Integration and QoS of Multicast Traffic
in a Server-Rack Fabric with 640 100G Ports

Nikolaos Chrysos,
Fredy Neeser
IBM Research—Zurich
{cry,nfd}@zurich.ibm.com

ABSTRACT

Flexible datacenters rely on high-bandwidth server-rack fab-
rics to allocate their distributed computing and storage re-
sources anywhere, anyhow, and anytime demanded. We
describe the multicast architecture of a distributed server-
rack fabric, which is arranged around a spine-leaf topology
and connects 640 Ethernet ports running at 100G. To cope
with the immense fabric speed, we resort to hierarchical,
tree-based replication, facilitated by specially commissioned
fabric-end ports. At each (port-to-port) leg of the tree,
a frame copy is forwarded after a request-grant admission
phase and is ACKed by the receiver. To save on bandwidth,
we use a packet cache in our input-queued switching-nodes,
which replicates asynchronously forwarded frames thus tol-
erating the variable-delay in the admission phase. Because
the cache has limited size, we loosely synchronize the mul-
ticast subflows to protect the cache from thrashing. We de-
scribe our policies for lossy classes, which segregate and pro-
vide fair treatment to multicast subflows. Finally, we show
that industry-standard Level2 congestion control does not
adapt well to one-to-many flows, and demonstrate that the
methods that we implement achieve the best performance.

Categories and Subject Descriptors

C.2.1 [Computer-communication networks|: Network
Architecture and Design

Keywords

Datacenter fabrics; server-rack interconnects; multicast

1. INTRODUCTION

Flexible performance-optimized datacenters (PoDs) rely
on high-bandwidth server-rack fabrics that expedite the on-
demand allocation of the available but distributed comput-
ing and storage capacity. Such versatile systems can be dy-
namically tailored to the specific needs of tenants or applica-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ANCS’14, October 20-21, 2014, Los Angeles, CA, USA.

Copyright 2014 ACM 978-1-4503-2839-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2658260.2658278.

Brian Vanderpool,
Mark Rudquist
IBM STG, Rochester, USA
{vanderp,rudquist}@us.ibm.com

Kenneth Valk,
Todd Greenfield,
Claude Basso
IBM STG, Rochester, USA
{kmvalk,toddg}@us.iom.com
basso2@fr.ibm.com

tions. At the same time, the datacenter users can capitalize
on network support for one-to-many (multicast) communica-
tion. Relevant enterprise and high-performance computing
applications include provisioning of financial servers, caching
of critical or popular data, n-redundant file stores, publish-
subscribe services, one-to-many collectives, all of which push
data to large numbers of receivers simultaneously. Efficient
network-level multicast transmission tapers off the server
load per message and moderates the network utilization.

In this paper we describe the multicast architecture of a
distributed server-rack fabric, based on a flattened spine-leaf
topology with 640 Ethernet ports at 100G. The provision of
sophisticated traffic management at the targeted scale de-
mands prudent and intelligent architectures. Our system
concentrates the frame processing, replication, and schedul-
ing functions at the network edges (leaf switches), which
are integrated inside the racks. This decision drastically
simplifies the spines, which in our design are ultra-high-
radix, shallow-buffered packet switches that enable dense
high-bandwidth connectivity.

Multicast traffic dramatically escalates the processing and
forwarding rates at fabric ports. In our implementation, a
port can process and forward a new (unicast) frame every
6.6 ns (the equivalent of 64B at 100G). Effectively, for 512B
frames or larger, a port can fanout to 8 peers at full 100G
speed. For system-level multicast groups, consisting of sev-
eral hundreds of listeners, we do (non-router-assisted [1])
hierarchical multicasting in hardware, which seamlessly in-
tegrates multicast with unicast processing, and narrows the
ACK implosion problem. The replication nodes are drawn
from a pool of specially commissioned fabric-end ports (sur-
rogates), thus releasing multicast destinations (user or ter-
minal ports) from the extra load. There is one surrogate
port per leaf switch, receiving frames from the fabric and
forwarding copies to local multicast destination ports and
to remote surrogate ports, deeper in the hierarchy. The fab-
ric employs credit-based flow control, from ingress to egress,
to prevent queue overflows. To recover from soft errors any-
where along the path, CRC, sequence numbers, and unicast
retransmissions on the failing port-pair leg are utilized.

We denote the number of terminal destinations of a multi-
cast flow (i.e., the cardinality of its fanout set, F') as |F/|. As
seen at a particular (source or surrogate) port, x, the local
fanout set, f(x), of a multicast flow consists of a combina-
tion of destinations (€ F') and surrogate ports. The port for-
wards the multicast flow by spawning | f(z)| unicast-oriented
subflows.

To forward a unicast frame from one port to another, we
use a reliable, distributed, request-grant/credit-ACK proto-
col. To transmit a frame, a port must first request and
be granted credits for the egress buffer at the target leaf
switch. Effectively, we forward the | f| multicast copies of a
frame asynchronously from one another—i.e., fanout or call
splitting [2, 3, 4]. On the other hand, typical input-queued
crossbars achieve line rate only when all copies are sent at
the same time. In our design, we achieve line rate forward-
ing with a multicast packet cache that replicates the asyn-
chronously forwarded copies. The packet cache is located
in front of the crossbar of edge switches, and can use up to
eight crossbar ports to simultaneously forward eight multi-
cast subflows at 100G. Because the cache has limited size,
it may have to evict useful packets. We loosely synchronize
the Virtual Output Queues (VOQ@s) that hold the copies of
a multicast flow to ward off such unwanted evictions.

A flow control action is imminent when a frame arrives at
a source port or when a frame loops back from the egress
to the ingress side of a surrogate port. If the frame belongs
to a lossy traffic class, we may decide to drop it when we
have run out of payload buffers. But besides the payload,
the multicast headers that we maintain for frame copies con-
sume space. To prevent a congested subflow, which makes
slow progress, from consuming too many headers, we may
also reject frame copies that target congested destinations,
using a per-VOQ drop. We have opted for an advantageous
drop-from-head policy, which overcomes the negative inter-
actions between tail-drop and VOQ synchronization. In ad-
dition, we randomize the drops, in a random-early-detection
fashion, to maintain fairness across the subflows.

If the arriving frame belongs to a lossless traffic class,
the port may issue a per-priority PAUSE message to avoid
losses. At ingress ports, these messages are standard Eth-
ernet PAUSEs that hold off the upstream network interface
from sending new frames from the indicated priority. At
surrogate ports, PAUSEs are fabric-internal messages, that
nevertheless perform a similar function: they prevent the
egress side of the surrogate, which receives fabric frames,
from forwarding new frames to the ingress side.

With lossless traffic classes, proper congestion manage-
ment is a key enabling technology. Without it, a congested
multicast flow can choke the fabric (at a given priority traf-
fic class). First, we demonstrate that the industry-standard
method, Quantized Congestion Notifications (QCN), does
not work properly with one-to-many multicast flows. Then
we demonstrate that our congestion management architec-
ture, first presented and evaluated for unicast traffic in [5],
which (a) places the QCN congestion points at fabric inputs
instead of fabric outputs, and (b) modifies the standard-
QCN marking scheme, works smoothly with multicast flows.

Our contributions are the following:

e We report the seamless integration of end-to-end reli-
able multicasting in a massive 100G Ethernet server-
rack fabric, implemented in 32 nm technology.

e We (i) propose a packet caching scheme that extends
the multicast capabilities of input-queued crossbars by
replicating delayed frame copies, and (i) describe a
productive subflow synchronization scheme.

e We present efficient flow control schemes for lossy mul-
ticast classes, demonstrate that industry-standard QCN

. T TS ~
| Appliance| | § 3 _’m | Appliance] §
- H < surrogate - H
: 3 : gon . H
- 3 : . (3
| S fmfpg CA| PP
~~o
Sead S
| Appliance 5 ~ Edge switch Appliance 5
L £
. | % ER> voos » = DB
- — -
- |8 EE> voos » = - |8
—
| Appliance| @ surro%z% voas _:E | Appliance| @
ingress =
fabric-. =
level _J —3
| EED V35 =
| Appliance §|I ~, | — | Appliance J |3
.§ P [CNA voas - = -;
. 2 [P [cNA vVOQs - = . &
: g DY voas > = : s
o —> @
Appli xbar — | Appli
[roviancs QED S oo > % 5
Figure 1: A distributed server-rack fabric connect-

ing the appliances in multiple racks (only two racks
are shown). The fabric has input (ingress) and out-
put (egress) buffers at the network-edge switches, and
small packet buffers at the spines. One port in every
edge switch is a surrogate, used in hierarchical multicast
replication.

does not work well with one-to-many flows, and pro-
pose a solution that mitigates the shortcomings of QCN.

e We evaluate the performance of our implementation
using several micro-benchmarks, full-system broadcasts,
as well as uniformly-destined, large multicast trees.

