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Abstract

We present DRASync, a region-based allocator that implements a global address space abstraction for MPI programs with
pointer-based data structures. The main features of DRASync are: (a) it amortizes communication among nodes to allow
efficient parallel allocation in a global address space; (b) it takes advantage of bulk deallocation and good locality with
pointer-based data structures. (c) it supports ownership semantics of regions by nodes akin to reader-writer locks, which
makes for a high-level, intuitive synchronization tool in MPI programs, without sacrificing message-passing performance.
We evaluate DRASync against a state-of-the-art distributed allocator and find that it produces comparable performance
while offering a higher level abstraction to programmers.
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1. Introduction

MPI programs using dynamic data structures with pointers, such as graphs or trees, must either marshal and unmarshal
data in order to transfer them among nodes, or use non-intuitive representations for dynamic data structures, e.g., represent
graphs with matrices and limit list sizes. Distributed memory models, such as the Partitioned Global Address Space (PGAS)
languages [1, 2, 3], support global pointers, but they do not perform very well, because implicit communication often causes
unnecessary and expensive messages to be exchanged.

Recent work uses regions to allocate dynamic data structures to avoid marshalling and unmarshalling of pointers for
communication. Regions allow intuitive representation of pointer-based data structures that is easy to send and receive [4, 5]
in bulk, without, e.g., traversing a list to pack it or transferring it one item at a time. Some of these systems still maintain
a message-passing synchronization structure where transferring a region and its data still requires the programmer to
explicitly code cumbersome send and receive operations.

This paper takes the region abstraction further by extending regions with ownership semantics. Therefore, in addition to
providing an intuitive way to manage dynamic pointer-based data structures, our regions can also be used in MPI programs
to synchronize on data, instead of using barriers or explicit rendez-vous synchronization. This helps parallel programmers
reason about ownership of data at a high level, without having to manually track which node owns the last copy of an object,
or predict where an object will be required next. Each process can operate on data by acquiring the containing region and
releasing it at the end of computation for other processes to acquire. Finally, our approach abstracts both the location of
data and the communication for transporting the region.

Overall, this paper makes the following contributions:

1. We propose a high-level synchronization abstraction for MPI programs with dynamic pointer-based data structures,
in which dynamic regions are treated like reader-writer locks.

2. We implement DRASync, a region-based distributed allocator for MPI programs.

3. We evaluate our implementation on two benchmarks and compare with an existing state-of-the-art distributed allo-
cator. Our allocator performs equally well on average, while offering an intuitive mutual exclusion synchronization
mechanism for MPI programs and abstracting the location of data from the programmer.

2. Memory allocator design

We implement DRASync as a runtime library for MPI programs. We provide an API, shown in Figure 1, for creating and
deleting regions, allocating memory for objects inside these regions, and also for acquiring and releasing ownership of
regions. Our approach abstracts the need to explicitly transfer these regions across nodes by the programmer.

2.1. Regions

A region is a collection of memory pages, within which the program can allocate objects or other subregions. Regions
enable transferring large amounts of data between nodes without the overhead for packing and unpacking pointers [6, 7].
Our region allocator is based on an existing sequential implementation by Gay et al. [6]. We extend the sequential allocator
with support for a global address space among MPI processes, without expensive remote memory accesses as in PGAS
models; DRASync ensures that a region will occupy unique virtual memory addresses among all MPI processes. Then,
upon transferring a region from one MPI node to another, it occupies the same virtual memory addresses. Therefore, all
pointers internal to the region or to other regions that are also placed locally can be safely followed by the MPI process. In
our implementation, a region is composed of:
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• Region pages: A linked list of contiguous memory blocks (pages), where we store the allocated data. The pages can
have arbitrary size, with the default being 4KB.

• Region ownership: The rank number of the MPI node that “owns” the region. The owner can be the creator process
of the region or some other node where the region was transferred. The owner node has read/write permissions to the
regions’ data.

• Region ID: A unique identification number; we use its memory address in the global virtual memory space for
convenience. Tying a region to its virtual memory address guarantees that the address will be available on other MPI
processes and pointers will remain valid even upon transferring the region to the remote host.

• Region hierarchy: Its subregions; we keep the hierarchical model of the original sequential allocator. We use a tree-based
implementation and store the parent, siblings, and children regions.

• Region lock: The region’s current ownership state. We mark the region as locked if a node has acquired the region’s
ownership and unlocked otherwise. When unlocked, the region is free to be transferred to whichever node requests it.

