
Parallel Programming of General-Purpose Programs
Using Task-Based Programming Models

Hans Vandierendonck∗, Polyvios Pratikakis† and Dimitrios S. Nikolopoulos†
∗ Dept. of Electronics and Information Systems, Ghent University, Ghent, Belgium, Email: hvdieren@elis.ugent.be

†Institute of Computer Science, Foundation for Research and Technology – Hellas (FORTH)
Heraklion, Crete, Greece, Email: {polyvios,dsn}@ics.forth.gr

Abstract—The prevalence of multicore processors is bound
to drive most kinds of software development towards parallel
programming. To limit the difficulty and overhead of parallel
software design and maintenance, it is crucial that parallel
programming models allow an easy-to-understand, concise and
dense representation of parallelism.
Parallel programming models such as Cilk++ and Intel TBBs
attempt to offer a better, higher-level abstraction for parallel
programming than threads and locking synchronization. It is not
straightforward, however, to express all patterns of parallelism in
these models. Pipelines are a popular parallel construct, although
difficult to express in Cilk and TBBs in a straightforward way,
not without a verbose restructuring of the code.
In this paper we demonstrate that pipeline parallelism can be
easily and concisely expressed in a Cilk-like language, which
we extend with input, output and input/output dependency
types on procedure arguments, enforced at runtime by the
scheduler, as in the SMPSS programming model. We evaluate
our implementation on real applications and show that our Cilk-
like scheduler, extended to track and enforce these dependencies
has performance comparable to Cilk++.

I. INTRODUCTION

The onset of multicore processors has brought a growth
of novel parallel programming models aiming to facilitate
multicore programming. The currently dominant parallel pro-
gramming paradigm of threads and lock-based synchronization
requires the programmer to reason about the myriad implicit
and explicit interactions of threads through shared memory
and synchronization all by hand, making parallel programming
difficult and error prone.1

There have been several attempts to replace threads and
lock-based synchronization with better abstractions. For in-
stance, OpenMP uses the abstraction of a task, a basic unit
of parallel work, as an alternative abstraction to threads.
Extending this idea, Cilk marks recursive, parallel tasks in a
program and a scheduler optimizes the concurrent execution of
tasks at runtime. This abstraction is also advocated by Intel’s
Threading Building Blocks [1] and SMPSS [2], amongst
others.

The Cilk abstraction of parallel recursive tasks approaches
can easily describe some parallel patterns, such as DOALL
loops or divide-and-conquer parallelism. However, it is not as
easy to describe pipeline parallelism, parallel-stage pipelines

1At the moment this text is written, a google query for the phrases “parallel
programming” and “difficult” produces more than 27,000 technical papers,
447 of which use the phrase “notoriously difficult.”

and speculative parallelism using nested parallel tasks. Yet,
these constructs occur very frequently in general-purpose
programs [3], [4].

This paper extends the Cilk programming model to greatly
increase the readability and density of programming such
parallel structures. We augment the Cilk model of parallel
execution by adding dependency clauses on task arguments.
Argument dependencies indicate an argument is an input to
the task, an output or both (inout). We show that our system
facilitates programming complex patterns of parallelism like
parallel pipelines compared to Cilk, without loss of perfor-
mance. We also postulate that it facilitates exploiting specu-
lative parallelism. Overall, we believe this extension benefits
ease-of-programming, code density and code readability for
general-purpose parallel programming.

In the remainder of this paper, we first discuss related
programming models (Section II) and introduce our task-based
programming model with nested tasks (Section III). Next,
we describe the two extensions to the Cilk language and
runtime that are required by our model: versioned objects,
a new type of hyperobject [5], that automatically manages
renaming of objects in order to increase the amount of
parallelism (Section IV) and an extension to the Cilk scheduler
to handle task dependencies (Section V). We demonstrate that
pipelining constructs can be easily represented in our language
without impacting execution time (Section VI). Furthermore,
we discuss how the model could facilitate writing speculatively
parallel programs in Section VII. Section VIII concludes this
paper.

II. RELATED WORK

Libraries for parallel programming hide the complexity of
parallel programming from the user of the library by providing
a set of functionalities that orchestrate the concurrent execu-
tion of parallel programs. Several such libraries exist or are
under continued development, e.g. Intel’s Threading Build-
ing Blocks [1], STAPL [6] and Galois [7]. These libraries,
however, are often tailored to specific problem domains, e.g.
STAPL provides a thread-safe standard template library while
Galois facilitates optimistic execution of amorphous programs.