The remainder is structured as follows. In Sec. 2, we
present the underlying server-rack fabric, and the port-level
forwarding of multicast traffic. Continuing with Sec. 3, we
describe the crossbar packet cache and the VOQs synchro-
nization mechanisms. Section 4 describes our congestion
management for lossy and lossless traffic classes. Section 5
presents the formation of system-level replication trees us-
ing surrogate ports. Computer simulations throughout these
sections are used to evaluate the performance of the system
and to demonstrate important trade-offs. Finally, we discuss
our key design points in Sec. 6, and we conclude in Sec. 7.

2. FABRIC & FRAME PROCESSING

In this section we present the fabric topology, and outline
how multicast processing fits in the picture.

2.1 Server-rack fabric

In this paper we set out to enable efficient multicast traffic
support in the holistically-designed server-rack fabric shown
in Fig. 1, which provides 640 100G Ethernet and 256 PCle
Gen3 (x8) ports. Abstractly seen, the fabric is a large switch
built around a spine-leaf (fat-tree) topology. The main bulk
of memory storage is provided at fabric-input and fabric-
output (or ingress and egress) buffers in leaf switches, in a
similar fashion with Combined Input-Output Queued (CIOQ)
switches.

The leaf switches are integrated into the backplane of a
cluster of server racks. Every leaf constitutes the network-
edge point for five (5) servers, offering 100 Gb/s bandwidth

to each on a single Ethernet link. Additionally it offers
one surrogate and two PCle ports, for a total of eight (8)
main ports. Shown in Fig. 1 are also the Converged Network
Adapters (CNAs), which, for Ethernet traffic, constitute the
interface between the servers (P) and the fabric ports.

The leaf (or edge) switches, coordinated by a central con-
trol unit, are responsible for MAC learning, frame replica-
tion and forwarding, thus collectively acting as a distributed,
high-capacity bridge. Only Ethernet ports participate in
multicast communications. The forwarding tables of the fab-
ric are populated by snooping the multicast-group conver-
sations between hosts and routers that are carried through
Internet Group Management Protocol (IGMP) messages.

At its ingress side, an edge switch stores the incoming
frames in fabric-level (i.e., network-level) VOQs, segments
the frames into variable-size fabric-internal packets with a
size up to 256B, and injects the packets into the intercon-
nect. The journey of a packet (or cell) inside the inter-
connect sets off at a crossbar in the sourcing edge switch,
goes through a spine, and terminates at the crossbar of the
target edge switch. A packet can use any of the available
edge-to-spine links, as enforced by a packet-level spraying
routing mechanism that overcomes the limitations of Equal-
Cost-Multi-Path (ECMP) alternatives [6]. Link-level retry
is used when traveling between leaf and spine switches. The
original frames are reassembled at their target edge switch,
in egress buffers, and are forwarded to their destination in
order. (At surrogate ports, the forwarded frames are looped
back to the ingress side of the surrogate.) The source ports
receive an acknowledgment for each such forwarded frame to
release the ingress memory occupied. If a frame experiences
a soft error, its source port will retransmit it after a timeout.

Internally, the fabric uses hop-by-hop credit-based flow
control, thus obviating buffer overflows. The egress buffers
are flow controlled using a scheduled, port-to-port, credit
protocol: to inject a frame inside the fabric, a VOQ must
first request and be granted credits from the output-port
arbiter located at the target edge switch. The arbiter hands
out credits, which correspond to packet slots (buffer units)
in its local egress memory, using a variant of deficit round-
robin. The per-VOQ requests, grants, and ACKs, are 10-
byte messages, using the same links as data.

As shown in Fig. 1, the crossbar inside edge switches has
a dedicated 130 Gb/s interface (36 Bytes at 454 MHz) for
every main port. As described in Sec. 3, an Ethernet or sur-
rogate port can combine all these crossbar interfaces, eight
in total, to fanout to eight (8) new ports at 100G. The cross-
bar additionally provides eight (8) 130 Gb/s interfaces, each
attached to four (4) optical links that connect to the spines
at 25 Gb/s—please observe the crossbar-internal speedup.

The spines are cell-based, CIOQ switching elements, with
small input and output buffers (16 packets per port), obliv-
ious of the higher-level protocols. They reside in separate
chassis, and provide 136 25 Gb/s bidirectional ports that
can be arbitrarily connected with leaf switches. In the con-
figuration that we consider, there are 128 edge switches,
with 32 links, each connected to one of 32 available spines.
Thus, for Ethernet traffic, this configuration features an
over-provisioning ratio of 8:5 (=32-25:5-100), which accom-
modates the internal overheads, leaving some headroom to
compensate for scheduling inefficiencies.

The fabric has been implemented using 32 nm technology,
in 19.7x19.7 mm? for the leaf nodes and 18.4x18.4 mm? for

Table 1: System parameters

Parameter Value
Ingress terminal shared buf. Ty, (lossy) 185 KB
Ingress terminal ~ per-VL buf. (lossless) 227 KB
Ingress surrogate shared buf. (lossy) 84 KB
Ingress surrogate per-VL buf. (lossless) 32 KB
Egress terminal per-VL buf. 140 KB
Egress surrogate per-VL buf. 100 KB
PAUSE (ingress) STOP Qu; (lossless) 160 KB
PAUSE (ingress) GO Qiow (lossless) 90 KB
Term. VOQ drop Vin (lossy) 60 KB
Surr. VOQ drop Vi (lossy) 50 KB
Header pool high per-VL Hy; (lossy) 500 hdrs
Header pool low per-VL Higy (lossy) 470 hdrs
Header pool per-VL (lossless) 291 hdrs
Multicast cache number of entries C' 128 packets
VOQ sync block threshold 18 packets
VOQ sync resume threshold 12 packets
QOCN (ingress) Qeq (queue equil.) 90 KB
QOCN (egress) Qeq (queue equil.) 50 KB
QCN w (weight for AQ [7]) 2
QCN I, (sampling interval) 150 KB

the spines. The ingress and egress payload buffers in edge
switches use inexpensive on-chip EDRAMs and are parti-
tioned in buffer pools, per port and per virtual lane (VL).

Note that each VL corresponds to a single Ethernet prior-
ity level, configured to provide either lossy or lossless service.
Lossy VLs share their payload buffers at the ingress. For
lossless traffic classes, each VL is allocated private buffers,
and the ingress terminal port issues a (per priority level)
PAUSE message to its upstream CNA when the aggregate
occupancy of the VOQs in the corresponding VL exceeds
a threshold value, Qni. Furthermore, the CNAs implement
QOCN rate limiters, which throttle the injections of an Ether-
net flow in response to received congestion notification mes-
sages. The fabric has QCN congestion points at both fabric
outputs and fabric inputs.

Although this switching fabric may look far more com-
plicated than a standalone switch module, its port-to-port
scheduled flow control, coupled with its true multi-path rout-
ing and its internal over-provisioning, make it behave as a
large, fair, CIOQ switch.

Small-scale tests have been performed on real hardware.
In this paper, we report performance results from clock-cycle
accurate simulations. Table 1 summarizes the key simula-
tion parameters. We consider 40-meter links between the
spines and leaf switches—a full deployment of our system
may use even smaller links.

2.2 Queuing and scheduling of multicast frames

Frame replication and forwarding are executed at fabric-
input and surrogate ports. Surrogates look and act like other
ports, but they neither send nor accept external traffic. In-
stead, they loopback the frames that they receive from other
source or surrogate ports, replicating them for local and re-
mote destinations. The multicast headers of these copies are
stored in the VOQs at the ingress side of the surrogate.