2.2. Allocator API

To preserve a global address space abstraction, we require all memory allocations to return a unique address. To do that,
we assign the core with MPI rank 0, the manager node, to manage memory page allocation. The manager node serves
allocation requests by the remaining nodes sequentially, serving as a monitor that preserves uniqueness of virtual addresses.
The manager node allocates pages of memory to the nodes requesting them, in the order the requests are received. In all
other ways, the manager node acts as any other node in the system.

New regions and subregions can be created by calling new_region() and new_subregion(), respectively. Function
new_region() creates a region with no parent, at the root of a region hierarchy tree. Root regions have a dummy parent node
to facilitate their management. The function new_subregion() adds a new leaf in the region hierarchy tree, as a subregion
of its argument. The metadata that represent the newly created subregion are allocated within its parent’s memory space.
This facilitates the process of traversing and fetching a whole subtree in the region hierarchy to the requesting node. That
is, even if its different subregions are scattered on more than one nodes, fetching the pages of a parent region will also fetch
the region descriptors required to locate and fetch its children subregions.

A region is deleted by delete_region(). Deleting of a region results in the bulk deallocation of its data and the deallocation
of all its children recursively. To delete a region, a node must own it before it calls delete_region(). The pages of the deleted
regions are moved to free lists. We keep a free list for two groups of pages, one for the default size and another for page
sizes larger than the default, which may have resulted from the allocation of large objects. The free lists are kept local and
recycled within the node, to minimize communication with node 0 that acts as a monitor for page allocation, and reduce
bottleneck effects. As with used pages, every node in the system will have unique pages stored in its free lists.

Object memory allocation is done by ralloc(), which takes as an argument a region ID and the object’s size. Function
ralloc() checks whether the region contains any pages with enough space to allocate the object immediately. If not, it checks
for free pages in the free list locally, recycles a free page into the region and allocates the object there. If both local searches
do find space in memory, then ralloc() sends a message to the manager node to reserve a new memory page.

When a system node needs data that are not local, it needs to contact the owner of the wanted region to obtain it.
Using MPI, the programmer would have to pack the data structures in a portable representation, send/receive the data, and
recreate the structure on the requesting node. Using the previous approach, one can avoid packing and unpacking the data,
but still needs to use send/receive primitives to send regions. This means a node that requires a given region must wait
until the previous owner sends it. We propose a higher level abstraction, using asynchronous acquire and release primitives.
Specifically, when a node stops needing a region, and before any other node has need for the data, it calls release_region()
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/∗ Region Management ∗/
region new_region(void);
region new_subregion(region r);
void delete_region(region r);

/∗ Object Management ∗/
void ∗ralloc(region r, size_t s);

/∗ Region Transfer ∗/
void acquire_region(region r, int choice);
void release_region(region r);

Fig. 1. The DRASync API.

to release ownership of the region. When another node requests data from that region, it acquires ownership by calling
acquire_region() on the region ID, which will transfer the region seamlessly to the requesting node.

Locally, release_region() marks a region as unlocked by setting the lock field in the region descriptor as UNLOCKED.
That marking is also passed to all the region’s children. The function acquire_region(), is used to obtain a region. We
distinguish two cases, similarly to reader-writer locks.

In the first case, a node requests a region for reading, by setting the second argument to choice = READ. If the owner of
the region is also the requester, then the region and its children are marked as locked by setting the lock field in the region
descriptor as LOCKED. If the current owner is different than the requester, the requester sends a message to the owner to
obtain a copy of the region’s data. The owner sends the region and its data, recursively, to the requester.

In the second case, a node needs a region for writing, set by using the argument choice = WRITE. If the requester is
the owner of the region then the region is locked as above. If the requester is not the owner, it sends an ownership request
to the owner. Following lock semantics, if that region is marked as LOCKED by the owner, the requester must wait until
the owner calls release_region(). When the region becomes available, the owner sends the region and its data, recursively,
while also transferring the ownership of that region. For that purpose, the owner updates the “owner” field of the transferred
region’s local descriptor to point to the new owner and keeps that descriptor as a dummy, to forward any further requests
to the new owner.1

If a node receives a request for a region it does not own, it simply forwards the message to the new owner. If the region
has ever been stored locally, this will be available in the region descriptor, otherwise it forwards the request to the manager
node.

3. Implementation

This section focuses on the communication between the system nodes. All communication is done with MPI messages,
initiated by calling the library API. These MPI messages are handled by a special server thread used by the library, as
mentioned in the previous section. Note that if the application also uses MPI to communicate outside the region library,
the MPI implementation used must be thread-safe.