StreamIt [8] is a language that targets streaming compu-
tations. StreamIt makes heavy use of pipeline parallelism,
although it is a domain-specific language and as such too re-
strictive and not fit for general-purpose parallel programming.

The Cilk [9]/Cilk++ language is one of the best known task-
based programming models. Parallelism is expressed using a
spawn task statement while a sync statement forces a parent
task to wait until all its children are finished. Tasks may be
nested up to arbitrary depth. An important component of Cilk
is its scheduler, which determines at runtime what tasks are
executed concurrently. Cilk implements a distributed work-
stealing scheduler for shared memory systems. Cilk programs
have been shown to take space and time optimal to within a
linear factor of the C elision of the program [10], the C code
obtained after stripping Cilk keywords.

In order to further facilitate parallel programming, Cilk++
provides hyperobjects [5]. Hyperobjects offer each thread a
private view of a shared C/C++ object, allowing threads to
execute concurrently without races. Three types of hyperob-
jects have been identified: reducers, holders and splitters [5].
The runtime system guarantees that properly defined reducers
compute exactly to same value as would be computed by the
serialization of the program.

Argument dependencies have already been shown to im-
prove performance in cases of irregular dependency patterns,
in SMPSS [2]. SMPSS is a task-based programming model
with a focus on scientific computations. It has its roots in
the CellSS model for executing programs on the Cell B.E.
processor [11]. In SMPSS, a single master thread executes a
program and collects all spawned tasks for parallel execution
by a set of worker threads. Task arguments are labeled with
a dependency type, either input, output, inout or reduction.
These have the obvious meaning, that an argument is either
read-only, write-only, read-write or that it is part of a reduction
operation. The dependency types allow the runtime system to
schedule tasks on worker threads in much the same way as a
superscalar processor schedules instructions on its execution
units.

SMPSS does not admit nested parallelism. Instead, it ex-
tracts parallelism from analyzing the dependency graph of a
large set of tasks. Furthermore, the runtime system performs
renaming (privatization) of task arguments in order to break
anti-dependencies and output dependencies. Breaking those
dependencies increases task parallelism.

III. NESTED TASK MODEL WITH TASK DEPENDENCIES

Our nested task model with task dependencies draws from
the Cilk++ and SMPSS models: we support both nested
task creation and dependency types on task arguments. We
support input, output, and inout dependencies. We support
reducer hyperobjects instead of reduction dependencies as
we feel that it is more appropriate in our model. Reducers
may yield better performance than the lock-based approach
implemented in SMPSS because reducers give distinct views
on the object to concurrent threads, minimizing the potential
of lock contention [5].

To support the gradual annotation of existing programs, our
model allows that not all task arguments are labeled with a
dependency type. We assume unlabeled arguments do not give

1 int stage A(outdep<int[]> ab, inoutdep<struct S> a);
2 void stage B(indep<int[]> ab, outdep<float[]> bc);
3 void stage C(indep<float[]> bc, inoutdep<struct S> c);
4
5 void a pipeline() {
6 versioned<struct S> a, c;
7 versioned<int[100]> ab;
8 versioned<float[200]> bc;
9 while(1) {

10 if (stage A(ab, a))
11 break;
12 spawn stage B(ab, bc);
13 spawn stage C(bc, c);
14 }
15 sync;
16 }

Fig. 1. A program containing pipeline parallelism expressed in the proposed
task-based programming model. We assume a Cilk-like syntax, extended with
dependency types on function arguments.

rise to memory dependencies with other tasks that may execute
concurrently.

If a task does not have any arguments labeled with a
dependency type, then the task spawn is independent, and
corresponds to a Cilk spawn: it is always valid to execute
the spawned procedure. If the task signature lists at least one
argument with a dependency type, then the task spawn is
dependent, and may not be executed immediately. If the task
dependencies are not satisfied (i.e. an object listed in an input
or inout dependency has not been computed by another task)
then we postpone the execution of the procedure to a later
point. We adapt the scheduler to reconsider such postponed
procedures later in the program execution, e.g. at a sync
statement.

Similarly, sync statements may now also be independent
or dependent. Independent sync statements take no arguments
and suspend the syncing task until all children tasks have
terminated, as in Cilk. Dependent sync statements take a set
of objects as arguments, and suspend the task until all the
arguments have been computed. This allows the task to access
objects computed by some of its children without restricting
parallelism of all children with an independent sync.