Receiving a multicast frame, a port looks up its MAC
address in a local Forwarding Database (FDB) to obtain

other ports

CCl1 12131415 16_17 1819 101111211 100]
payload ———r - rra-ra-rCSTroa-r - 90 L i
ingress 1t | packet - payload N . baseline m—
mem Joad | T T | Q 80 | packet cache E
payloa oy 1! ' & nf 1
] ~
; o = 60 1
i write' b 2 s0f 1
L » Ly : payload : 2 4t |
1 hit E-yr/oad 1 fromport! | |] S ol 1
' 4 VoQs : | 1 | headers | 1 Foaf]
3 I AR
o headers . 'y | fromport, /1 | 4 0F T
d (I T T R T VAR P S B 0
%Ztalle e -5 : copies enter the crossbar _ 1 2 4 7
Port L W | (are replicated) asynchronusly . Local fanout (#num copies)
(a) Multicast cache (b) Parallel forwarding of copies (c) Throughput with and without the
multicast cache
Figure 2: (a) Replication of packets using the multicast cache and the input-queued crossbar. The cache is first

instructed to write the packet payload, and immediately receives the first header. The second copy, transmitted at
an arbitrary point in time, does not use the payload interface. Instead, only its header is sent to the cache, which

combines it with the stored payload and transfers the copy to the target fabric port.

crossbar input ports to forward packet copies in parallel.
cycles. The header for the first copy always travels 3 clock cycles behind the payload. Additional copies are forwarded
by issuing one header per cycle. Effectively, up to eight 256B packet copies can be transmitted every eight cycles. In
the figure, the headers for copies 5 to 8 delay for a couple of cycles, to demonstrate the asynchronous replication of
copies using the multicast cache. (c¢) Throughput of a 99 Gb/s multicast flow for varying local fanout |f]|.

a Multicast ID (MID), which is then used to access a local
multicast/broadcast table (MCBC). The MCBC outputs the
local fanout set of the frame. Effectively, following the pay-
load of a frame, a port additionally receives one multicast
header per clock cycle, identifying the surrogates and desti-
nations that are waiting for a copy. To a large extent, every
incoming header is treated as a new unicast frame arrival.
At most, 8 multicast headers per frame are received at 100G
ports.

We adopt a VOQ-based queuing architecture for multicast
traffic. The payload of the frame is written into the intended
buffer pool, using a single linked list of available (256B)
buffer units. Every associated multicast header, which now
also points to the head buffer unit, is en-queued into the
target VOQ. Each VOQ is associated with an egress fabric
port and a virtual lane, and may store packet copies from
different multicast flows.

After inserting a multicast header in its VOQ, the source
(fabric-input or surrogate) port may issue a request to the
target port, and will be able to forward a new copy after
receiving a grant from the corresponding output arbiter. As
with unicast traffic, the receiving port also ACKs the proper
receipt of frames to their source port. After all copies of a
frame have been acknowledged, the source port releases the
space that the frame occupied in its ingress payload pool.

One widely used protocol for multicast in input-queued
switches is one-shot scheduling (or non-fanout splitting), in
which a port forwards all copies of a packet simultaneously,
together with the full list of target destinations. In these sys-
tems, the switch interconnect is responsible for replicating
the packet [8]. This strategy may minimize the bandwidth
overhead, but stipulates that all copies will be granted and
residing at the Head Of Line (HOL) position of their VOQ
at the same time.

In our distributed, asynchronous system, the copies of
a multicast frame experience variable arbitration latencies,
and may not all be eligible for transmission at the same time.

The cache can use multiple

(b) The 256B payload is transmitted from the port in 8

Furthermore, one-shot scheduling may result in waiting for
a grant from a congested port before delivering a frame to
ports that are ready to accept it. While this blocking may
be anticipated with non-selective (e.g., FIFO) queuing, our
VOQ architecture can do better. Therefore, we have opted
for a strict (call) fanout splitting, unicast-oriented, delivery
mode, where every copy is forwarded independently.

Overall, our VOQ-based multicast queuing organization,
in combination with fanout splitting scheduling, is free of
HOL-blocking, providing markedly superior performance than
plain FIFO [9]. In addition, it uniformly integrates unicast
with multicast processing, abating the complexity of the de-
sign. At the same time, it seamlessly propagates the benefits
of reliable quality-of-service, which we have in place for uni-
cast traffic, to one-to-many flows.

3. ASYNCHRONOUS PACKET REPLICATION

The fanout splitting scheduling that we use would typi-
cally require a port-to-fabric bandwidth proportional to the
number of local copies (|f|) of multicast frames. In our de-
sign, the interface of a port to the fabric interconnect is
a port-speed line that ends at the corresponding input of
the input-queued crossbar inside the edge switch (refer to
Fig. 1). Thus, having to send a frame |f| times over this
interface, the bandwidth of a 100G flow will drop propor-
tionally. To overcome this limitation, we use a caching mech-
anism inside the fabric, which stores and replicates packets
(frame’s segments).

As shown in Fig. 2(a), the edge switch writes the payload
of the port-injected packets inside a multicast cache. The
cache is physically located at the inputs of the crossbar, and
is shared among all local Ethernet (and surrogate) ports.
Only one port can write a packet into the cache at a time.
Each port maintains the cache tags that indicate which of
its previously sent packets are present in the cache. When it
decides to inject a new copy, the port looks up its tags to see

VOQs A

E stopped, waits E

8
¥ E stopped, waits [1]
e[& B ¢
El stopped, waits IZ
remote last copies :

,,ldle,,,,m 2 B voac

[2 B

>
>
Time VOQE VOQ#

(b) Deadlock
freedom

h+1

remote '€Start

(a) Subflows synchronization

Figure 3: (a) The synchronization mechanism on a mul-
ticast flow with 3 copies, for Sjow = Shi — 2. The local
subflow is suspended after sending the first Sy; packets
ahead of other subflows. It is restored after the two
remote subflows have sent their first 3 copies. (b) A
hypothetical but impossible deadlock situation.

if the copy is presently cached. If this is a hit, the port will
issue the corresponding multicast header, together with a
cache address, instructing the cache to replicate the packet.
In case of a cache miss, the port will send the packet payload
again. If additional copies are to be sent, the payload can
be written in the cache for a second time.

In our implementation, for tags we use the address of the
payload at the ingress port memory. The cache lines, which
keep the packets’ payload, are 256B and mirrored in eight (8)
SRAM blocks, one for each crossbar input attached to the
local Ethernet, surrogate, and PCle ports (refer to Fig.1).
Each such multicast cache mirror can independently feed a
100 Gb/s subflow into the crossbar.

As shown in Fig.2(b), the time of a 256B packet at a
crossbar input (or output) is eight (8) clock cycles. In this
time period, a port can issue eight (8) multicast headers,
one for each copy. Effectively, the cache can deliver the
eight copies of a multicast flow in parallel.

Ideally, the multicast cache will evict a packet after all the
copies have been forwarded. However, because the cache has
limited space and it is shared among all Ethernet ports in the
edge switch, we also use a least-recently-used (LRU) eviction
policy. The sourcing port is informed about the premature
packet eviction, and forwards the next copy through the
payload interface.

Figure 2(c) depicts the throughput of a single multicast
flow, sending 1522B frames, as a function of its fanout. As
can be seen, without the multicast cache (baseline), the
throughput drops linearly with the fanout. In contrast, us-
ing the cache, the throughput is at 100G for any fanout.

3.1 Approximate synchronization of subflows

Because the cache is shared among multiple ports, it is
important to use it judiciously. The following scenario re-
veals some of the impending troubles. Consider that we
launch a 100G multicast flow that targets three (3) destina-
tions, one local, in the source edge switch, and two remote.
Due to the different propagation delays in the request-grant
loops of the corresponding subflows, by the time that a re-
mote one receives a first grant, the local subflow may have
already forwarded enough frames to fill up the cache.

In this scenario, the granted packets of remote subflows
may result in cache misses, limiting the achievable band-
width by a factor of two. Furthermore, these late packets
will compete for cache space with packets of the running-

ahead local subflow. With the cache being such wildly thrashed,

every copy may have to use the payload interface.

