
Hierarchical Parallel Dynamic Dependence Analysis
for Recursively Task-Parallel Programs

Nikolaos Papakonstantinou, Foivos S. Zakkak, Polyvios Pratikakis
Foundation of Research and Technology – Hellas

Institute of Computer Science
Heraklion, Crete, Greece

{nikpapac,zakkak,polyvios}@ics.forth.gr

Abstract—This work presents a hierarchical, parallel, dy-
namic dependence analysis for inferring run-time dependencies
between recursively parallel tasks in the OmpSs programming
model. To evaluate the dependence analysis we implement
PARTEE, a scalable runtime system that supports implicit
synchronization between nested parallel tasks. We evaluate the
performance of the resulting runtime system and compare it
to Nanos++, the state of the art OmpSs implementation, and
Cilk, a high performance task-parallel runtime system without
implicit task synchronization. We find that i) PARTEE is able
to handle more fine grained tasks than Nanos++; ii) PARTEE’s
performance is comparable to that of Cilk; iii) in cases where
task dependencies are irregular, PARTEE outperforms Cilk by
up to 103%.

Keywords-task parallelism; dynamic dependence analysis;
nested parallelism; runtime systems;

I. INTRODUCTION

Task-parallelism offers a high-level abstraction for ex-
pressing parallelism to the programmer compared to threads
and processes. Hence, task-parallel programming models
gain increasing traction with parallel programmers. Early
task-parallel programming models [1]–[4] required manual
synchronization using locks and barriers, whereas recent
approaches support implicit synchronization employing de-
pendence analysis algorithms to discover and resolve depen-
dencies between tasks [5], [6].

OmpSs [5] is one such programming model. OmpSs
is designed as an extension to OpenMP and some of its
features are slowly getting adopted by the OpenMP standard.
As a result, due to the popularity of OpenMP, OmpSs is
of special interest. OmpSs is implemented in Nanos++, a
runtime system designed to be modular and support multiple
architectures, schedulers, dependence analysis algorithms
etc. Nanos++, however, fails to scale with the number of
cores for task-parallel applications with fine grained tasks—
tasks that take less than 2 milliseconds to complete, as we
present in Section IV.

To evaluate the performance of Nanos++ we compare two
parallel implementations of the mergesort algorithm. The
first implementation is the multisort benchmark from the
OmpSs Dependency Benchmark Suite [7] and the second
one is the cilksort benchmark from the Cilk benchmark

suite [1]. The main difference between multisort and cilk-
sort is that the latter is implemented with task nesting,
whereas multisort spawns all tasks from a single thread.
We port cilksort to OmpSs, and compare their scalability on
Nanos++ [8], the state of the art OmpSs implementation. For
reference, we also measure cilksort on Cilk [1] to demon-
strate that it is scalable. Cilk is a high performance task-
based programming language that does not support implicit
synchronization and requires manually inserted barriers to
produce correct results. We present our measurements in
Figure 1. On the y-axis we plot the speedup and on the x-
axis we plot the number of cores. Our measurements show
that both cilksort and multisort on Nanos++ fail to scale
with the number of cores. We also observe that cilksort
achieves better performance than multisort on Nanos++. This
is expected as nested tasks distribute the overhead of task-
scheduling to different cores. However, Nanos++ still fails
to get speedup. We believe that this is due to the overhead
of the Nanos++ dynamic dependence analysis.

In an effort to bridge the performance gap between
Nanos++ and the Cilk runtime system, we present a parallel
dynamic dependence analysis that enables implicit syn-
chronization in recursively task-parallel applications written

0.0008

1
2
4
8

16
32
64

 1  2  4  8  16  32  64

S
p
e
e
d
u
p

Number of Cores

Nanos++ (Multisort)
Nanos++ (Cilksort)

Cilk (Cilksort)
Linear

Figure 1. Cilksort vs Multisort on Multiple Runtime Systems



using the OmpSs programming model. Our approach aims
to distribute the dynamic dependence analysis overhead to
different cores and nesting levels in the same way nested-
tasks distribute the scheduling algorithm overhead—by re-
cursively creating new tasks that can concurrently create
other tasks. We implement our dynamic dependence analysis
in PARTEE, a runtime system implementing the OmpSs pro-
gramming model, and evaluate its performance in respect to
that of Cilk and Nanos++. We find that: i) PARTEE is able to
handle more fine grained tasks than Nanos++; ii) PARTEE’s
performance is comparable to that of Cilk, while it provides
more flexibility to the programmer; iii) in cases where task
dependencies are irregular, PARTEE outperforms Cilk by up
to 103%. Specifically, the contributions of this work are:
• A hierarchical parallel dynamic dependence analysis

that infers run-time dependencies between tasks in
recursively task-parallel programs.

• PARTEE, a runtime system implementing the proposed
dynamic dependence analysis using a parallel region-
based allocator.

• The evaluation of PARTEE in respect to the Cilk and
Nanos++ runtime systems.

A. The OmpSs programming model

Our work adopts the OmpSs programming model due
to its annotation language expressiveness about the tasks’
dataflow. OmpSs supports more complex access patterns
than those supported by OpenMP and is thus able to properly
detect and resolve dependencies in more applications than
the OpenMP programming model. As of OpenMP 4.5,
most of the other task-related features of OmpSs have been
added to the OpenMP specification. In OmpSs, similarly to
OpenMP, the programmer uses pragma directives to mark
tasks and express their dependencies. Similarly to sequential
programs, the execution starts from the main function,
but at #pragma omp task directives the runtime system
creates a concurrent task that may run in parallel with the
sequential main, much like a thread creation. Additionally,
at #pragma omp taskwait directives the sequential
main blocks, until all of its spawned tasks reach comple-
tion, similarly to thread-join. In task-parallel programs with
nested tasks this behavior is recursive—each task may also
spawn new tasks and synchronize with them, through the
omp taskwait directive. In OmpSs, a task may only be
interrupted explicitly through the omp taskwait directive
or implicitly through the omp task directive, in the case
of depth-first schedulers. At omp taskwait directives
child-tasks return the ownership of their memory footprint
to their parent-task, essentially creating a communication
channel. Respectively, at omp task directives the parent-
tasks transfer the ownership of a subset of their memory
footprint to a new child-task and, in the case of depth-first
scheduling, they get interrupted to give priority to the new
child-task.