We categorize the dispatched request messages exchanged among server threads and the “main” application threads
of different nodes into four types depending on functionality. Two of them correspond to requests and are sent only from
the application thread to the server threads of remote nodes. The other two correspond to responses and are sent from the

1 Requests are forwarded synchronously by the server thread, so multiple requests will block until they are forwarded in order.
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server thread to remote application threads. Every message is identified by an ID, depending on the exchange. Specifically,
the types of the messages are:

Request new page: This message type is always sent to the manager core. Along with the ID it contains the size of the new
page. As the name states, this message is a request message for allocation of a new, unique page to the requesting
node.

Request region: This message type is sent from application thread of a node to the server thread of another node that owns
a given region. The message has a field denoting the READ/WRITE ownership of the requester, the region ID the
sender needs and the senders rank. We save the rank in the message in case of request forwarding, because there is a
possibility that the receiver of the message is no longer the owner of the region. If we only use MPI.Status for retrieving
information about the senders then the information about the first sender will be lost. Therefore, if the owner is found
after several message forwards then the response goes back only to the original requester.

Transfer page: This message type transfers a page from the server thread of a node to the application thread of a different
node. It stores the total size of the page to be transferred and is immediately followed by a transfer of the page contents.
This message only follows as a response after a request region message. Note that the message may not originate from
the node that received the request, as one or more forwardings of the request may have happened due to the region
moving to a different node.

Transfer completed: This is a response message stating that all the pages of a region have been safely transferred. This
message does not pass any other information, it behaves as an ACK message.

A message exchange between two server threads can happen only if a region request must be forwarded to another core
due to the region being moved.

3.1. Synchronization locks

We mention above that every region descriptor contains a locked field, which may be LOCKED or UNLOCKED. This
functionality exists to implement ownership semantics over whole regions, and in this manner the region need not be
transferred to another node before the owner has finished operating on the region’s data. This introduces a small race
window between the server thread trying to respond to a remote request and a local application thread trying to re-acquire
the region. We use a standard thread mutex mechanism to avoid this race; The server thread locks the region throughout
its transfer to a remote node to prevent the application thread from locking it before the transaction is finished. Conversely,
the application thread locks the region in order to use the data of the region, blocking the server thread from transferring
it. Note that this locking is to resolve a race among the two local threads, and is different from the locking semantics we
implement on regions among nodes. Simply using the same locked variable that implements remote locking is not possible,
because it does not differentiate between the server and application threads as to who owns the region. Thus, we have split
the LOCKED state into server thread locked SLOCKED and application thread locked CLOCKED.

3.2. Server thread

A server thread of the manager node runs at all times in the background at every node, handling all incoming messages
concerning the allocator. When a message requesting a new page is received, the server thread allocates a new page and
transfers it to the requester. Pages can have an arbitrary size, with a minimum page size of 4KB.

When a message requesting a region arrives, the server thread checks, based on the region ID, whether this region
descriptor exists in its address space. If the descriptor does not exist it forwards the message to the manager node for a



6 Journal name 000(00)

global search. If the local node is not the owner but has a descriptor of the region, then the descriptor points to the next
owner. Then, the server thread forwards the message to the corresponding node’s server thread. Finally, if the local node
is the owner, the server thread marks the region as locked by the server, if the region was previously released, and starts
to send the pages of the region to the requesting application thread. When this process is over, the server thread sends a
message declaring the end of the transfer and also the new region descriptor to the receiving application thread. Finally,
depending on whether the region was requested for READ or WRITE, the server thread will either take no further action,
or change the owner of the dummy region descriptor that will continue to exist in its address space.

3.3. Client thread

Each node runs an application thread that executes the main application. During execution of the application code, it
calls the library functions for allocating, deleting and transferring functions. When the application thread calls function
acquire_region(), it blocks at an MPI_Recv() function waiting for the region’s pages to arrive. When the first message is
received, the application thread receives the size of a page from that message and uses it to allocate and receive that page’s
data with a subsequent message. We use two different MPI messages for this operation because the application thread needs
to know the size of a page before it receives its data so that the page can be properly placed at the correct virtual address.
We do not use an MPI_Probe() to avoid having two messages, because the application thread at that time can either receive
the message with the page size, or the message that denotes the end of the transaction and also to avoid copying. When the
second message containing the data of the first page is received, the application thread receives the data directly into the
corresponding memory address.