Our first remedy is to overprovision the cache, so that it
fits the largest request-to-grant round-trip time (rtt) worth
of packets, assuming no contention. However, in practice,
when a slightly delayed subflow experiences cache misses, it
can be pushed even further behind, because, for improved
efficacy, the ports prioritize frames that hit in the cache.
As a result, even transient small contention can sometimes
desynchronize the subflows. In addition, instead of allocat-
ing more cache entries for a single flow, it is preferable to
enable efficient operation with the least possible space.

In our system, we can loosely synchronize the VOQs that
carry copies from the same multicast flow, as a measure
against cache thrashing. The method is schematically shown
in Fig.3(a). We use a small VOQ sync CAM which is searched
for VOQ identifiers (13 bits), and keeps a pkts_ahead_cnt
field. The algorithm starts when a VOQ begins forward-
ing a frame copy. If this is not the last copy of the frame,
and the VOQ does not have an entry in the sync CAM al-
ready, we allocate a new entry for it. Afterward, we increase
the pkts_ahead_cnt field in the VOQ entry by the number
of packets in the frame. If the pkts_ahead_cnt now exceeds
threshold Shi, we suspend the corresponding VOQ, waiting
for the ones lagging behind to catch up. When a VOQ for-
wards the last copy of a frame, we identify all VOQs in the
sync CAM that have sent this frame already, and decre-
ment their pkts_ahead_cnts by the corresponding number of
packets. Suspended VOQs whose pkts_ahead_cnt now cross
threshold Siow are restored. Suspended VOQs are also re-
stored after a timeout (3 microseconds), or when their sync
CAM entry is released. VOQ entries are released when they
are evicted or when their pkts_ahead_cnts becomes zero.

Figures 4(a,b) present the receive throughput of a multi-
cast flow, sourced at 99 Gb/s, which targets 4 local and 4
remote destinations, for varying cache sizes, C (16 to 128
packets), and frame sizes (512B to 9022B). Parameters Siow
and Sp; are set to 18 and 10 packets respectively. In our sys-
tem, the base request-to-grant rtt of local subflows is ~100
ns, and that of remote subflows ~1100 ns, which amounts to
55 256B packets at 100 Gb/s. As can be seen in the figures,
without VOQ synchronization, for cache sizes smaller than
64 packets, the throughput can drop below 30 Gb/s because
the local subflows fill up the cache before the remote subflows
have sent their copies. In contrast, with VOQ synchroniza-
tion, even a 16-packet cache delivers full throughput, with
the exception of large Jumbo (9022B) frames (36 packets),
which push the cache stress to the limit.

Besides the actual payload buffers in the cache, which are
implemented in dense modern SRAMs [8 (cache mirrors)
Cx256x8-bit arrays], a considerable cost is incurred in cache
tags. These are 14-bit memory buffer-unit identifiers, stored
in latches, requiring a Cx14-bit CAM at each port. As a
reasonable trade-off between cost and performance, we sized
the cache at C' = 128 packet entries.

In Fig 4(c), we depict the evolution of cache occupancy
in time for 1522B frames. As can be seen, with VOQ syn-
chronization, a 128-packet cache has less than 40 occupied
entries for 1522B frames, creating headroom that can be
allocated to multicast flows from neighbor ports. At the
other extreme, without synchronization, a 32-packet mul-
ticast cache fills up—its occupancy is around 20 packets
because the cache controller selects one entry with no out-

100 [512B oo’ i] 100 f
90 | 10225 4 Q0 |
— | 15228 - I
2 80 95008 2 ®
0] 70 0] 70
%- 60 é‘- 60
S 0} 2 s}
2 4t . 2 4t
[e) o
£ 30} - s 30}
= o2t - = oot
10 b 1 10 }
0 0
16 32 64 128 16

Cache size (#packets)
(a) No VOQs synchronization

Cache size (#packets)
(b) With VOQs synchronization

120 ' cache128
110 cache128+Sync ======
100 cache32

Cache occupancy (#packets)

64 128 0 2 4 6 8 10
Time (millisecond)
(c) 1522B frames

Figure 4: (a,b) Throughput of a multicast flow with local fanout 8, heading to 4 local and 4 remote destinations, with
varying cache and frame sizes.(c) Cache-occupancy time series.

standing headers to evict in every clock cycle with less than
10 entries available.

Multiple concurrent flows: The synchronization mecha-
nism introduces dependencies between VOQs: A VOQ can
be blocked waiting for another one to transmit a frame.
When many multicast flows are active at the same port, their
subflows can be arbitrarily distributed to VOQs. Effectively,
impertinent subflows may block one another. For example,
a local subflow, in VOQ A, may be blocked waiting for its
sibling remote subflow, thus blocking another VOQ carry-
ing irrelevant subflows. Nevertheless, for ports experiencing
a large aggregate fanout, from multiple flows, the synchro-
nization mechanism is automatically disabled, as discussed
next. When a new VOQ that sends a frame finds the sync
CAM full, we evict one busy entry using an LRU policy. An
unexpected benefit comes from these evictions. Because the
sync CAM is small (24 entries), at ports with many sending
VOQs, it will systematically evict busy entries and unblock
those that were suspended. We have verified this behavior
in our experiments in Sec 5.2.

Below we further prove that the VO(Q dependencies can-
not form circles and therefore deadlocks. Consider the cir-
cular dependency depicted in Fig 3(b). Three frames are
shown: Frames 3 and 1 are sent by VOQ A, frames 1 and
2 by VOQ B, and frames 2 and 3 by VOQ C. These three
frames do not necessarily belong to the same multicast flow,
and their indexes do not necessarily reflect their arrival or-
der. All VOQs have been suspended by the synchronization
mechanism. In particular, for VOQ A to send frame 1, VOQ
C must first forward frame 3. Similarly, VOQs B and C are
blocked waiting for VOQs A and B to forward frames 1 and
2, respectively. Effectively, a cyclical dependency is formed
and the system is in deadlock. However, as shown by the
inlet of Fig. 3(b), each VOQ forwards frames in FIFO order.
It follows that: According to VOQ B, frame 1 has arrived
before frame 2, for C, frame 2 has arrived before 3, and for
A, frame 3 has arrived before 1. Because it is impossible to
simultaneously satisfy all VOQs’ orders, deadlocks cannot
occur.

4. FLOW CONTROL AT FABRIC EDGE

So far we have described the forwarding and scheduling
of multicast frames at fabric ports. In this section, we turn
our attention to the flow control mechanisms, which shape

the arriving traffic. Together these mechanisms determine
the rates and the backlogs of the multicast subflows.

4.1 Lossy traffic

Figure 5(a) depicts a multicast frame arriving at a termi-
nal or surrogate port. Shown are the per VL payload and
multicast header pools. The payload is accompanied by a
concurrent header, which specifies a VL, and thus the in-
tended buffer pool. In lossy traffic classes, the payload is
dropped when the occupancy of buffers that are shared by
lossy VLs exceeds threshold Tij,.

If the payload is accepted, the MCBC outputs the mul-
ticast headers which carry private VL identifiers and are
stored in their corresponding header pools. No headers fol-
low a dropped payload. The VOQ table contains one entry
for every active VOQ at the port, with fields such as the
outstanding requests, grants, sequence numbers,etc. Addi-
tionally every VOQ table entry has a pointer to the memory
location that stores the HOL multicast header of the cor-
responding VOQ. The remaining multicast headers in the
same VOQ are connected below, along a single linked list.

The copies of a single frame may fall at most into two dif-
ferent VLs: one for those targeting a final destination and
one for those targeting a surrogate deeper in the hierarchy.
For each arriving header, a separate drop decision is made.
A header is dropped when its header pool reaches an occu-
pancy threshold (H;p), or when the total available memory
for multicast headers is full. If the header is accepted, a slot
in the headers memory is occupied until the corresponding
copy is received and ACKed by its (terminal or surrogate)
target port.

In our implementation, the MCBC outputs the MC head-
ers at a fixed sequence: if a flow heads to destinations d1 to
d8, the port always receives first the header for df and last
the one for d8. This fixed sequence triggers the following
fairness issue. If the occupancy of the target header pool is
close to its drop threshold, the “first” headers have a better
chance of being accepted than the rest.