1 void qux ( i n t ∗k , i n t ∗ l ) {
2 ∗k = ∗ l ;
3 }
4
5 void foo ( i n t ∗x , i n t ∗y , i n t ∗z ) {
6 #pragma omp task in ( z ) out ( x )
7 qux ( x , z ) ;
8 #pragma omp task in ( z ) out ( y )
9 qux ( y , z ) ;

10 }
11
12 void b a r ( i n t ∗k , i n t ∗ l ) {
13 #pragma omp task in ( l ) out ( k )
14 qux ( k , l ) ;
15 }
16
17 i n t main ( void ) {
18 / / . . .
19 #pragma omp task in ( z ) out ( x , y )
20 foo ( x , y , z ) ;
21 #pragma omp task in ( x ) out ( k )
22 b a r ( k , x ) ;
23 #pragma omp task in (m) out ( l )
24 qux ( l , m) ;
25 / / . . .
26 }

Figure 2. OmpSs Code Example

In order for the dynamic dependence analysis of the
OmpSs implementation to properly detect and resolve de-
pendencies among tasks, it requires the programmer to an-
notate the parameters passed to each task with the keywords
in, out, and inout. The parameters read by the spawning
task are marked as in, those written as out, and those that
are both read and written as inout. We call this information
the memory footprint of the task. Whenever a new task’s
memory footprint, or a part of it, is write-owned by another
task, the dependence analysis defers its execution until the
task owning the memory footprint, or part of it, reaches
completion. As a result, in this work we differentiate task
spawning from task scheduling, since, in the presence of
dependencies, a task may be spawned but not scheduled
until the dependencies get resolved. With spawn, we refer
to the procedure of creating a new task and detecting any
dependencies of it with other tasks, and with schedule, we
mean that a task is ready for execution.

Figure 2 presents an OmpSs toy example. In this
example, there are three functions, qux(), foo(), and
bar(). The qux() function takes two parameters and
stores the value of the second to the first. The foo()
function takes three parameters and concurrently stores the
value of the third to the first and the second, by spawning
two task instances of qux(). The bar() function spawns
a task instance of qux() passing through its parameters.
The main() function first spawns an instance of foo(),
to store the value of z to x and y; an instance of bar(),



to store the value of z to k; and an instance of qux(), to
store the value of m to l.

The rest of this paper is organized as follows. In Sec-
tion II, we present our hierarchical, dynamic, dependence
analysis for inferring dependencies between tasks in re-
cursively task-parallel programs. In Section III we present
the key features of PARTEE, our implementation of task-
based parallel runtime system that supports implicit synchro-
nization between nested-tasks. In Section IV we evaluate
PARTEE and compare it to the Cilk and Nanos++ runtime
systems. In Section V we discuss related work and conclude
in Section VI.

II. DYNAMIC DEPENDENCE ANALYSIS

Taking advantage of the memory footprint annotations
of OmpSs, Nanos++ implements a dynamic dependence
analysis to automatically detect and resolve dependencies
between tasks at run-time. Mercurium [9] and SCOOP [10]
also attempt to infer dependencies at compile-time, using
static dependence analysis. However, static dependence anal-
ysis cannot detect and resolve all dependencies, limiting the
exposed parallelism. As a result, to achieve better perfor-
mance, it is best to combine a static dependence analysis
with the dynamic dependence analysis to reduce the latter’s
overheads [6], [10], [11].

A. Task Dependency Graphs

Using the memory footprint of the tasks, the runtime
system is able to create the task dependency graph of a task-
parallel program. In Figure 3 we sketch the task dependency
graph of the toy example presented in Figure 2. For each
task instance we draw a rounded rectangle. We use solid
arrows to represent task spawns, and to demonstrate the
parent-child relationship between the spawned tasks. We
use dashed arrows to show the dependencies we need the
runtime system to detect and resolve, in order to correctly
execute the program. We use dotted arrows to show the
actual dependencies present in the program.

Since bar() accesses x which is written by foo()
it needs to wait for it to complete, hence the dependency
between Task2 and Task1. Examining foo(), though,
we observe that it never actually writes x. Instead, x is
being written by the first invocation of qux() in foo(),
which is why Task2 depends on Task1.2. Note that in
the OmpSs programming model the notion of dependencies
is transitive; meaning that for any task t that depends on a
task t′, all child-tasks of t also depend on t′. As a result,
Task 2.1 depends on both Task 1 and Task 1.2. We
further discuss this property below. We also discuss why a
single dependency between Task 1 and Task 2 is enough
to properly execute the code in Figure 2. Finally, note that
Figure 3 is a sketch to improve readability and does not

foo(x, y, z)

Task 1

bar(k, x)

Task 2

qux(l, m)

Task 3

qux(y, z)

Task 1.1

qux(x, z)

Task 1.2

qux(k, x)

Task 2.1

Main

Spawn

Implicit Dependency

Actual Dependency

Figure 3. Task Dependency Graph

reflect the runtime system’s internal representation of task
dependencies.

