frequency at that time; however, timing was
always a concern as we added new features later.

6. DISCUSSIONS & RELATED WORK

A. Design trade-offs
In this section, we discuss some of the trade-offs that

emerged while designing SCOC.
Utility vs. guaranteed fairness: To the best of our knowledge,
the present paper makes the first systematic attempt to build
Clos networks having the fairness properties of flat crossbars.
By resolving all fairness issues that we discovered in our
architecture and showing that state-of-the-art designs and chip
implementations are exposed to many of them, we achieved an
important milestone. What is missing from our study is deter-
ministic guarantees that we have covered all possible fairness
issues. Such analytical attempts typically involve impractically
expensive designs [8]. In this paper, we aimed at a feasible,
cost-effective implementation and covered the most central
fairness issues. In Sec. 3, we presented a selected subset of
the fairness tests we examined. We have performed many more
tests, all of which validated our architecture.
Adversarial traffic: The following adversarial traffic pattern
can compromise the fairness of SCOC. If an input queue fills
up with packets heading to a congested switch output, it will
exert flow control that can impede the flow of unrelated, non-
congested packets coming from the same input. However, this
unpleasant behavior is equally valid for flat crossbars. In the
absence of end-to-end flow control, congested flows can induce

12

saturation trees, with unwanted consequences. Our server-rack
interconnect uses end-to-end credits, Ethernet QCN at ingress
leaf nodes, and segment-level spraying across leaf-spine links
[7] to prevent (or limit the duration of) congestion episodes
inside the SCOC switches (spine nodes).
How relevant is fair service to real-word workloads? Long-
lived persistent connections, such as those examined in Sec. 3,
are typical in datacenters [2] and in HPC interconnects. Fair
flow service can reduce the tail of flow completion times
and improve the performance of latency-sensitive scale-out
applications.
Small vs. large buffers: Following a common practice in
HPC interconnects [30], high-performance datacenter networks
use small in-fabric buffers to reduce the packet delays [33],
[2]. In our server-rack interconnect, we use small buffers in
spines switches (SCOC) to prevent large in-fabric backlogs,
and larger buffers in leaf nodes. Thanks to credit-based flow
control between spine and leaf nodes, the buffers of SCOC
are backed up by the larger (leaf) buffers, which can segregate
flows into network-level VOQs. HPC routers also typically
have small on-chip buffers [14].

B. Comparison with state of the art
High-radix switches have attracted renewed attention since

Kim et al. quantified the benefits of many “slim” channels
per chip over few “fat” ones [15]. As an answer to the
increasing complexity and to the poor performance of high-
radix input-queued switches, Kim et al. proposed a hierarchical
crossbar switch (Hiera), which was later embodied in YARC
[30]. YARC, implemented by Cray, has the same number of
crosspoints but provides higher performance than flat cross-
bars. Also, it is inherently amenable to a hierarchical EDA
flow. Later, the OBIG project by SUN exploited a similar
hierarchical design for ultra-high-radix switches enabled by
proximity communication [10]. These designs require many
small memory units and are inefficient under the partitioned
workloads that are common in cloud computing environments
and in CMPs. Furthermore, Hiera, despite its higher speedup
(8-16× vs. 1.45), performs worse than SCOC under unbal-
anced traffic: Because of extensive buffer partitioning, the
buffers in Hiera can be underutilized in some traffic patterns.
Hiera also failed in some of our unfairness microbenchmarks.

The cost advantages of Clos over hierarchical and flat
networks are quantified in [1], where Ahn et al. propose a
buffered folded-Clos network for high-radix switches. Buffered
networks require more (small) buffers than SCOC, and are
susceptible to saturation trees. In addition, unless they perform
packet-level multipathing (correcting also packet reordering),
they are vulnerable under arbitrary permutation patterns. For
instance, in [1], the throughput of the proposed network is half
of the maximum possible under some permutation patterns. In
contrast, using packet-level load balancing, the performance of
SCOC does not depend on the spatial orientation of the traffic
pattern.

The results of SCOC suggest that, despite being less ef-
fective for off-chip networks [24], [5], a bufferless on-chip
fabric is more attractive than a buffered one. By concentrating

the memories at network ports, a bufferless Clos enables
denser designs and packet-level multipathing without out-of-
order packet delivery. Although Clos networks are generally
considered hard to schedule [4], we demonstrated an efficient
and scalable scheduler that fixes all fairness issues involved.
Together with a small on-chip speedup, SCOC meets the
performance levels anticipated by high-end switching nodes.

Bufferless on-chip networks are also building up momen-
tum in NOCs for CMPs [22], [19]. Their benefits include
reduced power consumption and silicon area as well as con-
gestion avoidance. However, lacking a global scheduler and
contention-resolution buffers inside the network, they are left
with deflection routing or packet dropping, which perform
sub-optimally from a bandwidth point of view. Coupled with
the inherent inefficiencies of the mesh and torus networks for
which they are proposed, these alternatives cannot provide the
performance levels required by high-radix switches.