In the tests that follow, we set the header pool threshold
at a low value (100 headers), to artificially induce multicast
header drops. We configured a single multicast flow, at 99
Gb/s, targeting 1 local and 7 remote destinations. In this
experiment, we have found that, for 99 Gb/s load, the re-
mote copies are ACKed after approximately 3500 ns. There-

Payload ingress memory

Payload buffer 100

e N T
»
concurrent har [] |9 ? g gg L
82| T &
5 :
MC head -§) ig g
MCBC 2 a0}l
= T o20p
drop? ' ¢
drop? drop? 10

0
Header (VOQs
pools/VLD mum 0 1 2 3
Headers memory Time (millisecond)

(a) Payload and header stor-
age at ports

4

(b) Performance of baseline

Throughput (Gb/s)

(c

100 100

Throughput (Gb/s)

0 1 2 3 4 0 1 2 3 4
Time (millisecond) Time (millisecond)

) Randomized header ar- (d) RED

rivals

Figure 5: (a) Buffering of payload and multicast headers at fabric ports. (b-d) Per-subflow throughputs of a multicast

flow heading to one local and seven remote destinations.

threshold so as to induce drops. 1522B frames.

fore, with 100 total headers available in the pool, there are
12.5 headers available per subflow. Each multicast header
carries one 1522B frame, which amounts to 120 ns at 100
Gb/s. Therefore, the expected throughput of the subflows
is 120125 _ 49 6l /s,

In reality, the subflow throughputs exhibit a wide spread,
as shown in Fig. 5(b). One subflow is at 80 Gb/s, implying
that it got ~8 in 10 of its headers accepted. At the other
end of the spectrum, one subflow only had ~1 in 10 headers
accepted and a throughput slightly above 10 Gb/s. The
ordering of the subflows in the throughput ranking, from
top to bottom, follows precisely the arrival order of subflow
headers. This happens because, as the headers arrive at the
port in bursts of eight, it is very likely that, in the interim
between bursts, headers are released from the pool, making
some space for the first headers of the next burst but not
sufficient for all.

Figure 5(c) verifies that by randomizing the order of head-

ers with every frame, the subflows receive exact fair through-
puts, close to 40 Gb/s. Nevertheless, to simplify the imple-
mentation, we eventually opted for a Random FEarly Detec-
tion (RED) drop strategy. In particular, we use two thresh-
olds, Hyi and Hiow. Headers are accepted when the header
pool occupancy is below Hjoy, and are dropped when it ex-
ceeds Hy;. For occupancies in between those thresholds,
headers are dropped with probability p. Our tests have
shown that optimal performance is obtained for p = 0.5:
Too low a probability p, and the scheme is ineffective. On
the other hand, too high a drop probability, and Hiow be-
comes a hard drop threshold. As can be seen in Fig. 5(d),
using the RED method with Hy; = 100, Hiow = 70, and
p = 0.5, we get reasonably good performance.
Optimized VOQ-drop policy: The drop functions dis-
cussed in the previous section treat all subflows equally. For
lossy priority levels, we have augmented our VOQ archi-
tecture with a selective drop mechanism: Once its backlog
exceeds a predefined threshold Vi, a VOQ starts dropping
copies. Effectively, this equalizes the subflows’ arrival rates
with their service rates. Doing so, we prevent a congested
subflow from monopolizing its header pool, and from holding
off the release of shared payload buffers.

In the following experiments, we configured a multicast
flow at 99 Gb/s, heading to 4 local and 4 remote destina-
tions. Initially, the multicast flow is alone, receiving full
throughput. Between 1 to 2 ms, its first local destination is
targeted by 7 unicast flows, by 3 unicast flows between 2-3

In this scenario, we purposely reduce the header pool

ms, and by 1 unicast flow between 2-4 ms. In this experi-
ment, all unicast and multicast flows are of the same lossy
priority level, and are fairly served at fabric-egress ports.
As also shown in Table I, the shared lossy payload buffers
at the ingress terminal ports are T, = 740.

In the first experiment, shown in Fig. 6(a), we deactivated
VOQ synchronization. As can be seen, the per pool drop
policies alone entail capping all subflows to the bandwidth
of the most congested one. Even worse, because there is no
VOQ synchronization, the fast-moving subflows fill up the
cache. Effectively, when the congestive episode elapses at
4 ms, the throughput is still bounded at 60 Gb/s. This is
corrected by VOQ synchronization in Fig. 6(b), but still the
congested subflow dictates the rates of all.

In Fig. 6(c), we activate VOQ tail-drop, keeping VOQ
synchronization silent: VOQs with backlog > Vin = 240
buffer units (60 KB) don’t accept new headers. As shown
in the figure, between 2-3 ms, the non-congested subflows
reach their fair share (99 Gb/s). Nevertheless, while the
congestion is more severe in 1-3 ms, throughputs are far
from optimal.

Furthermore, enabling VOQ synchronization in Fig. 6(d)
actually does more bad than good, nullifying the benefits of
VOQ drop. That was to be expected, since VOQ synchro-
nization equalizes the service rates of the subflows. Hence,
on one hand, the VOQ drop policy can nicely segregate the
subflows. On the other hand, VOQ synchronization has to
slow down the non-congested subflows, but prevents cache
thrashing. Fortunately, we can reconcile the two methods,
and get the best from each, by modifying the VOQ drop
policy from tail-drop to drop-from-head.

Figure 6(e) verifies the excellent performance of drop-
from-head. The throughputs of the fast subflows are wvirtu-
ally unaffected by the congested one. As explained in greater
detail by the caption of Fig. 7, this happens because, after
dropping the next-to-send frame of a slow VOQ, we can de-
crease the pkts_ahead_cnt of fast but blocked VOQs, there-
fore resuming their progress.

4.2 Congestion control for lossless traffic

For lossless service classes (priority levels), drops are not
permitted anywhere in the fabric, including at fabric ports.
To avoid drops, the ingress ports issue PAUSE messages
when a pool exceeds an occupancy threshold, Qni. The
PAUSE messages from fabric-ingress ports (i.e., at the source
of the multicast tree) are per Ethernet priority level and are

100 | 100 frossssnr 7 100 | T 100 frosssnr » [0 S——— —
_ 9% _ 90 | i 90 1 | _ 90 | § _ 90 |
2 8 2 8 { 2 80 | 2 & . :,awj 2 8 |
[CA(] [CA(] 5 [CA (] | o 70 } s S 70 |
5 6 3 60 5 60 3 60 i 5 60
£ 50 £ 50 1 S £ 50 p— £ 50 | i 2 50
g 40 3 4 7 S 4 S / 2 40 \ i S 40 |l /
’g 30 E 30 ; o E 30 E 30 s E 30 [

. it R i] -

10 congested subflow, mT]
0 0 0 0 0
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
Time (millisecond) Time (millisecond) Time (millisecond) Time (millisecond) Time (millisecond)

(a) No VOQ drop, no (b) No VOQ drop, VOQ (c) VOQ tail-drop, no (d) VOQ tail-drop, VOQ (¢) VOQ drop-from-

VOQ sync sync VOQ sync sync head, VOQ sync
Figure 6: Throughputs of the multicast subflows heading to 4 local and 4 remote destinations. In time period 1 to
2 ms, a local destination is also targeted by 7 unicast flows, in 2 to 3 ms, it is targeted by 3 unicast flows, and by 1

unicast flow in 3 to 4 ms. 1522B frames.

nxt-to—send 39 <+ subflo!v1
N >
ahead_cnt 19 ‘
> suspended VOQ1 backlog 231
<«
VOQ2 backlog 250 slow
? subflow?2

nxt-to-send {20 now arrived frame 270

Figure 7: Illustration explaining why drop-from-head
works better with VOQ synchronization than tail-drop.
For clarity, consider single-packet frames and assume
that the ACK arrives immediately after sending the
frame copy from its source port. Furthermore, for the
sake of simplicity, assume that Sp; = Sjow = 18: Subflow
2 is congested, however due to VOQ synchronization, its
distance from the fast subflow 1 is bounded. Currently,
subflow 1 is suspended as its pkts_ahead_cnt exceeds 18. At
the same time, the tail-drop function is about to reject
the new frame f270 for subflow 2, because the corre-
sponding VOQ 2 has a backlog of 250 buffer units. A
first observation is that dropping frame f270 cannot un-
block VOQ 1. In contrast, the drop-from-head policy will
drop frame f20 instead of f270. The VOQ synchroniza-
tion mechanism regards such dropped-from-head frames
as having been forwarded. Effectively, after dropping 20
from VOQ 2, the pkts_ahead cnt of VOQ 1 will be decre-
mented by the number of packets in 20, and subflow 1
will be unblocked. From there on, the fast subflow sends
frames at full speed, the slow one drops (from head)
those that stay behind, and their “next-to-send” point-
ers run side-by-side.

received by the CNAs. In contrast, the PAUSE messages
from surrogate ports are routed to the egress side of the sur-
rogate, forestalling the loop back of new frames at a given
VL. The egress VL pools at surrogate and destination ports,
of either lossy or lossless classes, are flow controlled by the
port-to-port, request-grant credit protocol.