B. Hierarchical Distribution

The nature of nested-tasks allows us to create a spawn-
tree, a tree representation of the tasks that will be spawned
at run-time and the relation to their parents. In a spawn-tree,
the root is the main function, interpreted as a virtual task.
The intermediate nodes are both child-tasks, of the higher
level tasks, and parent-tasks, of the lower level tasks in the
tree. Finally the leaf nodes are child-tasks that perform no
further spawns. Figure 3 includes such a spawn graph for
the toy example in Figure 2.

The main advantage of nested-tasks over flat-tasks is that
as the spawn-tree width and depth increase, the creation
of new tasks gets scattered to different cores, essentially
distributing the overhead of spawning and scheduling new
tasks. As a result, to detect and resolve dependencies
efficiently, the dependence analysis should be distributed
in a similar manner. To ensure deterministic execution,
the programming model requires parent-tasks to include
their child-tasks’ memory footprints in their own memory
footprint [12]. Thus, if a task owns a memory segment,
then all its ancestor-tasks—all the tasks in the path from
the root of the spawn-tree to that task—own it as well. That
is, for any task t, its memory footprint is the union of its
own and its child-tasks’ memory footprints. Additionally, for
each memory segment there may not exist more than one
paths in the spawn-tree with write ownership to it, or part
of it. As a result. a task may only be scheduled when none
of its sibling-tasks (if any) has a write ownership on any of
the memory segments, or parts of them, in its memory foot-
print, and its parent-task has the ownership of its memory
footprint. Note that, by definition, a descendant-task’s spawn
depends on the scheduling of its parent-task—if its parent-
task is not yet scheduled, then it cannot be spawned either.
Consequently, when a task is spawned, its parent must have



already been scheduled and own its memory footprint. This
property narrows down the conditions to be checked at run-
time to one—whether any of the new task’s sibling-tasks
have write ownership on any part of its memory footprint.

In general, two tasks are said to be dependent when the
one is not a descendant-task of the other, and the intersection
of their memory footprints is not the empty set. Resolving
such dependencies is required to ensure the correct execution
order of tasks.

C. The Base Algorithm

To check whether a memory footprint or a part of it in
a task’s memory footprint is already owned by any of its
sibling-tasks (if any) we propose a novel algorithm which is
the base of our dynamic dependence analysis. The algorithm
consists of two parts, one that creates the dependencies and
should be run by the parent-tasks whenever they spawn
a new child-task, and one that resolves dependencies and
should be ran by each task when it reaches completion.

To simplify the presentation of the algorithm, in this
section we assume that the dependence analysis operates
on objects instead of arbitrary memory segments. Below, in
Section III we explain how we extend the algorithm to work
with arbitrary memory segments in its implementation.

To keep track of the dependencies and the memory
footprint of each task at run-time, the algorithm we propose
requires the association of each task with a task descriptor
comprising of: (a) a reference to the code to be executed;
(b) the argument list, a list of argument descriptors (the
task’s memory footprint); (c) the dependencies counter,
counting how many tasks this task depends on; (d) the
resolved dependencies counter, counting how many depen-
dencies of this task have been resolved—the task owning
them, released them; and (e) the notify list, a list of task
descriptors for the tasks that have dependencies on this task.
Each argument descriptor in the argument list consists of:
(a) a reference to the allocated object; and (b) the requested
type of the argument;

Additionally, our algorithm associates each object with
a set of attributes that hold the ownership information.
This information is (i) a reference to the last owner of
the argument—the task descriptor of the task which was
last assigned the argument; (ii) the ownership type of the
argument—the type of the access performed by the last task;
(iii) the readers’ list—a list of task descriptors that use this
argument for read access (if any).

At run-time, whenever a new object is allocated, it gets
associated with the above set of attributes. Additionally,
whenever a new task is spawned it gets associated with a task
descriptor. Using these associations the dependence analysis
is able to trace back which tasks (if any) access an object
and the corresponding type of the access (i.e., in, out, or
inout).

Figure 4 presents the algorithm that creates the depen-
dencies for new tasks. For each argument, we first check if
the argument is not used by any other task (line 3). If true,
we assign to the corresponding object the new task as its
owner, and store the access type (lines II-C–5). If false, we
proceed by checking for read after read (RAR), write after
read (WAR), read after write (RAW), and write after write
(WAW) dependencies.

In the case of RAR accesses, we simply append the task
descriptor of the new task descriptor to the object’s readers’
list (line 8). In the case of WAR accesses, we go through
the object’s readers’ list and we append the new task to
every reader’s notify list and increase the local “waitfor”
counter (lines 10–14). We then assign the object to the new
task and clear its readers’ list (lines 15–17). This way, we
delay the scheduling of the new task until all the reader
tasks reach completion. At the same time, by assigning the
object to the new task, we ensure that any future accesses
are going to wait for it. In the case of RAW accesses, we
try to append the new task to the notify list of the object’s
current owner (line 19). On success, we proceed to increase
the local “waitfor” counter (line 20). On failure, we assume
that the last owner has reached completion and thus the
dependency is actually a RAR, so we update the object’s
type for future accesses (line 22). Last, we append the task
to the object’s readers’ list (line 24). In the case of WAW
accesses, we attempt to append the new task to the notify
list of the object’s current owner and then we assign the
corresponding object to the new task (lines 26–30).

If an argument fails to match any of the previous criteria,
it means it is marked as safe by the SCOOP compiler
(line 32). Arguments marked as safe are arguments that have
been found by the compiler to not cause any dependency
during run-time under any execution, thus they can be safely
ignored by the dynamic dependence analysis. At the end, we
check whether the local “waitfor” counter is zero to decide
whether the task can be scheduled or not (line 35). If the
“waitfor” value is different than zero, we assign its value
to the task’s dependencies counter (line 38). A task with a
non-zero dependencies counter may not be scheduled until
its resolved dependencies counter’s value becomes equal to
that of its dependencies counter’s value.

