
1

Unbiased QCN for Scalable Server-Fabrics
Nikolaos Chrysos∗, Fredy Neeser∗, Rolf Clauberg∗, Daniel Crisan∗,

Kenneth Valk†, Claude Basso†, Cyriel Minkenberg∗, and Mitch Gusat∗
∗IBM Research - Zurich, Switzerland, †IBM Systems & Technology Group, Rochester, USA

Abstract—Ethernet is the predominant Layer-2 network-
ing technology in the datacenter, and evolving into an
economical alternative for high-performance computing
clusters. Ethernet traditionally drops packets in the event
of congestion, but IEEE introduced lossless class services
to enable the convergence of storage and IP networks.
Losslessness is a simple, well-known concept, but its ap-
plication in datacenters is hampered by the fear of ensuing
saturation trees. In this work, we aim to accelerate the
deployment of Quantized Congestion Notification (QCN).
In particular, we first eliminate the intrinsic unfairness
of QCN under typical fan-in scenarios by installing the
congestion points at inputs, instead of at outputs as
standard QCN does. We then demonstrate that QCN at
input buffers cannot always discriminate between culprit
and victim flows. To overcome this limitation, we propose a
novel QCN-compatible marking scheme, namely occupancy
sampling. We have implemented these methods in a server-
rack fabric with 640, 100G Ethernet ports.

Index Terms—Converged Datacenter Networks, Switch-
ing Fabrics, Congestion Control, 100G Ethernet.

I. INTRODUCTION

Ethernet, which is the prevailing networking technol-
ogy in datacenters, faces a challenge. If an Ethernet net-
work prevents packet drops (i.e., if it is lossless), it can
easily choke under bursty workloads, thus producing less
and frequently delayed useful work. However, if it drops
packets (lossy), it has to disengage from encompassing
Fibre Channel over Ethernet (FCoE) and RDMA over
Converged Ethernet (RoCE), which port storage, cluster
and IP traffic in converged, lossless LAN networks.

For computer architects and the general parallel com-
puting community, lossless networks are not that new.
Examples are PCI, Infiniband, and many proprietary,
on-chip and off-chip computer interconnects. However,
most of today’s datacenter networks are lossy. Lossy
datacenter networks are known to have several serious
performance issues with distributed applications. In TCP
incast, for example, storage flows that fan-in into a server
experience a throughput collapse in synchrony due to

repetitive packet drops. Numerous proposals have been
made to mitigate this effect, but the most effective and
intuitive one is to enable link-level flow control in the
network [1].

The benefits of lossless networks accrue when con-
sidering scale-out workloads, such as real-time, delay-
sensitive applications that are typical for commercial
datacenters or BigData analytics. As suggested in [2],
a service that distributes work to 100 nodes may ex-
perience an unacceptable delay on 63% of the times
it is deployed even if only 1% of the (network) flows
is delayed; recovering from packet drops in software
(e.g., using TCP retransmission timers) can increase
flow completion times (FCTs) by more than an or-
der of magnitude. Lossless networks were shown to
reduce query completion times for Partition/Aggregate
workloads [3]. Furthermore, lossless operation is equally
important for virtual, software-based networks; enabling
flow control in both the physical network and the virtual
switch was shown to reduce FCTs by up to 7x for
Partition/Aggregate queries [4].

A. Lossless Ethernet

To enable lossless services, IEEE first introduced
(802.3x) PAUSE, a link-level flow control similar to
Stop&Go. Recently, IEEE also standardized Priority
Flow Control (PFC) for Converged Enhanced Ether-
net (CEE) networks. The different priority levels are
assigned private buffers in front of links. Within each
priority, PFC acts as 802.3x PAUSE, but a PAUSEd
priority does not affect the others, which is similar to
virtual channel flow control in multiprocessor networks.
Nevertheless, the industry is still reluctant to enable
link-level flow control, mainly because it can induce
saturation trees. These are formed when a number of
congested flows fill up the link buffers in front of a
link. Because of the flow control, the backlogs from
such congested flows can backpropagate, thus forming

2

a saturation tree. The bad news is that such congestion
spreading can block any packet, regardless of whether it
belongs to a congestive flow (culprit) or to an innocent
flow (victim).