With lossless traffic, saturation trees can be created. As a
response, IEEE has recently standardized a congestion con-
trol scheme for Ethernet (Layer-2) networks, called Quan-
tized Congestion Notification (QCN, 802.1Qau) [7]. Stan-
dard QCN performs congestion detection at switch output
(fabric-egress) queues. Each congestion point samples the
arriving frames, and when it detects congestion, it issues
a congestion notification message (CNM) for the Ethernet

flow of the most recently sampled frame. In response to the
received CNM, the QCN rate limiter, implemented at the
CNA, decreases the flow’s injection rate.

CNAs inputs outputs

rate limited Crpps ~
queue of KRR S 5

multicast flow . AR
switching |
fabric

i ioi si
Q Q
=2 =2

Gc};,;QCN L

Figure 8: With QCN congestion points at outputs
(industry-standard solution), a single multicast frame
from the CNA may generate two CNMs, misleading
QCN. In contrast, with QCN congestion points at in-
puts, each multicast frame yields at most one CNM.

However, as shown in Fig.8, using the standard QCN
strategy, a multicast frame heading to two destinations can
be sampled twice, and generate two (|F| in general) CNMs.
This multiplication of CNMs can breed unfair treatment of
multicast flows. In Fig. 9(a), we have configured one such
flow heading to four local destinations, and three unicast
flows, from remote leaf nodes, each one targeting a distinct
destination of the multicast flow. As can be seen, with QCN
congestion points at the outputs (fabric-egress buffers), the
unicast flows receive less CNMs and therefore get almost
twice more bandwidth than the multicast flow.

In a previous publication [5], we found that, for unicast
traffic, placing the congestion points at the inputs instead of
outputs improves QCN’s fairness and reduces the bandwidth
overhead of CNMs. Furthermore, for multicast traffic, this
alternative will generate at most one CNM per multicast
frame, whatever the fanout of the flow may be. Indeed, as
shown in Fig. 9(b), with QCN congestion points at fabric
inputs (ingress buffers), the multicast flow performs equally
with the unicast ones.

Our next experiment tests two multicast flows coming
from the same fabric source port. Flow T1 heads to local
destinations 1 and 2, and flow T2 heads to local destinations
3 and 4. Three (3) unicast flows, from remote leaf nodes, tar-
get the first destination, 1, of multicast flow T1. Figure 10
plots the per (sub)flow throughputs. Multicast flow T1 is

mi
100 |- 100 ma
_ 90} j - 2 m3
g 80 | unicast g 80 ma4
S 70t = S 70 u; """""" 1
5 60} T 5 60 U2 e
£ ol £ sl i
3 40 ; s 40
£ 30 [juet 1 £ 30
B 20
10 | i multicast 10

0
0 2 4 6 8 10 12 14 16
Time (millisecond)

(b) QCN at inputs

o LL
0 2 4 6 8 10 12 14 16
Time (millisecond)

(a) QCN (standard) at
outputs

Figure 9: The throughputs of multicast subflows mil,
m2, m3, m4, and unicast ul, u2, u3, shown separately for
QCN congestion points at inputs and at outputs. Unicast
flow u_i targets the same destination as subflow m_i.

expected to receive a bandwidth of 25 Gb/s, because that is
the fair share of its most congested subflow. Without QCN
(i.e., PAUSE-only in Fig.10(a)), T1 enters the fabric input
at full speed, depleting it of available buffers. In response,
the port exerts PAUSE to the CNA, which indiscriminately
blocks both T1 and the non-congested flow T2.

QCN’s promise is that, by throttling T1’s departures from
the CNA at 25 Gb/s, it will perform better than the PAUSE-
only solution. However, QCN with congestion points at the
inputs, shown in Fig.10(b), behaves no better than PAUSE
alone. In this experiment, we used the QCN-standard flow
marking scheme, which sends the CNMs to the most re-
cently received frames. In our design, we have corrected
this shortcoming with an occupancy sampling flow-marking
scheme for QCN, which sends the CNMs to the flow with the
largest occupancy in the monitored payload buffer pool [5].
Figures 10(c,d) demonstrate that our rectified flow-marking
scheme, with congestion points at the inputs, performs in
par with standard QCN at switch outputs. In addition, as
previously verified in Fig. 9, it adapts favorably to multicast
one-to-many flows.

S. MULTICAST REPLICATION TREES

Figure 11 depicts an arbitrary, multi-hop, replication tree.

In this example, some copies are delivered directly from the
source port (one in the source leaf and one in a remote one),
other copies pass through one surrogate port, and some final
copies pass through two surrogate ports.
Assignment of virtual lanes: As said before, each VL
corresponds to one priority level, but two or more VLs may
be used for the same priority. We use multiple VLs per
priority level to separate the traffic and avoid deadlocks in
replication trees. In particular, the per VL pools at the
ingress side of a surrogate port can be seen as the (flow con-
trolled for lossless VLs) extension of the corresponding (per
VL) pools at the egress side of the surrogate. To avoid dead-
locks, we increment the frame’s VL when it is injected into
the fabric from a terminal or surrogate port. Effectively, a
frame with priority level P holding space in a pool of VL.P;
can only wait for space in a higher VLP;, j > i. By im-
posing this partial order on the resources, we prevent the
corresponding circular dependencies and the ensuing dead-
locks in replication trees [10].

ternlinal

N

egress
pool VLOa

ingress
g pool VLOa

N——
N

surrogates

2nd-leve.i"‘~-x
(egress switch)

more -

90} uoyeoyidas ayj uy doy Aiene je sesealoul A dY.L

terminal

Figure 11: One possible replication tree. VL assignment
for a frame at the source, 1st/2nd level surrogates, and
destination. The frame belongs to priority 0 and uses the
payload pool of VLO at its source and destination ports.

Our replication trees have up to four surrogates, thus, a
frame starting with VLP, at its source port can reach its
destination port with VLPs. However, because at the last
hop in the frame’s path (from a source or surrogate port to
the final destination), we reuse the starting virtual lane of
the frame, we need only 4 VLs per priority level.

An example is shown at the inlet of Fig.11. The payload
of a frame with Ethernet priority P = 0 is stored in payload
pool VLO at its source port, VL0, at the 1st-level surrogate,
VL0, at the 2nd-level surrogate, and VL0 again at its egress
port. Not shown in the figure are the per-VL multicast
header pools. At the source port, the header of the copy
is stored in header pool VLO0,, and in header pools VL0,
and VLO at the 1st- and 2nd-level surrogate, respectively.
Expansion speed: Each (terminal or surrogate) port can
fanout to a maximum of |f| = 8 ports at full 100G speed.
Therefore, in theory, N leaf nodes can be reached in log-
arithmic, log,; IV, time. In practice, a surrogate port will
forward some copies to its local ports, offering replication at
the egress switch without consuming extra leaf-spine band-
width. This however narrows the effective fanout towards
new leaf nodes. Assuming that the source and surrogate
ports always replicate to all local destinations (4 at source
and 5 at surrogates), a message that passes through n sur-
rogates can reach D(n) terminal destinations, where,

D(n):4+4~5~7§:3i (1)

As said above, our hierarchical replication exploits up to
n = 4 levels of surrogates, thus a multicast flow is limited to
804 terminal destinations. This is adequate for our 4-rack
system, which provides a total of 640 user Ethernet ports at
100 Gb/s'.