The use of the local “waitfor” counter, instead of directly
increasing the dependencies counter, aims to eliminate the
chance of scheduling a task when its resolved dependencies
counter reaches the same value as its dependencies counter
but not all of its dependencies have been created yet.

Figure 5 presents the algorithm that resolves the depen-
dencies when tasks reach completion. At task completion,
we go through its notify list, and, for every task in it, we
increase its resolved dependencies counter and then check
if it is equal to the dependencies counter (lines 1–8). Note
that we use the atomic primitive fetch-and-add (FAA) to
perform the increase. This is necessary, since more than one



1: waitfor ← 0
2: for each arg ∈ task.arguments do
3: if arg.object.owner = ∅ then
4: arg.object.owner ← task /* First use */
5: arg.object.type ← arg.type
6: end if
7: if arg.type = in and arg.object.type = in then
8: arg.object.reader_list.append(task) /* RAR */
9: else if arg.type ∈ {out , inout}

and arg.object.type = in then
10: for each reader ∈ arg.object.reader_list do
11: if reader.notify_list.append(task) then
12: waitfor ← waitfor + 1 /* WAR */
13: end if
14: end for
15: arg.object.owner ← task
16: arg.object.type ← arg.type
17: arg.object.reader_list.clear()
18: else if arg.type = in

and arg.object.type ∈ {out , inout} then
19: if arg.object.owner.notify_list.append(task) then
20: waitfor ← waitfor + 1 /* RAW */
21: else
22: arg.object.type ← arg.type /* RAR */
23: end if
24: arg.object.reader_list.append(task)
25: else if arg.type ∈ {out , inout}

and arg.object.type ∈ {out , inout} then
26: if arg.object.owner.notify_list.append(task) then
27: waitfor ← waitfor + 1 /* WAW */
28: end if
29: arg.object.owner ← task
30: arg.object.type ← arg.type
31: else
32: continue /* marked safe by SCOOP */
33: end if
34: end for
35: if waitfor = 0 then
36: schedule(task)
37: else
38: task.deps_counter ← waitfor
39: end if

Figure 4. Create Dependencies Algorithm

tasks reaching completion may race each other in increasing
the resolved dependencies counter of a task that happens to
depend on both of them. Additionally, the use of fetch-and-
add ensures that only a single core may observe that the
resolved dependencies counter is equal to the dependencies
counter and thus schedule the corresponding task. To achieve
this, we use the fetched value added by one and compare it to
the value of the corresponding task’s dependencies counter
(line 4). Note that the owner field is never set to ∅ by the
algorithms in Figure 4 and Figure 5. The owner field may
only be equal to ∅ when the corresponding object has not
yet been accessed by any task.

Note that the create dependencies algorithm might race
with the resolve dependencies algorithm, since a task spawn
may race with the completion of a task it depends on. When

1: task.notify_list.lock()
2: for each task’ ∈ task.notify_list do
3: deps ← FAA(task’.resolved_deps_counter, 1)
4: if task’.deps_counter = deps + 1 then
5: schedule(task’)
6: end if
7: end for
8: task.notify_list.clear()

Figure 5. Resolve Dependencies Algorithm

a task being spawned, tries to be inserted in the notify list of
the task it depends on (Figure 4 lines 11, 24, 26), while the
latter tries to empty its notify list and notify the tasks waiting
for it that it reached completion (Figure 5). To protect the
notify list in such cases and not allow further additions to it
if the resolve dependencies algorithm is running, we use a
special node that we baptize lock. If the head of the list
points to that node, then insertions to that list will fail,
meaning that the task owning it reached completion and thus
there is no need to add a new node to its notify list. To ensure
that the head of the list is atomically updated, we use the
compare-and-swap instruction to insert elements to the head
of the list and to lock it. To resolve dependencies we first
lock the notify list (line 1).

For instance, in the toy example of Figure 2, the main
function will first spawn Task 1, then Task 2, and finally
Task 3. At the spawn of Task 1 the corresponding task
descriptor will be created and initialized according to its
memory footprint. Then, the create dependencies algorithm
(Figure 4) will be run to check for dependencies. In this case,
Task 1 can be directly scheduled, since there are no other
active tasks yet, and thus no dependencies (waitfor = 0).
Later, at the spawn of Task 2, similarly, the corresponding
task descriptor will be created and initialized, and the create
dependencies algorithm will be run to check for dependen-
cies. In that case, assuming Task 1 is still running, the x will
be owned by Task 1 (arg.object.owner 6= ∅). As a results, the
analysis will detect a WAR dependency between Task 1 and
Task 2, and increase Task 1’s dependencies counter (Figure 4
lines 10–14) and add Task 2 in the notify list of Task 1
(Figure 4 lines 15–17). Finally at the spawn of Task 3 we
proceed similarly to find that all arguments are not owned
and will proceed with the scheduling.

Regarding the nested tasks Task 1.1 and Task 1.2, the
process is similar. In the case of Task 1.2, the dependence
analysis will find that z is read-owned by Task 1.1 and will
proceed by appending Task 1.2 to the readers’ list of z.

D. Limitations

Although compliant with the OmpSs programming model
specification, only detecting dependencies between sibling-
tasks imposes a limitation to the expressiveness of the
programming model. Figure 6 gives an example where a
code segment (line 4) of a task depends on the output of one



1 / / . . .
2 #pragma omp task out ( x ) in ( z )
3 qux ( x , z ) ;
4 ∗z = ∗x ;
5 #pragma omp task out ( y ) in ( z )
6 qux ( y , z ) ;
7 / / . . .