Oki et al. use per-packet load-balancing in CRRD, i.e., a
scheduling scheme for off-chip, memory-space-memory Clos
switches [23]. CRRD depends heavily on pointer desynchro-
nization, the performance of which drops dramatically as
we increase the number of ports or when traffic becomes
unbalanced [5]. As we have further shown in this paper, CRRD
has many unresolved fairness problems, and its performance
drops as we decrease the buffers per input.

The Swizzle-Switch [31], by Sewell et al., integrates the
arbitration inside a datapath with O(N2) crosspoints. Because
of its gradual contention resolution, the Swizzle-Switch has
largely unknown fairness properties. Passas et al. implemented
an 128-port flat crossbar for 10G links with a speedup of two,
showing reduced area numbers [26]. However, their solution
is highly customized, reducing the flexibility of the design and
increasing its turn-around time. In contrast, SCOC is amenable
to fully automated design flow, while being inherently more
scalable. Finally, another recent switch chip from IBM, the
PERCS Hub-Chip [28], has almost the same internal band-
width as SCOC. The PERCS Hub-Chip is implemented in
45 nm, occupies 582 mm2, and uses 13 metal layers. Being
a processor hub-chip, it supports links with varying speeds:
31 Local (L) links, 16 Remote (D) Links, 4 POWER7 QCM
Connect links, and 3 PCIe links.

7. CONCLUSIONS & FUTURE WORK

We presented SCOC, a scalable bufferless Clos architecture
that can readily replace the flat crossbars in high-radix switch
nodes and on-chip networks. Although buffered fabrics are
preferable off-chip, our design demonstrates that the situation
is reversed inside the chip: Bufferless Clos networks enable
packet-level multipathing, thus avoiding the throughput lim-
itations of static routing. This, coupled with cheap on-chip
speedup, allows SCOC to outperform more expensive designs,
such as hierarchical and flat crossbars.

Designing SCOC, we made a significant effort to character-
ize and improve its fairness levels, something that is missing
from previous studies. Despite its hierarchical contention res-
olution, SCOC appears to have the same fairness properties as
flat crossbars, while being scalable to an order of magnitude
larger port counts.

13

Whereas it is hard to build high-radix crossbars, the switch
chips of today are mostly I/O limited. Emerging optical link
technologies promise to deliver many thousands of high-speed
links per chip [20]. This much expected technological break-
through will accelerate exascale-class systems, which seek to
sustain the I/O byte-per-flop ratio of today while increasing
the capacity of compute nodes by multiple orders of magni-
tude [13]. Once optics make it to chip boundaries, crossbar
chips will become core limited again. The design of SCOC
suggests that it may be possible to distribute the switching
logic (crossbar tiles) over multiple 3D-stacked chip dies, while
maintaining the performance levels of single-stage, single-
stack crossbars. SCOC also presents a competent alternative
to (low-performance) mesh networks and to (hard-to-scale)
crossbars for on-chip networks used in chip multiprocessors.

So far, the design of SCOC has been validated by a fully-
operational chip that implements two SCOC switches that
share 136 ports at 25 Gb/s. The entire chip die, including the
I/O circuity, occupies just 18.4×18.4 mm2.

8. ACKNOWLEDGMENTS

The authors would like to thank the reviewers of HPCA
2015 as well as Charlotte Bolliger for their comments.

REFERENCES

[1] J. H. Ahn, S. Choo, and J. Kim, “Network within a Network Approach
to Create a Scalable High-Radix Router Microarchitecture,” in Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE,
2012, pp. 1–12.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz et al., “DCTCP: Efficient
Packet Transport for the Commoditized Data Center,” in Proc. ACM
SIGCOMM, New Delhi, India, Aug. 2010.

[3] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-
speed Switch Scheduling for Local-Area Networks,” ACM Transactions
on Computer Systems, vol. 11, no. 4, pp. 319–352, 1993.

[4] H. J. Chao, Z. Jing, and S. Y. Liew, “Matching Algorithms For
Three-Stage Bufferless Clos Network Switches,” IEEE Communications
Magazine, vol. 41, pp. 46–54, Oct. 2003.

[5] N. Chrysos and M. Katevenis, “Scheduling in Non-Blocking, Buffered,
Three-Stage Switching Fabrics,” in Proc. IEEE INFOCOM, Barcelona,
Spain, Apr. 2006.

[6] N. Chrysos, F. Neeser, M. Gusat, C. Minkenberg, W. Denzel, and
C. Basso, “All Routes to Efficient Datacenter Fabrics,” in Proc. INA-
OCMC, Berlin, Germany, Jan. 2014.