Tracking and enforcing task dependencies is a crucial part
of the system. Hereto, it is necessary to determine at runtime
the status (at least a busy/ready flag) of objects passed to
task arguments with a dependency clause. In this work, we
introduce versioned hyperobjects, a new type of hyperobject
that allows efficient and automatic dependency resolution and
renaming (privatization) of objects.

Figure 1 shows an example program using the proposed
programming model. We extend Cilk with dependency types
on task arguments. Only versioned hyperobjects may be passed
to such arguments, indicated by the versioned label. This label
attaches metadata to the object, allowing the runtime system
to track producer-consumer relations and to create multiple
versions of these objects during execution. Note that the type
dependencies completely capture the nature of the pipeline:
the programmer simply declares the inputs and outputs of each
task implementing a phase of the pipeline, and the scheduler

will enforce the correct pipeline order on all tasks operating
on the same object.

Expressing the same program using Intel TBB takes 36 lines
of code and requires the programmer to manually manage
renaming. We have also devised a Cilk++ solution using a
reducer hyperobject to enforce the serial execution of the
last pipeline stage. The Cilk++ version of the code takes
34 lines while the (reusable) hyperobject takes about 130
lines more. Again, the programmer must manage renaming
manually. Overall, our model allows a much denser and
readable specification of the parallelism.

To increase confidence in our system, we have formalized
our dependency resolution algorithm and shown that it pro-
duces execution orders equivalent to the sequential execution
of the program. Namely, we defined both the sequential and the
parallel operational semantics of a simple functional language
with Cilk-like recursive parallelism and dependency-aware
scheduling. Our sequential operational semantics treat spawns
as simple function calls. We defined the property of sequential
equivalence to be the equivalence of any terminating parallel
execution to a sequential execution that produces the same re-
sult, and showed that such a sequential execution always exists
for our dependency-aware scheduling. Note that the property
of sequential equivalence is stronger than the serializability
property that holds for Cilk.

Intuitively, to prove that the dependency-aware scheduling
satisfies sequential equivalence, we show how to construct a
the trace of a sequential execution that computes the same
result as any given parallel execution trace. We define the
reorderable operations in the parallel trace as those that can
be reordered without changing the end result of the com-
putation. The proof is by induction on the execution trace,
where we split the parallel execution trace into a sequential
trace followed by a parallel trace, and inductively grow the
sequential execution trace by reordering operations in the
parallel execution trace. In short, we show that any parallel
interleaving is equivalent to the interleaving where the first step
of the execution follows the sequential order, and generalize
by induction.

IV. VERSIONED HYPEROBJECTS

Versioned hyperobjects implement two functionalities of the
runtime system: (i) tracking task argument dependencies and
(ii) versioning objects (a.k.a. renaming or privatizing) when it
is helpfull to increase parallelism. Versioned objects are a type
of hyperobject as they automatically provide distinct views to
threads that reference the same variable.

A. Retrieving Object Versions

Cilk++ uses for each thread a hash table, the hypermap,
to associate hyperobjects to their views [5]. Hypermaps are
constructed and joined by the runtime system when threads
fork and join. SMPSS also uses a hash table to make the
relation between objects and their renamed versions.

We can use the same mechanism for versioned objects.
Note however that the use of versioned hyperobjects is very

particular: When a task accesses a globally declared versioned
hyperobject it is not possible to know how the task depends
on the object (input/output/inout). Therefore, versioned hyper-
objects must always be explicitly passed to a spawned task
for versioning to take effect. As such, the runtime can arrange
that the task receives the view directly in its argument list and
the detour through the hypermap is unnecessary.

B. Dependency Tracking

The runtime system tracks and enforces argument dependen-
cies by monitoring whether the objects passed as arguments
are ready. This metadata is associated to individual views or
versions of the objects. The dependency tracking metadata
consists of a readers head and tail pointer and a writers head
and tail pointer. The head and tail pointers function as if they
were the head and tail pointers of a FIFO. The tail pointers are
incremented when trying to spawn a task. The head pointers
are incremented when completing a task.