Figure 6. Task depending on the output of its child

of its child-tasks (line 3). In such cases, our analysis fails
to detect this dependency, and requires the developer to add
this code segment in a child-task, so that the dependence
analysis will be able to detect and resolve the dependency.
Alternatively, an explicit taskwait directive between the
child-task and the corresponding code segment also suffices.
Depending on the level of available parallelism in the task,
one case might be preferred over the other. For instance, if
the task spawns many independent child-tasks and this is
one of the few existing dependencies, the creation of a new
child-task should be preferred.

E. Synchronization

In OmpSs a task may only yield explicitly through the
taskwait directive or implicitly in the case of depth-first
schedulers, through the task directive. In our work, we also
assume that each task performs an implicit taskwait at its
end. This implicit taskwait directive ensures that all of its
child-tasks reached completion before the task itself reaches
completion. We find this behavior more intuitive to the
programmer and safer, since it allows annotated programs
with nested-tasks to implicitly synchronize without the need
of any explicit taskwait directives placed by the programmer.
Furthermore, from our experience from porting benchmarks
to OmpSs, an explicit taskwait at the end of each nested
task is almost always required to produce correct results.

To implement the taskwait directive, we extend the task
descriptor with a counter holding the number of child-tasks
of the corresponding task, and a reference to its parent-
task’s descriptor. Whenever a task spawns a child-task, it
also atomically increases this counter. Similarly whenever
a child-task reaches completion it atomically decreases its
parent-task’s counter.

Note that the explicit taskwait primitive is supported only
for compatibility with the OmpSs programming model and
to handle limitations like those described in Section II-D. For
the correct synchronization of the application, our analysis
relies only on the correct annotation of the tasks’ memory
footprints and the implicit taskwait directives.

III. THE PARTEE: PARallel Task Execution Engine

We implement our dynamic dependence analysis in a new
runtime system, called PARTEE, because OmpSs is focused
on being modular at the cost of decreased efficiency (as

we show in Section IV), and the Cilk runtime system and
scheduler are not straightforward to extend in a way to
support task reordering. To rectify this, we design PARTEE
to use task descriptors, as described in Section II, which are
straightforward to reorder.

A. Task Scheduling

PARTEE uses Blumofe and Leiserson’s work-stealing
algorithm [13] for scheduling tasks. The runtime system
consists of P software threads, each pinned to one of the P
available hardware threads. We call these software threads
virtual processors (VP). Each VP maintains a task-queue
where it can spawn and execute tasks to and from. In case its
task-queue is empty, it tries to steal work from another VP.
We implement the task-queues using a non-dynamic variant
of the lock-free deque proposed by Chase and Lev [14].

To spawn a new task, a VP needs to create a new
task descriptor and perform the dependence analysis on
it, as described in Section II. For this process we use
SCOOP [10], a source-to-source compiler which enables
us to use #pragma directives for task annotation. SCOOP,
using the information from the task annotations, generates
code that creates the task descriptor, initializes it, and finally
passes it to the dependence analysis. Additionally, SCOOP
performs a static analysis on the task footprints and is able
to exclude arguments that are safe to omit from the dynamic
dependence analysis—they do not create any dependencies.

When taskwait is invoked, the executing VP waits for
all of the current task’s child-tasks to reach completion. To
avoid spinning or idling, VPs waiting at a taskwait execute
tasks from their task-queue or try to steal from other task-
queues if the latter is empty.

B. Block-Based Analysis

To improve readability, in Section II we assume that the
dependence analysis algorithm operates per object. However,
such an analysis would fail to detect dependencies between
arbitrary memory accesses through pointer arithmetic, and
overlapping tile and block array accesses. To properly handle
such dependencies, we adopt and extend the block-based
approach of Tzenakis et al. [15]. We conceptually slice all
arguments into blocks of a predefined block size. Each block
is associated with a set of attributes that keep its ownership
information, as presented in Section II for objects. Instead of
going through each argument, the analysis goes through each
block of each argument and performs the steps presented in
Figure 4. If two arguments of two different tasks contain the
same block, then they overlap and may create a dependency.

Since our dependence analysis only checks for dependen-
cies between sibling-tasks, we implement a distinct look-
up table (LUT) per task, stored in its task descriptor. This
LUT holds the associations between blocks, owned by child-
tasks, and their set of attributes. Employing this hierarchical
design, when spawning a new task, PARTEE only needs to



query the spawning task’s LUT to get each block’s owner,
in the new task’s memory footprint. Since tasks are atomic,
the spawn of each child task will be executed by the same
VP, thus there is no need to synchronize with other VPs.
That also holds for updates to the LUT about a block’s
owner, as well as, its readers’ list. This behavior, combined
with thread pinning (for the VPs), results in increased spatial
and temporal locality, consequently increasing the number of
cache hits and thus significantly improving the performance
and energy efficiency of the dependence analysis.

To further reduce the overhead, we implement LUTs as
two-level array-based tries [16]. A trie is an ordered tree data
structure that is used to store a dynamic set or associative
array where the keys are usually strings. In our case, we
use the memory address of each argument as the key. To
perform a look-up we mask the memory address and use
its x most significant bits to index the first level of the trie,
next we use the following y bits to index the second level.
Tuning x and y values allows us to configure PARTEE’s
block size and detect dependencies on different granularity.
For instance, assuming a 64-bit address space, setting x
to 28 and y to 28 enables PARTEE to operate on cache
line granularity—block size equal to 64 bytes. That is, if
two tasks access the same cache line, then PARTEE will
detect a dependency. Finer granularity results in increased
run-time overhead while coarser granularity may result in
false dependencies, and thus reduced exposed parallelism.