To counteract saturation trees, IEEE (802.1Qau) has
standardized a congestion control scheme for Ether-
net networks, called Quantized Congestion Notification
(QCN) [5]. QCN installs Congestion Points (CPs) at
switch output queues. Each CP samples the arriving
frames (i.e., Ethernet packets) according to a sampling
interval, and characterizes the queue congestion by two
state variables: position (offset), defined with respect to
an equilibrium setpoint Qeq as Qoff(t) , Q(t) − Qeq,
and velocity, Qδ(t) , Q(t) − Qold. When the CP
detects congestion, in the sense that the feedback value
Fb , Qoff + w · Qδ is positive, it sends a Congestion
Notification Message (CNM) to the source of the most
recent frame (or flow), which is considered the culprit.
Converged Network Adapters (CNAs) at the sources react
to CNMs by instantiating set-aside queues and QCN
Rate Limiters (RLs) for the congested flows. In response
to CNMs, a RL multiplicatively decreases its injection
rate as a function of the feedback value; in the absence
of CNMs, it autonomously increases the injection rate.

QCN is an elegant congestion management scheme,
but its deployment in real-world switching environments
is challenging. In this paper, we address a number of
QCN implementation issues, including fairness.

B. Contributions

Our main contributions are the following.
1) Using QCN, we achieve fair throughputs in fan-in

scenarios by re-placing the CPs from the switch
outputs to the switch inputs.

2) We propose a new flow marking scheme for QCN
that is able to identify the culprit flows for non-
FIFO frame departures,

3) We report the implementation of our mechanisms
in a server-rack fat-tree fabric with 640 100G
Ethernet ports.

II. QCN FOR SERVER-RACK FABRICS

Packet switches may comprise a single-stage crossbar
or shared-memory chip, or a multi-stage interconnec-
tion network of multiple smaller switching elements.
Standard QCN is based on an idealized and generic
output-queued switch and allocates one CP at each

output buffer [6][5, Sec. 30.2.1]. However, to avoid the
excessive memory throughput of pure output queuing,
scalable switching fabrics, in addition to output buffers,
must employ input buffers as well. Our results apply
to such combined-input-output-queued (CIOQ) switches
and switching fabrics [7].

In CIOQ switches, the incoming data frames are
stored in Virtual Output Queues (VOQs) in front of
the internal interconnect, and a scheduler is responsible
for transferring them to their targeted output queue.
Although such VOQ-based architectures avoid head-of-
line (HOL) blocking, they cannot prevent buffer hogging,
where a congested flow monopolizes an input buffer.
Ethernet congestion control, QCN, is designed to throttle
the congested VOQ (flow) and protect the innocent
ones. In this paper, we describe an advantageous QCN
architecture with CPs at switch inputs, which we have
implemented in a high-performance server-rack fabric.

Traditionally, datacenters used tree-like networks.
These topologies have less capacity at layers closer to the
root and cannot accommodate the aggregate bandwidth
of all servers. To cope with the increasing volume of
inter-server traffic, modern datacenters turn to flattened
networks, based on the fat-tree topology, which can offer
full-bisection bandwidth.

Our fabric, shown in Fig. 1, uses a two-level fat-tree
(spine-leaf) topology—every leaf switch is connected to
every spine switch (Fig. 1(b)). The leaf switches are
integrated into the backplane of the racks, and each
one constitutes the network edge for five (5) servers,
providing a 100 Gb/s (bidirectional) link to every server.
The fabric supports four racks, with 32 edge switches
each, thus providing a total of 640 100G ports. The
leaf switches have dedicated input and output buffers per
port and per priority level. At its ingress interface, a leaf
switch segments the incoming frames into variable-size
fabric-internal packets (or cells), and stores the latter in
256B buffer units that are linked together to form VOQs.
Each packet can use any of the available leaf-to-spine
links, as enforced by a packet-level spraying mechanism
that overcomes the limitations of flow-level hashing
[8]. The original Ethernet frames are reordered and
reassembled at their egress leaf switch (output buffers),
and forwarded to their destination server.