The counters allow implementing the basic tests necessary
to determine when a task is ready to execute. For instance,
inout dependencies must wait until all prior readers and writers
have finished. This is implemented by assigning to the inout
task two tag values that are stored with the task in the pending
task list. The tag values are set equal to the tail pointers as they
are encountered in serial order (when the spawn is attempted).
When the last completing writer updates the head pointer, the
head becomes equal to the write tag and the required version
is available. Similarly, when the last prior reader completes,
the reader head becomes equal to the read tag and the inout
task becomes the sole reader/writer.

The use of a FIFO-like setup does not mean that all tasks
are executed serially. For instance, if multiple tasks with an
input dependency are registered for a view, all of them can
issue as soon as the writer head equals their writer tag (the
reader tag plays no role here).

C. Versioning

Versioning is directed by the need to break anti depen-
dencies and output dependencies. As such, versioning occurs
only when spawning tasks with an output dependency. And
this happens only if prior readers or writers are pending.
Inout dependencies are never renamed in our implementation,
although that might make sense in some situations, e.g. to
avoid stalling an inout dependent task as long as there are
readers (input dependency) active.

When a versioned object is passed to a spawned task with an
input or inout dependency, then the runtime system arranges
for the parent and child procedures to share the same view
of the object. When the child returns, the parent’s view is
maintained. The child’s view is destroyed if the child is the
last user of that view.2

Output dependencies may give rise to renaming the object
(creating a new view) when the object is in use by pending
tasks at the time of a spawn. In this case, the child receives the

2The metadata stored with a view includes a reference counter in order to
allow recycling memory consumed by inaccessible versions.

parent’s view (the existing version) and the parent receives a
new empty view. Otherwise, parent and child procedures share
the exisiting view. Views are joined as in the other cases.

V. TASK SCHEDULING

We implemented a Cilk-like work-first scheduler assuming
a shared-memory model. Our motivation for this type of
scheduler is that it is well-suited to irregular and nested
parallelism, as we expect to find in general-purpose programs.

In the absence of dependency type arguments, the scheduler
behaves like the Cilk scheduler as described in [5], attempting
serial execution of the inner loops and favoring work stealing
at the outer loop level. When the arguments of a child task
are not ready, then the task is added to a list of pending tasks
in the parent’s stack frame.

There are several design choices for when to retry execution
of pending tasks. In our current implementation, pending ready
tasks are retrieved when the scheduler tries to perform a
provably-good-steal operation. A provably-good-steal occurs
either when returning from a spawn that is (or has been)
executing concurrently with the parent, or when a procedure
waits at a sync statement for its children to terminate [5].

It has been shown that the Cilk scheduler incurs linear
overhead of stack space usage and linear overhead in execution
time [10]. It is clear that these properties are not maintained
when extending the scheduler with the ability to postpone
spawns, as the total number of constructed but unevaluated
stack frames grows. The exact deviation of linear stack space
growth however depends on the executed program, in partic-
ular on the number of postponed spawns.

VI. EVALUATION

We present a preliminary evaluation of our runtime system
that implements task argument dependencies. The runtime
system is essentially a Cilk clone written as a C++ library.
The library implements spawn and sync as function calls. It
implements a cactus stack and executes spawned tasks on
cactus stack frames in order to allow stealing parent stack
frames.3 Because of this, all function calls must be intercepted
by means of a call function in order to setup the stack frame.
For performance reasons, a leaf call function is provided that
executes unmodified code on the linear stack, but does not
allow calling back to the parallel runtime.

This baseline runtime system is extended with object de-
pendency tracking and enforcement as described in this pa-
per. Versioned objects are implemented as template classes
similarly to hyperobjects in Cilk++. Input, output and inout
dependency types on task arguments are implemented by
defining three more template classes. The runtime system
recognizes task spawns with arguments of these types and
automatically applies dependency tracking and enforcement.

For reference, we compare performance with Cilk++ version
8503, implemented in GCC 4.2.4. We use GCC 4.4.1 for our
runtime because it requires C++0x support.

3In contrast, Cilk stores only stack-local data in the cactus stack frames
and executes the tasks on the scheduler thread’s linear stack.

!"!#

$"!#

%"!#

&"!#

'"!#

("!#

)"!#

*"!#

$# %# '#)# +#

!"
##
$%

"&

'%()#*&+,&-.*#/$0&

,-./00#

123245246-27#

Fig. 2. Speedup results of bzip2 compression on the Cilk++ version and the
version using task argument dependency types.

