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Abstract
Constantly increasing hardware parallelism poses more and more
challenges to programmers and language designers. One approach
to harness the massive parallelism is to move to task-based pro-
gramming models that rely on runtime systems for dependency
analysis and scheduling. Such models generally benefit from the
existence of a global address space. This paper presents the par-
allel memory allocator of the Myrmics runtime system, in which
multiple allocator instances organized in a tree hierarchy cooper-
ate to implement a global address space with dynamic region sup-
port on distributed memory machines. The Myrmics hierarchical
memory allocator is step towards improved productivity and perfor-
mance in parallel programming. Productivity is improved through
the use of dynamic regions in a global address space, which provide
a convenient shared memory abstraction for dynamic and irregular
data structures. Performance is improved through scaling on many-
core systems without system-wide cache coherency. We evaluate
the stand-alone allocator on an MPI-based x86 cluster and find that
it scales well for up to 512 worker cores, while it can outperform
Unified Parallel C by a factor of 3.7–10.7×.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management—Allocation/Deallocation strategies; D.4.7
[Operating Systems]: Organization and Design—Distributed sys-
tems, Hierarchical design

Keywords Parallel Memory Allocator, GAS

1. Motivation
The many-core era poses substantial challenges for programmers to
harness the processing power of emerging hardware architectures.
A dominant hardware paradigm is the cache-coherent shared mem-
ory machine, often paired with thread-based programming models.
However, the complexity of hardware cache coherency protocols
and the inefficiency of shared-memory programming models may
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limit this paradigm’s lifetime, restricting coherency to a subset of
cores on a processor or eliminating it altogether.

The main reason for this trend is that hardware cache co-
herency protocols do not scale as the number of on-chip cores
increases. Further, at larger core-counts, verifying the hardware
against timing-sensitive failures, such as race conditions, becomes
so difficult that some researchers advocate abandoning cache co-
herency altogether [18]. However, programming non-coherent ar-
chitectures can be tedious and difficult. Significant programmer
expertise is required to structure code around message-passing pro-
tocols, and errors in these programs are notoriously hard to debug.

Cache-coherent, shared memory architectures with high core
counts are, against general belief, also hard to program. The dom-
inant shared-memory programming model uses threads, which
resemble sequential programs and “feel” easier to programmers.
However, threading requires the programmer to reason about im-
plicit communication and interactions through shared memory.
This complex, tedious and error-prone process makes threaded pro-
grams hard to test, debug and maintain. In general, writing good-
quality, race-free, well performing and scalable multithreaded code
is challenging [24].

Many commercial and academic programming models attempt
to increase programmer productivity by abstracting away the diffi-
cult parts of parallelization and communication. However, notable
examples like Intel TBB [23], OpenMP [28], and Cilk [5, 12] tar-
get cache-coherent architectures that do not scale well to high core
counts. The most well-known programming models oriented to-
wards non-coherent architectures belong to the Partitioned Global
Address Space (PGAS) family of languages, such as Unified Par-
allel C [10], Titanium [17], X10 [8, 15], Co-array Fortran [27] and
Chapel [7].

To schedule and to manage parallel tasks, existing PGAS and
distributed programming models require strict control of the task
footprint in memory. To meet this requirement, they restrict the
use of dynamic memory in the program by making all dynamic
allocation local to a task [11], or by statically limiting the avail-
able dynamic memory1. Conversely, an MPI program that uses dy-
namically allocated data structures, such as trees, must manually
marshal and unmarshal them for communication. The programmer
must allocate adequate space before a transfer takes place, and must
rewrite any pointers after the transfer. Essentially, programmers im-
plement the near equivalent of a PGAS or RPC runtime within the
application. Therefore, dynamic memory management in the exist-
ing non-coherent programming models tends to be either:

1 The Berkeley UPC 2.14.0 we used in the evaluation imposes a static limit
of 64 MB per thread for dynamically allocated memory.



• Easy and expensive, because the runtime does not know about
application-specific structures and must assume the worst; or

• Efficient and difficult, because the programmer must control all
transfers and synchronization — MPI, the de facto winner, is
like “assembly” for parallel programming.