The spines themselves are cell-based, CIOQ switching
elements, agnostic of the higher-level protocols. They
reside in separate chassis, and each one provides 136,
25 Gb/s ports, enabling high-density (indirect) connec-

3

Figure 1. (a) A distributed server-rack fabric, comprising four racks and 640 servers, which are connected to a fat-tree network using 100G
Ethernet links. (c) One ingress leaf switch is shown with its input buffer hosting the VOQs. An adapter (CNA) connecting to one port of the
ingress leaf switch is also shown. When the input buffer occupancy reaches Qhigh, the input port sends a STOP to the CNA, which does not
forward new data until it receives a GO.

tions among the leaf switches. The spines feature small
input and output buffers (16 cells per port), which
are flow controlled using hop-by-hop backpressure. We
use 32 spines in our four-rack system. With 32, 25
Gb/s links per leaf switch connecting to the spines, the
fabric features an over-provisioning ratio of 8:5; this
speedup accommodates any internal overhead, leaving
some headroom to compensate for scheduling inefficien-
cies.

An edge-to-edge request-grant credit scheme is used
to schedule the VOQ injections towards the egress
buffers[9]. Before injecting a frame into the fabric, a
VOQ must issue a request to the target output credit
arbiter. The latter grants credits to the requesting VOQs
using a round-robin-like discipline. Request and grants
are 10B messages, routed through the spine switches.

VOQs sharing input buffers: The buffer sizes in our
fabric are approximately 150 KB per (input/output) port,
and per Ethernet priority level. At each input, the VOQs
of the same priority level share their buffer resources
[10]. Effectively, as shown in Fig. 1(c), a VOQ that
makes slow progress can fill up its input buffer, trigger-
ing a STOP (PAUSE) message to the upstream CNA.
The PAUSE message will prevent buffer overflow by
stopping all flows in the same priority level, irrespective
of their destination. To counteract this needless blocking,
we installed CPs at switch outputs, as recommended in
[5]. Deviating from [5], we also installed CPs at switch
inputs. The next section shows that it is preferable to
activate the input CPs instead of the output ones.

III. RESOLVING QCN UNFAIRNESS

Standard QCN employs CP at switch outputs. The
trend towards switching fabrics with input buffers [7]
suggests the possibility of installing QCN CPs at switch
inputs instead of at switch outputs. QCN at an input
buffer should detect overload, mark and throttle the cul-
prit flow(s), and, using an appropriate Qeq, keep the input
buffer backlog below the Qhigh threshold, thus avoiding
the exertion of PAUSE. Note that the CNMs generated at
inputs do not have to traverse the switch (from one port
to another). Hence they neither consume fabric-internal
bandwidth nor incur any additional delays. But, most
importantly, as we demonstrate below, this alternative
improves the fairness properties of standard QCN.

We evaluate various QCN alternatives on the fabric
described in Sec. II, using a detailed C++ computer
model. The Qhigh (PAUSE-STOP threshold) is 110 KB,
and the Qlow (PAUSE-GO threshold) 44 KB. QCN
equilibrium point Qeq = 60 KB. Finally, the QCN base
sampling interval Is = 150 KB, and the RL reaction time
is 2.4 µs. In our experiments, we use 1522B frames
for data traffic and 64B frames for PAUSE and QCN
messages. We measure the raw throughputs of flows,
which include the 20B per-frame overhead for the inter-
frame gap, preamble and start frame delimiter.