[7] N. Chrysos, N. Neeser, R. Clauberg, D. Crisan, K. Valk,
C. Basso, C. Minkenberg, and M. Gusat, “Unbiased QCN for
Scalable Server-Fabrics,” IBM Research Report, RZ3880, October
2014. [Online]. Available: http://domino.research.ibm.com/library/ cy-
berdig.nsf/papers/EF857B498A21B3EF85257D6A002E2235

[8] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
Output Queueing with a Combined Input/Output-Queued Switch,” IEEE
Journal Selected Areas in Communications, vol. 17, no. 6, pp. 1030–
1039, Jun. 1999.

[9] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., 2003.

[10] H. Eberle, A. Chow, B. Coates, J. Cunningham, R. Drost, J. Ebergen,
S. Fairbanks, J. Gainsley, N. Gura et al., “Multi-Terabit Switch Fabrics
Enabled by Proximity Communication,” in IEEE Hot-Chips, 2007.

[11] K. Y. Eng, M. J. Karol, and Y.-S. Yeh, “A Growable Packet (ATM)
Switch Architecture: Design Principles and Application,” IEEE Trans-
actions on Communications, vol. 40, no. 2, pp. 423–430, 1992.

[12] H. N. Gabow and O. Kariv, “Algorithms for Edge Coloring Bipartite
Graphs and Multigraphs,” SIAM Journal on Computing, vol. 11, no. 1,
pp. 117–129, 1982.

[13] M. Haney, R. Nair, and T. Gu, “Chip-scale Integrated Optical Inter-
connects: A Key Enabler for Future High-Performance Computing,” in
SPIE OPTO. International Society for Optics and Photonics, 2012.

[14] J. Kim, W. J. Dally, J. Dally, and D. Abts, “Adaptive Routing in High-
Radix Clos Networks,” in Proc. ACM/IEEE SC, 2006.

[15] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture of
a High-Radix Router,” in ACM SIGARCH Computer Architecture News,
vol. 33, no. 2. IEEE Computer Society, 2005, pp. 420–431.

[16] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Addison-Wesley Professional, 2014.

[17] J. Koehl, D. E. Lackey, and G. Doerre, “IBM’s 50 Million Gate ASICs,”
in Proc. Asia and South Pacific Design Automation Conference. ACM,
2003, pp. 628–634.

[18] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued
Switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, 1999.

[19] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis,
“Evaluating Bufferless Flow Control for On-Chip Networks,” in Proc.
IEEE/ACM NoCS, 2010.

[20] D. A. Miller, “Device Requirements for Optical Interconnects to Silicon
Chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.

[21] G. Mora, J. Flich, J. Duato, P. Lopez, E. Baydal, and O. Lysne, “Towards
an Efficient Switch Architecture for High-Radix Switches,” in Proc.
ACM/IEEE ANCS, 2006.

[22] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing in
On-Chip Networks,” in ACM SIGARCH Computer Architecture News,
vol. 37, no. 3. ACM, 2009, pp. 196–207.

[23] E. Oki, Z. Jing, R. Rojas-Cessa, and H. J. Chao, “Concurrent Round-
Robin-Based Dispatching Schemes For Clos-Network Switches,”
IEEE/ACM Transactions on Networking, vol. 10, no. 6, 2002.

[24] P. Pappu, J. S. Turner, and K. Wong, “Work-Conserving Distributed
Schedulers for Terabit Routers,” in Proc. ACM SIGCOMM, Portland,
Oregon, Sep. 2004.

[25] G. Passas and M. Katevenis, “Asynchronous Operation of Bufferless
Crossbars,” in Proc. IEEE HPSR, Jun. 2007.

[26] G. Passas, M. Katevenis, and D. Pnevmatikatos, “Crossbar NoCs are
Scalable Beyond 100 Nodes,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, no. 4, pp. 573–585,
2012.

[27] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and
L. Benini, “Bringing NoCs to 65 nm,” IEEE Micro, vol. 27, no. 5, pp.
75–85, 2007.

[28] R. Rajamony, L. B. Arimilli, and K. Gildea, “PERCS: The IBM
POWER7-IH High-Performance Computing System,” IBM Journal of
Research and Development, vol. 55, no. 3, pp. 3–1, 2011.

[29] R. Rojas-Cessa, E. Oki, and H. J. Chao, “On the Combined Input-
crosspoint Buffered Switch with Round-Robin Arbitration,” IEEE
Transactions on Communications, vol. 53, no. 11, pp. 1945–1951, 2005.

[30] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The Blackwidow High-
Radix Clos Network,” in ACM SIGARCH Computer Architecture News,
vol. 34, no. 2, 2006, pp. 16–28.

[31] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. Pinckney,
G. Blake, M. Cieslak, R. Das, T. F. Wenisch, D. Sylvester et al.,
“Swizzle-Switch Networks for Many-Core Systems,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 2,
pp. 278–294, 2012.

[32] Y. Tamir and G. L. Frazier, “Dynamically-Allocated Multi-Queue
Buffers for VLSI Communication Switches,” IEEE Transactions on
Computers, vol. 41, no. 6, pp. 725–737, 1992.

[33] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks,”
in Proc. ACM SIGCOMM, Helsinky, Finland, August 2012.