C. Region-Based Allocation

To manage the memory required to store the task descrip-
tors and their LUTs we developed and use a region-based
parallel allocator. Our allocator is based on that of Gay and
Aiken’s [17]. A region is a collection of allocated objects
that can be efficiently de-allocated all at once. Thus, the
runtime system is able to free a region with all its subregions
efficiently and keep the freed memory in a pool for future
use. In PARTEE each task descriptor owns a region. In this
region, it allocates its LUT and all the task descriptors of its
child-tasks. As a result, whenever a task reaches completion,
PARTEE can safely and efficiently free all the memory
allocated for its own and its child-tasks needs. Additionally,
allocating all the memory related to a task descriptor in a
single region results in increased memory locality, since the
memory within a region is usually contiguous pages.

Gay and Aiken, in their allocator, hold two lists of free
pages, which are used for allocation and de-allocation. We
found these two lists to be a point of contention when
using the region-allocator from within multiple threads. For
the needs of PARTEE, we make the free lists distributed.
We essentially create n free lists, each protected by a
lock. Whenever a VP needs to allocate or free a region,
it randomly peaks one of the n lists and tries to lock it.
On successful lock it proceeds with the allocation or de-
allocation and frees the lock. On failure it randomly peaks

one of the n lists again and retries. The value of n depends
on the number of available VPs. Experimentally we find that
a value of 8 is sufficient to handle 64 VPs. A higher value
of n does not impact performance but might affect the total
size of memory used by the region-based allocator.

Gay’s and Aiken’s allocator also creates a tree of regions
ensuring that all regions will be de-allocated before the
termination of any program. This tree is also used to perform
queries about the region that a memory address maps to. To
achieve this, Gay and Aiken create a global region used as
the root and add new regions as its children. Maintaining
this root region up to date in a parallel allocator, however,
also requires some kind of mutex exclusion. Since PARTEE
does not need to query the region-based allocator about the
region of an address, we drop this feature and create all the
regions at top level. Regarding de-allocation before program
termination, since we free a task’s region at completion,
it follows from the tree-like task graph that all allocated
regions will be eventually freed.

IV. EVALUATION

We evaluate PARTEE on a 4-chip NUMA system with
16 cores per chip, totaling 64 AMD Opteron Processor
6272 cores, with 256 GB RAM. We evaluate PARTEE
using six benchmarks and compare it with Cilk and OmpSs.
We run each benchmark 10 times on varying number of
cores, from 1 to 64, doubling the number of cores at each
step. We then estimate the geometric mean of the execution
time and calculate the speedup over the geometric mean
of the sequential executions. To plot the linear scale line,
we calculate the sequential execution time using the native
benchmark, without using any runtime system. All reported
speedups are calculated with the native benchmark execution
time as the baseline. Additionally, for every benchmark, we
perform a run on a single core using each runtime system
to demonstrate the corresponding runtime system’s overhead
over the native application. To produce the executable files,
of each benchmark, for each runtime system, and run them
we use the tool versions presented in Table I.

Nanos++ provides five different dependence analyses plu-
gins, each with different characteristics. In this work we aim
to provide a single dependence analysis for all cases (e.g.,
pointer arithmetic, aliasing, tile accesses, plain accesses
etc.), thus we compare it only with the regions dependence

Table I
TOOL VERSIONS

Tool Version Flags
GCC 4.4.8 -O3
SCOOP 2.2.0
Mercurium 1.99.7 -O3 –ompss
Nanos++ 0.7.10 –deps=regions –schedule=dbf
Cilk 5.4.6 -O3



PARTEE
PARTEE ND

Cilk
Nanos++

Linear

0.35

1
2
4
8

16
32
64

1 2 4 8 16 32 64

S
p
e
e
d
u
p

Blackscholes

1 2 4 8 16 32 64

Cholesky

0.35

1
2
4
8

16
32
64

1 2 4 8 16 32 64

S
p
e
e
d
u
p

Heat Diffusion

1 2 4 8 16 32 64

LU Decomposition

0.35
1
2
4
8

16
32
64

1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Cores

Matrix Multiply

1 2 4 8 16 32 64

Number of Cores

Mergesort

Figure 7. Speedup Over Sequential

plugin of Nanos++ that can also handle such cases. Although
the plain dependence plugin may be more suitable than the
regions plugin for some of the benchmarks, we avoid tuning
Nanos++ for each application, just as we do for PARTEE.
Note, however, that in our measurements even with the plain
dependence plugin PARTEE outperforms Nanos++.

Figure 7 presents the speedup measurements of the six
benchmarks. On the y-axis we plot the speedup and on the
x-axis the number of utilized cores. Both axis are in base-
two logarithmic scale. A horizontal, dashed, red line helps to
separate slowdowns from speedups, and a gray line crossing
the plot shows the linear speedup, which is calculated as:

linear speedup = execution time of native benchmark
utilized cores

We use green triangles to mark speedups of PARTEE; red
squares to mark speedups of PARTEE with explicit taskwait
directives and the dynamic dependence analysis disabled
(PARTEE ND), to demonstrate the latter’s impact on the
speedup; blue circles to mark speedups of Cilk; and orange
diamonds to mark OmpSs. Additionally, in Table II we sum
up the input arguments for each benchmark.

Black-Scholes is an embarrassingly parallel benchmark
from the PARSEC benchmark suite [18]. We use this bench-
mark to show the performance and scalability of PARTEE

Table II
BENCHMARK PARAMETERS

Benchmark Problem Size Task Footprint
Black-Scholes 10,000,000 1024 options
Cholesky 4096×4096 256× 256 doubles
Heat Diffusion 4096×4096 10×4096 doubles
LU 2048×2048 256× 256 doubles
Matrix Multiply 2048×2048 256×256 &

256×512 floats
Mergesort 4,194,304 8192 elements

on benchmarks without dependencies. Our measurements
show that PARTEE’s performance is similar to that of
Cilk. Additionally, we observe that both Cilk and PARTEE
achieve super-linear speedup, which we attribute to cache
effects, since the task memory footprint fits in the L1 cache.
On the contrary, we observe that Nanos++ fails to get a
speedup. This behavior is consistent in every benchmark. As
a result we skip the discussion about Nanos++ for the rest
of the benchmarks and give an explanation for this behavior
at the end.