To simplify the comparisons with recent literature
and the IEEE 802 archives, we consider servers with
10G interfaces and standard QCN parameter settings
[5]. We have also experimented with 100G links, and
the results are qualitatively the same [8]. In our first
experiment, we simulate a fan-in scenario on top of the

4

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 (G

b/
s)

Time (millisecond)

f5

f4

f3

f2

f1

f4

f3

(a) QCN at switch outputs

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400
Th

ro
ug

hp
ut

 (G
b/

s)

Time (millisecond)

f5

(b) QCN at switch inputs

f1
f2
f3
f4

f1
f2
f3
f4
f5

f5 Q
C

N
 a

t
o
u
tp

u
ts

Q
C

N
 a

t
in

p
u
ts time

flow f5 becomes active

Approximate time-series of the per-flow CNMs

I times

(c) Timing of CNMs

Figure 2. (a,b) Per-flow throughputs under a fan-in traffic scenario, where flows f1-f5 target the same destination. Flow f5 is active between
100 and 200ms. All configurations use PAUSE to sustain lossless operation. Experiments on the network of Fig. 1 with 10G servers. (c) The
time-series of the per-flow CNMs. With QCN at outputs (industry-standard), the CNMs are serialized by the output CP; in contrast, with QCN
at inputs, all inputs can issue CNMs in parallel.

fabric in Fig.1. Four full-bandwidth flows (f1-f4) that
source from different input ports (and different spines)
target a common destination. The system first stabilizes,
and then, during 100-200ms, a new congestive flow (f5),
from a separate input port, joins the fan-in.

Figures 2(a,b) depict the per-flow throughputs. With
QCN at switch outputs, as in Fig. 2(a), the allocation
is grossly unfair. Within 10-100ms, flow f2 gets 1.5×
the rate of f3, while f4 and f1 lie in the middle. Just
after it arrives at 100ms, flow f5 plummets from 10 to
approximately 2.5 Gb/s. However, f5 ends up with about
three times the rate of f3. Finally, when f5 stops, at
200ms, the rates of flows f1-f4 increase and stabilize at a
new unfair allocation. The unfairness of QCN at outputs
is to be attributed to the sampling errors, which are
described below. In contrast, QCN at inputs (Fig. 2(b))
achieves strikingly precise fair rates. Interestingly, the
system finds the new fair shares even when flow f5
becomes active at 100ms, despite the fact that f5 starts
from a much higher rate than what other flows have at
that time.

Figure 2(c) depicts the timing of the per-flow CNMs,
separately for QCN CPs at the outputs and for QCN
CPs at the inputs. Note that this figure does not present
actual simulation data, but, nevertheless, it agrees with
them quantitatively. With QCN at outputs, the CP
at the bottleneck acts as a centralized serializer in a
global feedback loop: It will stochastically sample an
arbitrary interleaving of packets received from different

flows/inputs. This process leads to transient unfairness
episodes, whereby the same source may be notified not
only earlier than its competitors at the bottleneck, but
also repeatedly (two or more times in a row). Hence
such sources may be rate-limited earlier and stronger. In
contrast, with QCN at inputs, every congested flow is
associated with a separate CP. These (N) CPs generate
CNMs in parallel, each in proportion to the arrival
rate of the corresponding flow. Thus, our system can
sample the flows N times faster than the standard QCN.
Working on the individual flows, before their arbitrary
interleaving at the output, the proposed solution avoids
the stochastic serialization of CNMs that is present with
QCN at outputs, and yields fair flow throughputs.

IV. SELECTING A FLOW TO THROTTLE

Beyond the statistical errors of a single congestion
point, there is a fundamental limitation in the flow
sampling method of QCN. As outlined in Fig. 3(a) and
further described below, QCN may work correctly with
FIFO-scheduled buffers, but it does not do so with an
arbitrary service policy.