We bridge this gap by providing the programmer a middle
ground. We propose a distributed memory allocation system that
supports control of communication at a much higher level of ab-
straction than MPI-like programming. For this purpose, we borrow
a well-known and well-studied construct in memory management
literature: region-based memory management [30]. Regions are in-
tuitive. They have been used to increase locality and to accelerate
bulk allocation and deallocation. Successful coherent implemen-
tations of regions include stand-alone libraries and built-in pro-
gramming language support. Regions offer the best of both worlds
because they preserve the shared-memory abstraction while pro-
viding a mechanism to describe the desired structure of memory
and control the locality and placement of memory objects. Gay
and Aiken [13] have measured up to 58% faster execution times
on memory-intensive benchmarks that use region-based memory
management versus a conventional garbage collector.

Regions can be used to augment parallel programming models
to express dynamic data structures more intuitively and efficiently.
By allocating structure members in the same region, the program-
mer can express accessing, locking or transferring the whole struc-
ture simply by referring to the region itself. This capability enables
reduced communication overhead for transferring complex, irreg-
ular, pointer-based data structures, which can be tightly packed by
an underlying region-based memory allocator.

The contributions of this work are:

1. We design a distributed, Global Address Space (GAS), region-
based memory allocator for non-coherent machines, which tar-
gets both MPI clusters and future many-core architectures with
no support for cache coherency. To our knowledge, we are the
first to introduce distributed region-based memory allocation.

2. We implement our algorithms in a runtime library that offers
region-based GAS on large supercomputers, hiding MPI com-
munication from the programmer.

3. We evaluate our techniques and implementation using represen-
tative benchmarks.

Our experimental results demonstrate that our distributed,
region-based memory allocator can improve program performance
by a factor of 3.7–10.7× compared to equivalent Unified Parallel
C programs without support for regions.

The rest of the paper is organized as follows. Section 2 outlines
the Myrmics runtime system and its stand-alone memory alloca-
tor. Section 3 presents the lowest software layer, the SLAB allo-
cator, which manages a set of discrete heaps. Section 4 explains
how the SLAB allocator is used to realize regions of the program-
ming model. Section 5 discusses how multiple memory allocator
instances cooperate to serve requests in parallel. Section 6 describes
the development of benchmarks for the stand-alone version of the
Myrmics memory allocator. We also measure benchmark runs in an
MPI cluster and compare the Myrmics allocator to UPC.

2. The Myrmics Memory System
This paper presents the memory allocation system of the Myrmics
runtime system, a task-based runtime for non-coherent many-core
architectures. Myrmics uses distributed scheduler cores to man-
age memory and schedule parallel tasks on worker cores, as in
other task-based programming models [2]. The Myrmics runtime
is work-in-progress, but its memory allocator system is fully usable

in a stand-alone fashion with an MPI backend. For the remainder
of the paper, we will use the term “scheduler” to refer only to the
memory allocation functionality of the Myrmics scheduler cores.

In the Myrmics runtime system, programs are written as collec-
tions of possibly recursive tasks. Each task is atomic and cannot
communicate with other tasks during its execution. However, the
tasks define their memory footprint and the runtime guarantees that
this memory is made available locally to the core that will execute
the task code before the execution starts. The runtime resolves task
dependencies and ensures the tasks will have exclusive access to
the memory that they request. The programming model has been
proved to execute parallel programs in a deterministic order [29].

In this work we present the stand-alone Myrmics memory allo-
cator, which does not handle task dependency analysis or schedul-
ing. Instead, parallel programs using the stand-alone allocator are
written as follows:

• A number of worker cores run the application code. Each
worker executes as a separate MPI process.

• A number of scheduler cores cooperate to serve requests from
workers to implement a global address space. Each scheduler
also executes as a separate MPI process.

• Workers do not make local heap calls; instead, they send re-
quests to a designated scheduler, which answers with objects
that have unique system-wide addresses.

• Workers may send or receive data to/from other workers only
by specifying heap objects that have been allocated previously
by a scheduler. Data sent in this way is visible on the other end
at the same addresses.

• Objects can be arbitrarily allocated in regions, which are used
by workers for efficient bulk transfers of multiple objects. Re-
gions can be hierarchical in nature, supporting sub-regions.

A large chunk of virtual address space is memory mapped at
all worker cores during the initialization phase. Allocation in this
space is done in parallel by the scheduler cores. The Myrmics mem-
ory allocator, therefore, implements a global address space, much
like the shared-memory aspects of the PGAS languages. Scheduler
cores are organized in a hierarchy and cooperate using messages to
serve the worker cores, which run the parallel application. Workers
run only a small part of the allocator functionality and communi-
cate with schedulers to service all allocation and data transfer re-
quests. Any allocation in a worker core returns a globally unique
pointer for new objects or a globally unique region ID for new re-
gions and sub-regions.