Because DRASync does not keep track of all the pages that a region has stored, we do not know when the transfer of the
region and its pages will finish. Therefore, the owner sends a separate message denoting the end of the transfer. Together
with this message the previous owner sends also the region descriptor to the application thread of the new owner node, to
properly change ownership and lock the region.

As stated above, the manager node is responsible for allocating new pages for the other cores, to preserve global
uniqueness of memory addresses. Note that to allocate memory pages for the application node on the manager core, the
thread does not send a message. This occurs because the MPI implementation forbids sending messages from a node to
oneself. Thus, all local allocations made by calling ralloc(), as far as the manager core is concerned, are not handled by the
local server thread but only by the application thread. To avoid a race between the call of ralloc(), we use a POSIX mutex
when the global memory pointer is augmented.

4. Evaluation

We evaluate DRASync using two applications also used to evaluate the Myrmics allocator [4], namely Barnes-Hut N-body
simulation and Delaunay triangulation. Both are MPI applications that use pointer-based data structures and have been
already written to use a region-based allocator [4]. We modified these applications to adapt to DRASync’s ownership
semantics for regions, instead of using send/receive primitives and explicit communication. In short, the modification steps
are:

1. Replace region creation and destruction calls with DRASync’s equivalent API;

2. Replace memory allocation and deallocation calls with equivalent calls to the corresponding regions;

3. Remove sys_send() and sys_recv() and replace them with region_release() and region_acquire(). Note that
region_release() can be used to unlock a region before the equivalent sys_send() in the original code, possibly making
the program more intuitive, as region ownership code is together in the application with the code using the region data.
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We compare the results of our MPI implementation with the Myrmics MPI standalone memory allocator [4]. We
evaluate DRASync using two configurations; (i) on a single system with four AMD Opteron 6272 multiprocessors, totaling
64 cores running at 2.10GHz with a total of 256GB main memory and (ii) on a small cluster of four nodes, each of which has
a quad-core Intel Xeon E5405 processor running at 2.00GHz and 6GB of main memory. In both cases, each MPI process
has two threads, an application, or worker, thread and a server thread. In the first configuration, we pin the worker and
server threads of each MPI process to cores in the same NUMA area. In the second configuration, we use one MPI process
per node up to four nodes and two MPI processes per node to emulate 8 nodes. We pin the worker and server threads to
specific cores in order for each process to run on two cores of a single chip. We enable MPI_THREAD_MULTIPLE so
that both threads can safely call MPI.

Note that the differences between DRASync and Myrmics make a direct comparison difficult. DRASync uses an
additional server thread for each MPI process, whereas Myrmics specializes cores to operate either as schedulers or as
workers. To better compare the two systems, we use two configurations. First, we match both the number of scheduler and
worker cores in the two systems. Second, we maintain the same number of worker cores while using only one scheduler
core in Myrmics.
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(b) Breakdown graph of total run time for 100KB data.
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(c) Speedup graph for 1MB data.
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(d) Breakdown graph of total run time for 1MB data.

Fig. 2. Delaunay triangulation with different workload sizes.
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4.1. Delaunay triangulation

Delaunay triangulation is an algorithm that creates a set of triangles from a set of points in a 2D plane such, that every
triangle connects three points. We port the implementation used in the Myrmics allocator, which is based on the serial
Bowyer-Watson algorithm. Note that this implementation requires the number of processes to be a power of 4, thus, we
measure performance up to 16 MPI processes which in DRASync take up to 32 cores.

Figure 2 shows the results for a small dataset of 100K points and a large dataset of 1M points, both executed on
the 64-core shared memory AMD system. Figure 2a shows the speedup achieved for the small dataset. In the default
configuration (marked “DRASync”), each server thread occupies a different core than the worker thread for every MPI
process, achieving close to linear speedup. We also tested an alternative configuration (marked “DRASync one”) where
both the server and worker threads of each MPI process are pinned on the same core. In comparison, the Myrmics allocator
using one scheduler (marked “Myrmics-MPI one”) scales to 10× with 16 worker nodes, and does not scale to 16 nodes
when using many schedulers (marked “Myrmics-MPI mult”). Figure 2b shows the breakdown of the average running time
for the above configurations into computation, communication, and idle time for the worker threads. Note that the limited
speedup in the case of Myrmics on 16 nodes with multiple schedulers is caused by increases in both computation and idle
time.