5.1 Bandwidth Overhead

In an ideal multicast replication scheme, each frame would
travel to the spines only once, which would spawn one copy

"'Wider fanouts are possible in 2x40G port configurations.
However, for clarity, we consider only 100G ports.

100 1 100

90 1 9%
2] 4

3 80 . 3 80

[CAE (] . S 70

‘g 60 . ‘g 60

-§ 50 [m 1 -§’ 50

3 40 b 3 40

£ 30 ©: £ 30

20 r = - 20

10] 10

0 0

0 1 2 3 4 5 &6 0o 1 2 3 4 5 6

Time (millisecond)

(a) Pause only (no QCN)

Time (millisecond)

puts

(b) QCN arrival sampling at in-

100 100
9 90
w)

3 80 3 80
S 70 S 70
‘g_ 60 §_ 60
-§’ 50 |+ § 50
3 40 3 40 b
".E' 30 1 E 30

20 = —— 20

10] 10

0 - 0

o 1 2 3 4 5 6 0o 1 2 3 4 5 &6

Time (millisecond) Time (millisecond)

(¢) QCN arrival sampling at (d) QCN occupancy sampling

outputs at inputs

Figure 10: The throughputs of multicast subflows T1-m1, T1-m2, T2-m1, and T2-m2, as well as of unicast flows ul,
u2, and u3. All unicast flows target the same terminal port with subflow T1-m1l.

i he...u
Il source port destinations Il W

Figure 12:
cation:

Bandwidth consumption of frame repli-
(The diagram assumes single-path routing of
frame’s copies on 8 100G leaf-spine links, whereas our
system actually sprays the load on 32 25G links.) The
port sends the payload of the frame once to the ingress
leaf switch, which outputs 8 copies to the spines. The
latter send the copies to the target egress switches, which
replicate them internally for all local destinations. Only
8 spines (32 in reality) and one egress switch are shown.

for every target egress (leaf) switch. Finally, the latter
switches would fanout to all local destinations. Similarly,
as shown in Fig.12, in our replication scheme, every egress
switch receives each frame only once, replicating it inter-
nally. Therefore, we load the spine-to-leaf links as much as
the ideal scheme. However, we consume extra bandwidth to
send the frames to the spines as many times as we send them
to the target egress switches. Therefore, the bandwidth con-
sumption of our replication method, L, is, at most, two times
the ideal L* (we omit the full proof due to space limitations):

L<2-L" (2)

5.2 Concurrent provisioning of many servers

In our next experiment, we consider a typical application
of multicast traffic. In particular, we source multicast traf-
fic from 6 user ports in 3 leaf switches (2 sources per leaf).
Every source hosts 10 multicast flows, each targeting all ter-
minals in 20 egress leaf switches. Thus, every multicast flow
has a fanout |F| = 100 (20 - 5). All multicast flows are con-
figured on the same lossy priority level and use two levels
of surrogates. The 20 target switches (5 with 1st-level sur-
rogates and the rest 15 with 2nd-level surrogates) of each
flow are randomly selected from a fixed set of 40 distinct
switches. It follows that, with a load of A Gb/s at source
ports, the average demand at the destinations is 6 - 22 .)

10
Gb/s. Therefore, the maximum feasible load is 33.3 Gb/s.

From Eq.(1), for n = 2, a tree can deliver a message to
at most 84 destinations. The 2-level trees in the current
experiment offer a larger reach, because source ports do not
deliver local copies. Effectively, with a fanout of 5 at the
sources being dedicated for remote surrogates, our trees can
extend to 5+ 5-5 = 30 egress leaf switches or 150 terminals.

Figure 13(a) presents the average receive throughput at
destinations against the input load. We see that the re-
ceive throughput at destinations grows linearly with the in-
put load. However, for a source load of 30 Gb/s, the average
receive throughput is 83 when it should be approximately 90
Gb/s. The last attested feasible source load is 25 Gb/s (i.e.,
2.5 Gb/s per individual multicast flow), at which destina-
tions are 76% utilized.

We conjecture that the cause for this throughput limi-
tation is the statistical load imbalance at destinations. In
simulations, we have seen that, even at 25 Gb/s input load,
several destinations are fully loaded. With such multiple
overloaded destinations, the ports are depleted of buffers,
with an ensuing impact on throughput. We run the same
experiment without VOQ synchronization, and the results
are identical. In this configuration, every source port multi-
plexes 10 equal-loaded multicast flows, each having a local
fanout of 5. Thus, on average, there are 50 VOQs active at
every source, which will commonly overflow the sync CAM.
Indeed, looking into the simulations, we verified that VOQs
were never blocked for notably long periods.

Figure 13(b) presents the average frame delay as a func-
tion of the input load. As can be seen, at 5 Gb/s input load
the delay is slightly above 4 microseconds, approaching 14
microseconds when the destinations are 82% utilized.

5.3 System-level broadcast

As shown in Fig. 14, a rack consists of two chassis, a chas-
sis consists of four Chassis Interconnect Elements (CIEs), a
CIE consists of four edge switches, and each edge switch has
5 user Ethernet ports at 100G. Although, replication trees
may be created arbitrarily, we can exploit the topological
affinity of ports to tame the configuration complexity. As
shown in the figure, a broadcast flow can expand inside a
rack using the Rack, Triplet, CIE, and egress-switch surro-
gates. The latter are not explicitly shown, but one of them is
implied in every edge-switch with no outgoing arrows. Opti-
mized configurations can replicate these surrogates in order
to increase resiliency and performance.

Throughput (Gb/s)
3
Delay (microseconds)

5 10 15 20 25 30 5 10 15 20 25 30
Load (percentage of capacity) Load (percentage of capacity)

(a) Receive throughput (b) Average frame delay

Figure 13: Performance under uniform multicast traffic.
Sources are 6 100G ports. Each source hosts 10 equally-
loaded multicast flows targeting 100 destinations in 20
randomly-selected egress switches.

Chassis 1 Chassis 2

:_\/—\

4Source
rack, - ’/(

‘ Q_ ! g
triplet/

e %%
.Edge switches

’
CIE surrogates

other racks

surrogate|

Figure 14: Hierarchical replication inside a rack (two
chassis) using the Rack, Triplet, CIE, and egress-switch
surrogates.

In our last experiment, we configured a flow broadcasting
to all destinations in a full 4-rack system. Figure 15 presents
the average receive throughputs at destinations against the
input load of the broadcast flow, for 512B, 1522B, and 9022B
(Jumbo) frames. As can be seen, in all cases the throughput
grows linearly with the input load, with the exception of
Jumbo frames that achieve a throughput up to 93 Gb/s.

Figure 16 depicts the average frame delay, measured from
source to destination CNA. (Looking at the corresponding
zero-load delays of unicast frames to remote (local) desti-
nations, we measured 1.88 (0.143), 2.1 (0.35), and 3.6 (1.9)
microseconds for 512B, 1522B, and 9022B frames, respec-
tively.) We have separate plots for frames passing through
0, 1, 2, 3, and 4 levels of surrogates. As can be seen, the
average delay increases as we move from 1 to 50 Gb/s load,
but for 512B and 1522B frames, it stays almost constant
when going from 50 to 99 Gb/s. The frame delay also in-
creases with the number of surrogate levels. A significant
fraction of these delays is spent scheduling and propagating
the frames along the spine-leaf network at each hop of the
surrogate tree. While not shown in this paper, our system
can lower these delays by avoiding the request-grant admis-
sion phase when transmitting frames to non-congested des-
tinations similar to [11, 12].

6. DISCUSSIONS

Implosion of control messages: The multiplication of
(unicast) ACK and grant messages is an expected conse-
quence of reliable scheduled multicasting. A similar effect,
but which happens in the opposite direction, is due to uni-

100 512B
90 | 1522B
@ s | 90228
8
g 60
2 50
2 4
°
= 30
L)
10
0
1 10 50 99

Load (percentage of capacity)

Figure 15: Average receive throughput at the destina-
tions of a (broadcast) flow heading to 640 destinations
against its input load. 100 Gb/s links.

cast requests. In our system, we reduce the messages per
port and the ensuing bandwidth overhead, through (a) hi-
erarchical replication and (b) coalescing (combining) of the
per-VOQ control messages.