A. QCN arrival sampling: Policing flow speed

Consider the fan-in scenario of the previous section
but now with one of the inputs hosting two flows instead
of one: flow f1, which targets the congested output
as before, at a rate of 3 Gb/s, and a new flow f6,

5

µ1

shared buffer

λ1
f1

λ6 = µ6 > λ1 > µ1

λ6
f6

µ6

(a) Illustration of arrival sam-
pling vs. occupancy sampling

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400
Th

ro
ug

hp
ut

 (G
b/

s)

Time (millisecond)

f1 (culprit)
f6 (victim)

f6

f5

f1-4

f2 (hot)
f3 (hot)
f4 (hot)
f5 (hot)

(b) Per-flow throughputs:
arrival-sampling QCN at
inputs

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 (G

b/
s)

Time (millisecond)

f6

f1-4

f5

(c) Per-flow throughputs:
PAUSE-only

0

2

4

6

8

10

50 100 150 200 250 300 350 400

Th
ro

ug
hp

ut
 (G

b/
s)

Time (millisecond)

Random
Deterministic

Arrivals sampling

Occupancy sampling

(d) Victim flow (f6) through-
put with QCN at inputs;
comparison of flow-marking
schemes

Figure 3. (a) Two flows, f1 and f6, arrive at the same input buffer, but depart in non-FIFO order. Flow f6 has a greater arrival rate than f1, but
does not build a backlog because its departure rate is just as big. However, flow f1 backlogs because its departure rate is small. QCN arrival
sampling will direct most CNMs to f6, because its frames arrive more frequently. In contrast, occupancy sampling sends most CNMs to the
flow with the higher backlog, namely, f1. (b-d) Same scenario as in Fig.2, but with one input hosting an additional flow, f6, which targets an
uncongested output. Experiments on the network of Fig. 1 with 10G servers.

which targets an unrelated, uncongested output at 7 Gb/s.
Thanks to the VOQs that are implemented at their input
buffers, the two flows may depart in non-FIFO order.
Ideally, flow f1 should achieve between 2 and 2.5 Gb/s,
depending on whether flow f5 is also active (true for 100-
200ms), and flow f6 should stay at 7 Gb/s throughout the
experiment.

Surprisingly, as shown in Fig. 3(b), when we enabled
QCN at the inputs, the two flows had equal rates.
Deciding to send the congestion notification to the source
of the most recently arrived frame, QCN penalizes a
flow, fn, based on its contribution λn(t) to the overall
arrival rate λ(t) =

∑N
i=1 λi(t), ignoring its departure

rate µn(t). Therefore, standard QCN sends congestion
notifications to flows in proportion to their arrival rates.
Applying this to our current example suggests that if flow
f6 has a higher rate than f1 it will also have a higher
probability to receive a congestion notification. But the
input buffer occupancy cannot stabilize before the rate
limiter of f1 has converged at f1’s departure rate. As a
result, f6 is also throttled towards f1’s fair share. Note
that in this scenario the PAUSE-only solution performs
better than standard-QCN at the inputs, as shown in
Fig. 3(c). Without rate limiters, the rates of the flows
are indiscriminately modulated by PAUSE. Effectively,
because flow f6 has an arrival rate 7

3× higher than that
of f1, also its departure rate is 7

3× higher.

B. QCN occupancy sampling: Policing flow backlog
In this section, we modify QCN marking to make it

compatible with our notion of congestion points at the
inputs of switching fabrics. The key idea is to use the rate
mismatch λn(t)−µn(t) as a discriminator when selecting
which flow to throttle. In addition, our solution exploits
the fact that a buffer acts as a rate mismatch integrator.
In a lossless system, the contribution of flow fn to
the congestion point buffer occupancy with given initial
condition is qn(t) = qn(0) +

´ t
0
(λn(τ)− µn(τ)) dτ .

The methods that we describe below use the input
buffer occupancy of a flow as a cost function. As done
in standard QCN, we generate a congestion notification
message in response to the arrival of Is bytes of payload
[5], if the buffer is found congested, i.e. if the feedback
value is positive (Fb(t) > 0). But instead of sending
the congestion notification to the source of the frame
that just arrived, we send it to the flow with the highest
occupancy in the buffer monitored. Our first method,
deterministic occupancy sampling, assuredly identifies
the flow with the largest (average) rate mismatch. A
graphical representation of how it resolves the problems
of arrival sampling is provided in Fig. 3(a). In principle,
there can be as many flows active in the congestion point
as there are buffer slots. Therefore, maintaining a priority
queue to sort flows may not scale well with increasing
port speeds and buffer sizes.