Cholesky Decomposition operates on matrices and is
commonly used to solve systems of linear equations. The
implementation of this benchmark comes from the OmpSs
Dependency Benchmark Suite [7] and is not recursively
parallel. Our measurements show that PARTEE without the
dynamic dependence analysis performs similar to Cilk. With
the dynamic dependence analysis enabled, PARTEE is able
to expose more parallelism and improve performance. This
is an indication that in cases where the parallelism is not
only available in phases that can be easily synchronized
with taskwait directives, dynamic dependence analysis not
only eases development, but is also able to expose more
parallelism. In this case, PARTEE outperforms Cilk by up
to 103%.

The rest four benchmarks are examples from the Cilk
distribution that use nested tasks.

Heat Diffusion performs some stencil computation mul-
tiple times, to calculate temperature distribution in space.
Our measurements show that both versions of PARTEE
fail to compete with Cilk after 4 cores. This benchmark
uses two matrices, the first one as input and the second
one as output. At each step, the two arrays are swapped
and the stencil computation is performed again. The stencil
computation in each step is embarrassingly parallel, so a
taskwait directive at the end of each step suffices. PARTEE
task creation overhead in this case appears to dominate and
decrease the overall performance. This is possible when task
arguments consist of many blocks and result in the creation
of a large number of entries in the LUTs. For the evaluation
of PARTEE we chose a fixed block size of 2 kilobytes,
which in this case is much smaller than the argument size,
increasing the task creation overhead.



LU Decomposition, similarly to Cholesky, operates on
matrices to solve systems of linear equations. Our measure-
ments show that PARTEE with the dynamic dependence
analysis disabled and Cilk outperform PARTEE. This is
an indication that LU has no interleaved dependencies and
can be efficiently expressed using taskwait directives. We
observe that Cilk’s performance falls between that of PAR-
TEE and PARTEE with the dynamic dependence analysis
disabled, while all three shape a similar curve.

Matrix Multiply takes two matrices as input and writes
their product in a third one. Our measurements show that
both versions of PARTEE outperform Cilk. Contrary to LU,
Matrix Multiply spawns a single type of task with a few
arguments allowing the SCOOP compiler to optimize task-
generationWe observe that at 64 cores both runtime systems
fail to scale. We attribute this to the architecture design that
shares a single compute unit between two cores, and the
computation intensive nature of matrix multiply.

Mergesort is a recursively parallel implementation of
mergesort. Our measurements show that Cilk outperforms
both versions of PARTEE in mergesort. The implemen-
tation of this benchmark, follows the map-reduce princi-
ple. First binary splits the array and sorts the segments.
Then starts merging the sorted segments producing larger
sorted segments, until the whole array is sorted. By design
this implementation can be sufficiently expressed using the
taskwait directive. However, PARTEE fails to reach Cilk’s
performance even with the dynamic dependence analysis
disabled, like in heat diffusion.

In all benchmarks we observe that Nanos++ fails to
speed up computation as the number of cores increases. We
attribute this behavior to the focus of Nanos++ on being
modular, for research purposes, at the cost of decreased
efficiency. To get an estimation of the overhead introduced
by each runtime system we use a micro-benchmark that
spawns tasks with different workloads and measures the time
they take to complete. When the execution time of a task is
longer than its workload, this additional time is the overhead
introduced by the runtime system. To measure the actual
workload we use the native application and measure the
average execution time of each task without the overheads of
its creation and handling. Figure 8 presents the results. On
the x-axis we plot the actual workload per task, and on the
y-axis we plot the measured execution time per task. Both
axes are at base-two logarithmic scale. Our measurements
show that PARTEE and Cilk are able to handle two orders
of magnitude finer grained tasks than Nanos++. To keep
the runtime system’s overhead bellow 2%, Nanos++ requires
tasks of at least 2-millisecond granularity, PARTEE requires
tasks of at least 40 microseconds granularity, and Cilk
requires tasks of at least 20 microseconds. Finer grained
tasks allow for better work balancing and are critical in
image processing algorithms that aim to deliver a high
number of frames per second (fps). For instance to achieve

60fps the per frame computation needs to complete at
approximately 16 milliseconds. This renders OmpSs and its
current implementation prohibitive for use in such cases.

V. RELATED WORK

Cilk [1] is a multi-threaded language accompanied by a
high performance task-parallel runtime system. Cilk pro-
vides a clean and simple way to express parallelism through
the spawn and sync directives. Cilk is not able to perform
implicit synchronization to avoid data races and requires
explicit synchronization through the sync directive. Further-
more, Cilk only allows the spawn-tree to start from the main
function, and does not allow regular-functions to appear in
the call-graph between two spawns. This limitations impact
the language expressiveness, especially for non recursively
parallel benchmarks. PARTEE combines nested parallelism
with a dynamic dependence analysis algorithm to automat-
ically detect and resolve dependencies between tasks and
supports the more flexible OmpSs programming model.