Impact on unicast: One can mitigate the unwanted in-
terferences at the ports by mapping unicast and multicast
traffic to separate priority levels, each associated with a con-
figurable service weight used for frame scheduling at fabric
egress ports. In our architecture, doing so also segregates
the unicast from the multicast VOQs.

Effect on neighbors: The frame replication via the multi-
cast cache harnesses the available crossbar-input bandwidth
of the neighboring Ethernet and PCle ports. To alleviate
the burden, we route the local copies, generated at a surro-
gate or terminal port, through special, one-to-one, crossbar
links. This eliminates the impact of these local copies on the
neighboring ports. Furthermore, we use (packet-size aware)
weighted-round-robin scheduling [13]. One instance of the
scheduler is located at every (ingress) crossbar input, and a
configurable weight in the range 1—99 defines the proportion
of the link bandwidth that multicast copies can appropriate
from unicast traffic originating from the corresponding ter-
minal port.

Comparison to other switch architectures: Many Eth-
ernet switch chips available today are based on a shared-
memory architecture. These can forward frames copies by
“simply” generating the corresponding headers and insert-
ing them in the target output queues [14]. Our design rec-
ognizes that hierarchical replication will be indispensable
for (reliable or not) hardware multicasting in the emerging
high-speed datacenter fabrics. For example, even a moder-
ate switch or fabric with 100 ports at 100G has to generate
and process one 512B copy every 0.41 ns.

Variations of the request-grant/credit protocol used here
exist in some chassis switch and router products [15, 16].
However, no performance evaluations nor detailed descrip-
tions are available for these systems. In research papers,
variations of these protocols have been described and evalu-
ated in [17, 12], showing excellent QoS for unicast traffic. In
our system, we use a request-grant/credit-ACK protocol to
build a reliable server-fabric for performance-optimized dat-
acenter clusters, and consider its multicasting performance.
Bianco et. al. have studied multicast support for an asyn-
chronous chassis switch using a request-grant credit proto-
col [18]. However, that system is remarkably smaller than
ours (16 10G ports), and it is built around a single (spine)
crossbar. Furthermore, [18] uses FIFO queuing of multicast

Delay (microseconds)
Delay (microseconds)
Delay (microseconds)

1 10 50 99 1 10 50 99 1
Load (percentage of capacity) Load (percentage of capacity)

(a) No surrogate (b) One surrogate

10

Load (percentage of capacity)

(¢) Two surrogates

32 32
28 28
24 24
20 20
16 16
12 12

Delay (microseconds)
Delay (microseconds)

50 99 1 10 50 99 1 10 50 99
Load (percentage of capacity) Load (percentage of capacity)

(d) Three surrogates (e) Four surrogates

Figure 16: Average frame delay (CNA to CNA) in a broadcast flow heading to 640 destinations. We plot separately
the delays for frames passing through 0, 1, 2, 3, and 4 levels of surrogates. 100 Gb/s links.

traffic, and cannot replicate delayed copies. Our system ap-
plies a favorable VOQ scheme, with accompanying conges-
tion management for lossy and lossless priority levels, and
can replicate asynchronously sent copies.

7. CONCLUSIONS

Our work builds upon a massive, performance-optimized
server-rack fabric, with 640, equidistant, 100G Ethernet ports.
We have described the uniform integration of multicast traf-
fic, the obstacles we encountered and the solutions we imple-
mented. We utilize hierarchical replication in hardware, fa-
cilitated by specially allocated fabric ports to cope with the
enormous processing and forwarding rates. For the efficient
replication of the delayed copies, we use a multicast cache
in front of our input-queued switches, together with a VOQ
synchronization mechanism. Finally, we develop advanta-
geous flow and congestion control schemes for the multicast
traffic running on lossy and lossless priority levels. Simula-
tions on a detailed computer model evaluated the full 4-rack
system and demonstrated its high performance abilities as
well as many significant trade-offs.

8. ACKNOWLEDGMENTS

We would like to thank our colleagues in IBM Research—
Zurich and in the hardware division of IBM (STG), and
Anne-Marie Cromack for proofreading the manuscript. Spe-

cial thanks to Cyriel Minkenberg, Mitch Gusat, David Shadivy,

and Bill Holland, as well as to the anonymous reviewers that
helped us improve the manuscript.

9. REFERENCES
[1] P. Radoslavov, C. Papadopoulos, R. Govindan, and

D. Estrin, “A Comparison of Application-level and
Router-assisted Hierarchical Schemes for Reliable
Multicast,” IEEE/ACM Trans. Netw., vol. 12, no. 3,
pp. 469-482, 2004.

[2] C.-K. Kim and T. T. Lee, “Call Scheduling Algorithms
in a Multicast Switch,” IEEE Trans. Commun.,
vol. 40, no. 3, pp. 625-635, 1992.

[3] H. J. Chao, B.-S. Choe, J.-S. Park, and N. Uzun,
“Design and Implementation of Abacus Switch: A
Scalable Multicast ATM Switch,” IEEE JSAC, vol. 15,
no. 5, pp. 830-843, 1997.

[4] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi,
and F. Neri, “Multicast Traffic in Input-Queued
Switches: Optimal Scheduling and Maximum
Throughput,” IEEE/ACM Trans. Netw., vol. 11,
no. 3, pp. 465-477, 2003.

(10]

(11]

(12]

(13]

(14]

(15]

[16]
(17]

(18]

[5] F. Neeser, N. Chrysos, R. Clauberg, D. Crisan,

M. Gusat, C. Minkenberg, K. Valk, and C. Basso,
“Occupancy Sampling for Terabit CEE Switches,” in
Proc. IEEE Hot Interconnects, 2012.

[6] N. Chrysos, F. Neeser, M. Gusat, C. Minkenberg,

W. Denzel, and C. Basso, “All Routes to Efficient
Datacenter Fabrics,” in Proc. INA-OCMC, Berlin,
Germany, January 2014.

[7] 802.1Qau - Virtual Bridged Local Area Networks -
Amendment: Congestion Notification, IEEE Std.,
2010.

[8] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast
Scheduling for Input-Queued Switches,” IEEE JSAC,
vol. 15, no. 5, pp. 855-866, 1997.

[9] D. Pan and Y. Yang, “FIFO-based Multicast

Scheduling Algorithm For Virtual Output Queued

Packet Switches,” IEEE Trans. Comp., vol. 54, no. 10,

pp. 1283-1297, 2005.

W. Dally and B. Towles, Principles and Practices of

Interconnection Networks. San Francisco, CA:

Morgan Kaufmann Publishers Inc., 2003.

C. Minkenberg and M. Gusat, “Design and

Performance of Speculative Flow Control for

High-Radix Datacenter Interconnect Switches,”

Elsevier Journal of Parallel and Distributed

Computing, vol. 69, no. 8, pp. 680-695, Aug. 2009.

N. Chrysos, “Congestion Management for

Non-Blocking Clos Networks,” in Proc. ACM/IEEE

ANCS, Florida, USA, Dec. 2007.

K. G. Harteros and M. Katevenis, “Fast parallel

comparison circuits for scheduling,” Institute of

Computer Science, FORTH, 2002.

F. M. Chiussi, Y. Xia, and V. P. Kumar, “Performance

of Shared-Memory Switches under Multicast Bursty

Traffic,” IEEE JSAC, vol. 15, no. 3, pp. 473-487, 1997.

P. Sindhu, P. Lacroute, M. Tucker, J. Weisbloom, and

D. Winters, US Patent US 7,102,999 B2, Sep., 2006.

O. Iny, US Patent US 7,619,970 B2, Nov., 2009.

P. Pappu, J. Parwatikar, J. Turner, and K. Wong,

“Distributed Queueing in Scalable High Performance

Routers,” in Proc. IEEE INFOCOM, San Francisco,

USA, Apr. 2003.

A. Bianco, P. Giaccone, E. M. Giraudo, F. Neri, and

E. Schiattarella, “Multicast Support for a Storage Area

Network Switch,” in Proc. IEEE GLOBECOM, 2006.