Our second method, random occupancy sampling

6

eliminates the priority queue, and selects a culprit by
randomly picking one occupied buffer slot and locating
the corresponding frame header. The random selection
will pick a particular flow with a probability given by the
fraction of the overall congestion point buffer occupancy
q(t) =

∑N
i=1 qi(t) taken by this flow. Hence, random

QCN occupancy sampling has an (instantaneous) flow
sampling probability P (s)

n (t) = qn(t)/q(t). Observe that
random occupancy is stateless in the sense that it does
not keep track of the flow buffer occupancies.

Figure 3(d) shows the throughput of the innocent flow,
f6, in the fan-in scenario, in which arrival sampling
failed. As can be seen, with occupancy sampling, be it
deterministic or random, flow f6 achieved its 7 Gb/s fair
share. This is a huge improvement over standard QCN
(arrival) sampling, which bounds f6 to the rate of f1.

Although the deterministic and random variants of
occupancy sampling yield equal throughputs in this
experiment, they do not perform exactly the same.
Additional results in [8] show that random occupancy
sampling issued some (but only few) CNMs to the victim
flow f6, whereas the deterministic variant did not issue
any. Nevertheless, this difference has no impact on the
throughput behavior.

V. IMPLEMENTATION

We have implemented the leaf and spine switches us-
ing 32nm technology in 19.7×19.7 mm2 and 18.4×18.4
mm2, respectively. All switches operate at 454 MHz, and
their power consumption is approximately 105 W (leaf)
and 155 W (spine). The fall-through frame latency inside
the fabric is approximately 1µs.

The QCN random occupancy sampling is imple-
mented at the (100G) ingress ports of leaf switches.
QCN has a fixed cost, whether one positions the CPs
at the inputs or at the outputs of a switch. In our
implementation, we have independent CP instances per
server-side port and priority level. Every such port also
has a CulpritArray with as many words as there are
buffer units for the port, 12K in our fabric. These words
keep the priority level of their corresponding (stored)
frame and a pointer to the buffer unit that stores its
header, where the Ethernet source address can be found.
When Is new bytes have been received on a priority
level, and the corresponding feedback value is positive,
the CP instance generates random addresses to sample
the CulpritArray until it hits a valid word. This search
is repeated until a frame of the targeted priority level is

found. Having identified a proper culprit frame, the CP
instance uses its source address to generate the CNM.
Each CP instance generates CNMs at a peak rate of one
CNM per 100 frames received.

The word size in our implementation is 20 bits
(pointer to head buffer, priority level, valid-bit,
ECC/parity), thus the overhead is less than 1% of
other data stored per buffer (256B payload plus VOQ
structures.) The width of the CulpritArray SRAM is 320
bits, thus a single read gives information on 16 buffer
units that can be processed in parallel. Finally, if random
addresses fail to find a culprit after a number of searches,
then our engine sequentially searches the CulpritArray
word by word.

VI. RELATED WORK

AF-QCN, another proposal that improves on the stan-
dard QCN, is presented in [11]. AF-QCN augments
QCN congestion points with per-flow rate measurements,
enabling weighted fairness of link bandwidth. However,
AF-QCN does not address the sampling limitations of
QCN, which we identified and tackled in the present
paper via a stateless solution. Related in concept with
occupancy sampling, albeit in the lossy context, are
derivatives of the push-out method [12].

In a technical report [8], we (i) demonstrate that
QCN occupancy sampling works well on 100G links,
(ii) study how to reduce the duration of PAUSE using
a keep-alive mechanism, and (iii) present the evolution
of input and output buffer occupancies. Also, [9] shows
that our QCN architecture adapts well to multicast traffic,
whereas standard QCN at switch outputs may needlessly
penalize multicast flows.