Note that we advocate here a use of task argument depen-
dencies in order to simplify parallel programming in cases
where the usual spawn and sync primitives are insufficiently
expressive. What we show next is that this “ease of program-
ming” does not carry a performance penalty. We parallelized
two programs using object dependencies: bzip2 and hmmer.

A. Bzip2

A parallel version of bzip2 compression has been created by
Cilk Arts [12]. Bzip2 compression has a parallel-stage pipeline
where a first serial stage reads a block of data from a file, the
second parallel stage compresses the data and the third serial
stage writes the compressed data to an output file.

The Cilk++ version uses a reducer hyperobject to orches-
trate writing to the output file. The reducer basically queues
up all output data in memory until all logically preceding
data has been written to file. This approach has the downside
that data is written twice: once to an in-memory buffer and
a second time when copying the buffer to the file. Note that
copying the buffer also requires bit-shifting because blocks do
not necessarily start on a byte boundary.

When using object dependencies, the function call to write
to the output file is moved from the compression function to a
spawn statement in the main compression loop. By inserting
the necessary object dependencies, the runtime system ensures
that all calls to the writer function occur in correct order.

Figure 2 summarizes the speedups observed using the
Cilk++ code and the code using object dependencies. Re-
sults are reported for strong (’-9’) compression of a badly
compressable 250MB file, as suggested by [12]. We also
read blocks before applying run-length encoding [12]. These
measurements indicate that essentially the same performance
is obtained by using task argument dependencies as when
using reducers.

B. Hmmer

The main loop in the calibration code of hmmer contains
a three-stage pipeline where the first serial stage generates a
random sequence, the second parallel stage evaluate a Hidden
Markov Model (HMM) on this sequence and the third stage
accumulates characteristics of the HMM in a histogram. The

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

#" $" &" (" *"

!"
#$
%&

'(
)&
*
#)
+,
#$
,-
)

.%*/#0)'1)230#45,)

+,-.//"

+,-.0-,.1"234"516175178,19"

+,-.0-,.1"2,:;"516175178,19"

Fig. 3. Execution times of hmmer on the Cilk++ version, our runtime without
task argument dependencies and our runtime with task argument dependency
types.

first stage is best modeled as serial in order to be able to
reproduce random numbers. The third stage actually only
requires exclusive access to the histogram, but we show that
enforcing serial ordering on it does not harm performance.
Exclusive access is obtained using a compare-and-swap lock.

Figure 3 shows the execution time on a SPEC reference
input obtained with Cilk++, our Cilk-like runtime without
using argument dependencies and our runtime with argument
dependencies. First note the big performance difference on
single-threaded code. This is due to differences in GCC
versions used by Cilk++ and our runtime.

The results (Figure 3) show that our runtime obtains similar
scalability as Cilk++. Furthermore, adding object dependen-
cies to the model hardly impacts performance.

Note that both test programs perform hundreds of millions
of instructions worth of work per spawn. As such, stealing is
infrequent and the proposed extension to the Cilk scheduler is
sufficient. In future work, we will study the scheduler design
also for fine-grain tasks.

VII. POTENTIAL FOR SPECULATIVE EXECUTION

Speculative execution has been considered a valuable source
of parallelism [3], [13]–[15]. We describe how task-based
programming models may facilitate speculative execution.
This is not implemented.

Figure 4 shows a code mock-up of a task-based speculative
program. The speculative parallelism in this example matches
for instance the vpr program which has been discussed in
the literature [3]. Speculative parallelism exists in phases of
the algorithm where the accept() is rarely executed. It can
be exploited by respecifying the input dependence of the
state argument of try swap() as a speculative input depen-
dence (specindep). This indicates the speculative nature of
the spawned task but also implies that dependencies with
pending outdeps may be ignored. For instance, try swap()
is not considered dependent on prior instances of accept()
because it speculates on the shared state argument.

When accept() executes, the abort statement indicates that
all computations recursively dependent on (the current ver-
sions of) the variables state and i should be re-executed.

1 void try swap(indep<struct S> state,
2 outdep<int> success,
3 outdep<struct C> changes);
4 void accept(inoutdep<struct S> state,
5 indep<struct C> changes);
6
7 void speculated() {
8 versioned<struct S> state;
9 versioned<struct C> changes;

10 versioned<int> success;
11 versioned<int> i;
12
13 for(i=0; i < N; ++i) {
14 spawn try swap((specindep<struct S>)state,
15 success, changes);
16 spawn {
17 if (success) {
18 abort state, i ;
19 accept(state, changes);
20 }
21 }
22 }
23 sync;
24 }

Fig. 4. Code mock-up for speculative parallelization.