Nanos++ [8] is the state of the art implementation of
OmpSs. Our measurements show that PARTEE outperforms
Nanos++ and that it can handle more fine grained tasks
than Nanos++. Both runtime systems support nested-tasks
and implicit synchronization through dynamic dependence
analysis. Additionally, the dynamic dependence analyses of
both runtime systems exhibit similar limitations. Nanos++
does not handle unaligned memory addresses [19, §4.4] and
requires the size of the argument to be a power of two. If
these two requirements are not met, Nanos++ may detect
false dependencies between tasks and reduce performance.
Similarly, PARTEE’s block-based dependence analysis, may
detect false dependencies if the argument size is not a
multiple of the block-size of the block-based analysis or
not aligned to it.

BDDT [15] is a task-parallel runtime system that employs
a block-based dynamic dependence analysis to dynamically
discover and resolve dependencies between tasks. In BDDT,

100

101

102

103

100 101 102 103

T
a
sk

 T
im

e
 (
μ

s)

Workload (μs)

Native
PARTEE

Cilk
Nanos++

Figure 8. Overhead vs Task Granularity



however, only one thread creates tasks and it does not sup-
port nested parallelism. PARTEE employs a similar approach
to BDDT to detect dependencies, but in a distributed man-
ner, and supports nested parallelism. Additionally, PARTEE
implements the association of blocks and their metadata with
the use of a trie instead of the BDDT’s custom allocator.

Sequoia [20] is parallel programming language that re-
quires the programmer to describe: a) the task graph as a
hierarchy of nested parallel tasks; b) the memory hierarchy
of the targeted machine; and c) the data distribution among
tasks. Sequoia then inserts implicit barriers to ensure the
correct execution of the application. We believe that PAR-
TEE’s programming model is more intuitive and portable.
Additionally, in applications with irregular dependencies we
expect PARTEE to expose more parallelism than Sequoia.

VI. CONCLUSIONS

In this work, we present the design of a hierarchical
dynamic dependence analysis for recursively task
parallel runtime systems, and its implementation in the
PARTEE runtime system. We also present the design and
implementation of a custom, parallel, region-based memory
allocator we use to increase locality and concurrency of our
runtime system, PARTEE. We evaluate PARTEE on a set of
representative benchmarks and find that, in one case where
task dependencies are irregular, PARTEE outperforms
Cilk, a task-parallel runtime system without implicit task
synchronization, by up to 103%.

Acknowledgements: This work was supported in part
by the European Commission in the context of FP7 ASAP
project (619706). We would also like to thank Christi
Symeonidou for her valuable reviews on this work, and
the BSC pm-tools team for their responses to our questions
regarding OmpSs and Nanos++.

REFERENCES

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” in Principles and Practice of Parallel Pro-
gramming, 1995.

[2] G. Tzenakis, K. Kapelonis, M. Alvanos, K. Koukos, D. S.
Nikolopoulos, and A. Bilas, “Tagged procedure calls (tpc):
Efficient runtime support for task-based parallelism on the
cell processor,” in High Performance Embedded Architectures
and Compilers, 2010.

[3] D. Leijen, W. Schulte, and S. Burckhardt, “The Design of
a Task Parallel Library,” in Object Oriented Programming
Systems Languages and Applications, 2009.

[4] Intel, “Threading building blocks,” 2014, version 4.2,
https://www.threadingbuildingblocks.org/.

[5] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “OmpSs: A proposal for pro-
gramming heterogeneous multi-core architectures,” Parallel
Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[6] J. C. Jenista, Y. h. Eom, and B. C. Demsky, “OoOJava:
Software Out-of-order Execution,” in Principles and Practice
of Parallel Programming, 2011.

[7] “OmpSs Dependency Benchmark Suite,” https://pm.bsc.es/
projects/bar/wiki/dependency_benchmarks, Sep 2015.

[8] “Nanos++,” https://pm.bsc.es/nanox, Sep 2015.

[9] S. Royuela, A. Duran, and X. Martorell, “Compiler Automatic
Discovery of OmpSs Task Dependencies,” in Languages and
Compilers for Parallel Computing, 2013.

[10] F. S. Zakkak, D. Chasapis, P. Pratikakis, A. Bilas, and
D. Nikolopoulos, “Inference and Declaration of Independence
in Task-Parallel Programs,” in Advanced Parallel Processing
Technology, 2013.

[11] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian, “A Type and Effect System for
Deterministic Parallel Java,” in Object Oriented Programming
Systems Languages and Applications, 2009.

[12] H. Vandierendonck, P. Pratikakis, and D. S. Nikolopoulos,
“Parallel programming of general-purpose programs using
task-based programming models,” in Hot Topics in Paral-
lelism, 2011.

[13] R. D. Blumofe and C. E. Leiserson, “Scheduling multi-
threaded computations by work stealing,” in 35th Annual
Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994. IEEE Computer
Society, 1994, pp. 356–368.

[14] D. Chase and Y. Lev, “Dynamic circular work-stealing
deque,” in Symposium on Parallelism in Algorithms and
Architectures, 2005.

[15] G. Tzenakis, A. Papatriantafyllou, H. Vandierendonck,
P. Pratikakis, and D. Nikolopoulos, “BDDT: Block-level
Dynamic Dependence Analysis for Task-Based Parallelism,”
in International Conference on Advanced Parallel Processing
Technology, 2013.

[16] E. Fredkin, “Trie memory,” Communications of ACM, vol. 3,
no. 9, pp. 490–499, Sep. 1960.

[17] D. Gay and A. Aiken, “Memory management with explicit
regions,” in Programming Language Design and Implemen-
tation, 1998.

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” in Parallel Architectures and Compilation Techniques,
2008.

[19] J. M. Perez, R. M. Badia, and J. Labarta, “Handling Task
Dependencies Under Strided and Aliased References,” in
International Conference on Supercomputing, 2010.

[20] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn,
L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan, “Sequoia: Programming the memory hierarchy,”
in Supercomputing, 2006.