Infiniband congestion control ignores the velocity of
the queue buildup when determining congestion, but
marks every packet once a queue has become congested;
thus, it overcomes the unfairness introduced by the
random sampling of QCN. Infiniband switches cannot
generate packets, and they instead set a flag in con-
gested packets, causing the endpoint receivers to send
the congestion notifications back to the culprit sources.
However, in doing so, the feedback control loop is
stretched, making it difficult to keep it stable [13].

RECN is another interesting congestion control
method for interconnection networks [14]. However,
RECN dynamically allocates per-flow queues inside
the switching nodes, which complicates switch design.
RECN also assumes proprietary flow control messages

7

being exchanged among nodes; therefore, it is not clear
how RECN can work in Ethernet networks that use
PAUSE flow control.

VII. CONCLUSIONS & FUTURE WORK

Our work builds on the newly standardized QCN [5].
We have introduced an alternative congestion manage-
ment architecture that positions the QCN congestion
points at the inputs rather than outputs of modern
switches and switching fabrics. The decisive advantage
of our proposal is its deterministic fairness under fan-
in traffic scenarios, which are typical in datacenters. In
addition, we have described (i) a new QCN-compatible
congestion marking scheme, suitable for the scheduled
departures out of the switch input buffers, and (ii) a
practical stateless implementation that randomly picks
an occupied unit within the buffer to identify congestive
flows.

We have presented an exemplary embodiment of our
results in server-rack, fat-tree networks that offer full
bisection bandwidth. Nevertheless, our results are appli-
cable to other single- or multi-stage switch or network
supporting converged Ethernet and QCN. Additional
work is required to examine the performance of QCN
at the inputs of internally blocking networks. Our pre-
liminary results on Dragonfly-like topologies [15] show
that QCN occupancy sampling at the inputs can throttle
internally bottlenecked flows, as the VOQs of these
flows will backlog, whereas QCN at the outputs remains
oblivious of the internal backlogs. A difficulty arises
because, due to backpressure, innocent flows may also
backlog, albeit at a lower pace.

REFERENCES

[1] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP Incast Throughput Collapse in Datacenter
Networks,” in Proc. ACM SIGCOMM Workshop for Research on
Enterprise Networks (WREN), 2009.

[2] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications
of the ACM, vol. 56, pp. 74–80, 2013.

[3] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “De-
Tail: Reducing the Flow Completion Time Tail in Datacenter
Networks,” in Proc. ACM SIGCOMM, Helsinky, Finland, August
2012.

[4] D. Crisan, R. Birke, N. Chrysos, C. Minkenberg, and M. Gusat,
“zFabric: How to Virtualize Lossless Ethernet?” in Proc. IEEE
Cluster, Madrid, Sept. 2014.

[5] 802.1Qau - Virtual Bridged Local Area Networks - Amendment:
Congestion Notification, IEEE Std., 2010. [Online]. Available:
http://www.ieee802.org/1/pages/802.1au.html

[6] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,
R. Pan, B. Prabhakar, and M. Seaman, “Data Center Transport
Mechanisms: Congestion Control Theory and IEEE Standardiza-
tion,” in Proc. Allerton Conference on Communication, Control,
and Computing, Sept. 2008.

[7] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Match-
ing Output Queueing with a Combined Input/Output-Queued
Switch,” IEEE Journal Selected Areas in Communications,
vol. 17, no. 6, pp. 1030–1039, Jun. 1999.

[8] N. Chrysos, N. Neeser, R. Clauberg, D. Crisan, K. Valk, C. Basso,
C. Minkenberg, and M. Gusat, “Unbiased QCN for Scalable
Server-Fabrics,” IBM Research Report, RZ3880, October 2014.

[9] N. Chrysos, F. Neeser, B. Vanderpool, K. Valk, M. Rudquist,
T. Greenfield, and C. Basso, “Integration and QoS of Multicast
Traffic in a Server-Rack Fabric with 640 100G Ports,” in Proc.
ACM/IEEE ANCS, Marina del Rey, CA, Oct. 2014.