Note that Cilk (but not Cilk++) also allows speculative
execution of this sort using inlets and the abort statement.
Task-based programming models are however more generic
because they make it easy to mix other constructs in the
same loop. E.g. a third task could be added to the loop that
uses the modified state non-speculatively. A task-based model
executes this third task only non-speculatively and overlaps
its execution with the remainder of the loop. Non-speculative
tasks would never be aborted, because the runtime knows what
tasks are speculative. To the best of our knowledge there is
no equivalent construction in Cilk.

VIII. CONCLUSION

This paper advocates the use of task-based programming
models with nested task spawning for writing general-purpose
programs. Such programming models simplify the specifi-
cation of irregular parallelism. Programming constructs that
benefit include pipelines, pipelines with parallel stages and
non-linear pipelines.

The proposed programming model greatly enhances the ease
of programming parallel constructs that occur frequently in
general-purpose programs, but that are hard to express in
Cilk++. Ease of programming is achieved on different fronts:
(i) expressing the parallelism and (ii) automatically renaming
or privatizing objects when this improves performance.

We extended a Cilk-like scheduler to recognize and enforce
argument dependency types on task spawns. Preliminary eval-
uation shows that the ease-of-programming can be achieved
without loss of performance on bzip2 compression and Hidden
Markov Model evaluation.

REFERENCES

[1] Intel Threading Building Blocks, Intel, Sep. 2010, document Number
319872-006US.

[2] J. M. Perez, R. M. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multicore architectures,” in
Proceedings of the IEEE International Conference on Cluster Computing
(CLUSTER), Sep. 2008, pp. 142–151.

[3] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August, “Revis-
iting the sequential programming model for multi-core,” in MICRO ’07:
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007, pp. 69–84.

[4] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov,
H. Saito, U. Banerjee, A. Nicolau, A. V. Veidenbaum, and
C. D. Polychronopoulos, “On the performance potential of different
types of speculative thread-level parallelism,” in Proceedings of the
20th annual international conference on Supercomputing, 2006, pp.
24–.

[5] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin, “Reducers
and other Cilk++ hyperobjects,” in SPAA ’09: Proceedings of the twenty-
first annual symposium on Parallelism in algorithms and architectures,
2009, pp. 79–90.

[6] L. Rauchwerger, F. Arzu, and K. Ouchi, “Standard templates adaptive
parallel library (STAPL),” in LCR ’98: Selected Papers from the 4th In-
ternational Workshop on Languages, Compilers, and Run-Time Systems
for Scalable Computers, 1998, pp. 402–409.

[7] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew, “Optimistic parallelism requires abstractions,” in PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, 2007, pp. 211–222.

[8] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb,
C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, “A
stream compiler for communication-exposed architectures,” in ASPLOS-
X: Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems, 2002, pp.
291–303.

[9] M. Frigo, C. E. Leierson, and K. H. Randall, “The implementation of
the Cilk-5 multi-threaded language,” in PLDI ’98: Proceedings of the
1998 ACM SIGPLAN conference on Programming language design and
implementation, 1998, pp. 212–223.

[10] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science. 1994, pp. 356–368.

[11] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: A
programming model for the Cell BE architecture,” in Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, 2006.

[12] J. Carr, “A parallel bzip2,” http://software.intel.com/en-us/articles/
a-parallel-bzip2/, Apr. 09, retrieved Jan. 19th, 2011.

[13] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August, “Speculative decoupled software pipelining,” in Parallel
Architectures and Compilation Techniques, International Conference on,
2007, pp. 49–59.

[14] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang,
“Software behavior oriented parallelization,” in PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, 2007, pp. 223–234.

[15] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation,” in Proceedings of the 27th annual
international symposium on Computer architecture, 2000, pp. 1–12.

http://software.intel.com/en-us/articles/a-parallel-bzip2/
http://software.intel.com/en-us/articles/a-parallel-bzip2/

	Introduction
	Related Work
	Nested Task Model with Task Dependencies
	Versioned Hyperobjects
	Retrieving Object Versions
	Dependency Tracking
	Versioning

	Task Scheduling
	Evaluation
	Bzip2
	Hmmer

	Potential for Speculative Execution
	Conclusion
	References