Similarly, Figures 2c and 2d show the same measurements for a larger dataset of 1MB. Note that again, all configurations
achieve superlinear speedup, a result of both the parallelization of the algorithm as well as caching effects. In this case,
DRASync behaves similarly to the Myrmics allocator with one scheduler. Moreover, Figure 2d shows that the behavior of
the two allocators in this case is similar, in terms of time spent in communication and idling.

4.2. Barnes-Hut N-body simulation

Barnes-Hut is an N-body simulation that calculates the movement of a number of astronomical objects based on their
gravitational effects by using the center of their masses. Figure 3 shows the results of running the Barnes-Hut simulation
for 8KB and 1MB of input data. Figure 3a shows the speedup attained for processing 8KB of data, for various numbers
of MPI processes. Note that the number of threads is twice that of MPI processes, so the x-axis reaches 32 processes
for 64 threads running on 64 total cores in the configuration marked “DRASync”, and 64 threads running on 32 cores in
the configuration marked “DRASync one”. We compare with the Myrmics allocator for an equivalent number of worker
processes, where the Myrmics specialized scheduler cores are not counted. We find that DRASync scales better above 8
processes, especially compared to the Myrmics allocator with multiple scheduler cores. Figure 3b shows a breakdown of
the total running time for the manager process, showing that communication overhead does not increase as much with the
number of cores as with the Myrmics allocator, where communication is the main factor limiting speedup, especially for
the case of multiple schedulers.

Figure 3c shows the speedup for the same test run on an input set of 1MB, for various numbers of MPI processes.
Again, DRASync scales better than the Myrmics allocator, mainly due to the communication overhead being less for large
core counts, as shown in Figure 3d. We believe that this behavior is due to the existence of a server thread that effectively
transforms the benchmark into using asynchronous communication, reducing the time waiting to receive an MPI message
in the application critical path. Note that the design of this benchmark may cause load imbalance, where simulated bodies
are not equally divided among the nodes. Such load imbalance limits the observed speedup over 8 nodes.

Finally, we tested the Barnes-Hut benchmark on a small cluster of four nodes. Figure 4 shows the results for two
datasets, of 8KB and 64KB of data. In all cases, communication is a bottleneck for execution, resulting in slowdowns.
However, in both small and medium dataset cases, DRASync performs better than Myrmics, mainly due to the much less
communication time incurred.
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(b) Breakdown graph of total run time for 8KB data.
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(d) Breakdown graph of total run time for 1MB data.

Fig. 3. Barnes-Hut N-body simulation with different workload sizes.

5. Related work

Region-based memory management [8, 6, 9] has been extensively studied in the past as a mechanism to control object
lifetimes and fast, bulk object deallocation. Region-based memory management has been recently used in parallel
programming to control the memory effects of parallel threads and processes [10], and restrict shared data [11].

The Myrmics memory allocator [4] is a region-based memory allocator designed for distributed or manycore machines
with no cache coherence. In contrast to DRASync, Myrmics specializes several nodes into schedulers that only manage
memory allocation and it uses send/receive communication to transfer regions of data, while our allocator implements an
ownership semantics similar to reader-writer locks. Legion [5] uses logical regions to describe the organization of data.
Legion uses logical regions to express locality and dynamic computations over pointer-based data structures, and transfers
regions using GASNet for inter-node communication.

The problem of memory allocation for parallel programs has been studied extensively [12, 13], although most allocators
focus on parallel systems with shared memory, software distributed shared memory, or statically Partitioned Global Address
Space systems [1, 2, 3]. Distributed Transactional Memory systems [14] adapt software cache coherency to detect concurrent
access to remote copies of data and abort or block conflicts.
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(b) Breakdown graph of total run time for 8KB data.
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(c) Speedup graph for 64KB data.

 0

 200

 400

 600

 800

 1000

 1200

 1400

D
R
ASync

M
yrm

ics one

M
yrm

ics m
ul

D
R
ASync

M
yrm

ics one

M
yrm

ics m
ul

D
R
ASync

M
yrm

ics one

M
yrm

ics m
ul

D
R
ASync

M
yrm

ics one

M
yrm

ics m
ul

B
re

a
k
d

o
w

n
 o

f 
to

ta
l 
ru

n
 t

im
e

 (
s
e

c
)

Number of system nodes

computation
communication
idle

8421

(d) Breakdown graph of total run time for 64KB data.

Fig. 4. Barnes-Hut N-body simulation with different workload sizes.

6. Conclusions

In this paper we present a region-based memory allocator for MPI programs that supports pointer-based data structures.
The allocator performs as well as the state of the art and provides an intuitive synchronization abstraction to programmers,
similar to reader-writer locks.
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