[10] Y. Tamir and G. L. Frazier, “Dynamically-Allocated Multi-Queue
Buffers for VLSI Communication Switches,” IEEE Transactions
on Computers, vol. 41, no. 6, pp. 725–737, 1992.

[11] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar,
“AF-QCN: Approximate Fairness with Quantized Congestion
Notification for Multi-tenanted Data Centers,” in Proc. IEEE Hot
Interconnects, 2010.

[12] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe - A Stateless
Active Queue Management Scheme for Approximating Fair
Bandwidth Allocation,” in Proc. IEEE INFOCOM, March 2000,
pp. 942–951.

[13] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney,
T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato,
“Solving Hot Spot Contention Using Infiniband Architecture
Congestion Control,” in Proc. HP-IPC, 2005.

[14] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. García, and
T. N. Frinós, “A New Scalable and Cost-Effective Congestion
Management Strategy for Lossless Multistage Interconnection
Networks,” in HPCA. IEEE Computer Society, 2005.

[15] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven,
Highly-Scalable Dragonfly Topology,” ACM SIGARCH Computer
Architecture News, vol. 36, no. 3, pp. 77–88, 2008.

Nikolaos Chrysos (nchrysos@ics.forth.gr) is with FORTH - Hellas,
working on interconnection networks for high-density, Exascale-class
datacenters and high-performance computers, and on virtualized het-
erogeneous systems. He holds MSc and PhD degrees from the Univer-
sity of Crete, Greece. From 2009 to 2014, he was with IBM Research
- Zurich, where he contributed to the design and implementation of
server-rack fabrics for 100G Ethernet.

Fredy Neeser (nfd@zurich.ibm.com) is a researcher at IBM Research
- Zurich working on high-speed interconnects and datacenter network-
ing. He contributed to Remote Direct Memory Access (RDMA) and
Soft-RDMA/iWARP, a software implementation of IETF’s iWARP
stack, and to the design of a chipset for 100 Gb/s Converged Enhanced
Ethernet (CEE), focusing on flow and congestion control.

8

Dr. Rolf Clauberg (cla@zurich.ibm.com) is a researcher with IBM
Research - Zurich working on cloud and computing infrastructure. He
holds a doctor of science degree and a diploma in physics from the
University of Cologne/Germany. Both thesis works were performed at
Forschungszentrum Julich in Germany.

Daniel Crisan (daniel.crisan@gmail.com) is a Site Reliability Engi-
neer at Google Switzerland. Previously he worked at IBM Research
Zurich in the System Fabrics group. His research interests include
datacenter networking and virtualization. He holds a PhD from ETH
Zurich and a M.Sc. in Computer Science from EPFL.

Kenneth M. Valk (kmvalk@us.ibm.com) received his B.S. and M.E.
degrees, both in Computer & Systems Engineering, from Rensselaer
Polytechnic Institute, Troy, NY, in 1991 and 1992 respectively. He
currently works for International Business Machines where he has
worked on network and cache-coherence hardware since 1992.

Claude Basso (basso2@fr.ibm.com) is an IBM Distinguished Engineer
at IBM Research working on Cloud Data Center networking. Claude
graduated from the “Ecole Nationale Superieure d’Informatique and
Mathematiques Appliquees”, Grenoble, France in 1981.

Cyriel Minkenberg (sil@zurich.ibm.com) is a Research Staff Member
at IBM Research - Zurich. He holds MSc and PhD degrees from
the Eindhoven University of Technology, The Netherlands. His cur-
rent research focuses on interconnection networks for exascale high-
performance computing systems and extreme-scale cloud data centers.

Mitch Gusat (mig@zurich.ibm.com) is a researcher and Master In-
ventor at IBM Research - Zurich. He holds Masters in CE, resp. EE,
from the University of Toronto and Timisoara. He is member of ACM,
IEEE, and holds a few dozen patents related to SDN, transports, HPC
architectures, switching and scheduling.