Worker cores can access any memory location in the global ad-
dress space, but the data for the location must first be received. To
receive the data, workers use data objects and regions in point-to-
point communication calls. A sender and a receiver worker both
specify which objects or regions they want to exchange. The Myr-
mics memory allocator ensures that data is sent to the correct loca-
tions. The receiver can then safely access the data at the same mem-
ory addresses as the sender. This mechanism enables pointer-based
data structures to be traversable using the same pointers locally,
assuming all needed data has been transferred. In the stand-alone
memory allocator, the application must ensure that all needed data
is requested before any pointers are accessed.

To scale to a large number of cores, Myrmics runs the main
parts of the runtime, including its distributed memory allocator,
on multiple dedicated scheduler cores. We use dedicated sched-
uler cores to optimize for locality of the runtime’s metadata, re-
move allocator-related communication from the application’s criti-
cal path, and amortize much of the allocator’s cost.



This work bridges the gap between limited use of dynamic
memory in PGAS systems and manual message-passing distributed
programming, by providing support for distributed, region-based
dynamic memory management and implementing a global address
space from dynamic regions. Regions, also called arenas [16], are
growable memory pools that contain objects or other sub-regions.
Traditionally, regions are used for fast allocation and deallocation
of objects that share the same lifetime, and to control and improve
locality. We reuse this abstraction to enable distributed programs
to use dynamic memory without requiring explicit data marshaling
and unmarshaling or restricting the scope of dynamically allocated
objects.

The Myrmics memory allocator allows the programmer to cre-
ate regions and sub-regions, allocate objects dynamically within
them, and use arbitrary pointers to create dynamic data structures.
The distributed allocator guarantees a global address space among
all cores so any region can be transferred to any core without trans-
lating any pointers in the allocated data. Consider, for instance, a
dynamically linked list: to transfer the whole list in MPI, the pro-
gram would have to traverse it, serialize the “next” pointers, to send
each data item, and re-establish the pointers after the transfer. Con-
versely, a UPC program would also traverse the list and send each
item, while using an expensive “fat” pointer to the next element.
In comparison, the Myrmics memory allocator allows the program-
mer to allocate the whole list in a region (and possibly sub-regions).
Thus, the whole region can automatically be packed and sent effi-
ciently. After the transfer, the receiver can traverse the list using the
existing, all-local, list pointers.

3. SLAB Allocator
3.1 Overview
The lowest layer of the Myrmics memory management system is
the SLAB allocator. It manages the dynamic allocation and freeing
of memory objects of any size organized in slabs, which are packed
groups of same-sized objects.

SLAB allocation is a well-established method [6], widely em-
ployed for memory allocation in operating system kernels. Its pri-
mary advantages are that it has a simple implementation — allow-
ing fast, constant-time allocate and free operations — and that it
avoids external fragmentation because the kernel allocates a small
variety of object sizes. Typically, an operating system will also ben-
efit from caching objects that use slabs. For instance, if all alloca-
tions and frees of mutexes happen from the same set of memory
addresses, then reinitialization of all fields of a freshly allocated
mutex is often unnecessary.

In the taxonomy of memory allocation policies [21], SLAB al-
location belongs to the simple segregated storage family. To mini-
mize the code and to maximize cache efficiency, we use the same
allocator for runtime system heap management and to implement
the system calls for application heap management. The Myrmics
allocator differs from existing segregated storage allocators in sev-
eral ways. First, we observe that the runtime kernel uses only a
few size classes. Applications in general tend not to use too many
classes2; we target high-performance applications that tend to have
even more disciplined memory requirements. Therefore, we relax
the requirement that size classes must be a power of two and instead
we support as many classes as requested with the restriction that ev-
ery size must be aligned to the size of a cache line, such as 64 B.
This versatility reduces fragmentation and usually leads to better
cache utilization. Second, since we target message-passing archi-

2 Johnstone and Wilson [21] measured that for typical applications 90%
of all objects allocated were of just 6.12 different sizes, 99% of all objects
were of 37.9 sizes, and 99.9% of all objects were of 141 sizes.

tectures, we design the slabs so that their metadata are carefully
separated from the data, which increases the efficiency of hardware
transfers and facilitates moving whole regions with fewer opera-
tions.

3.2 Design
The system uses two configurable sizes for the basic quantities of
allocation. The slab size, set to 4 KB, is the basic unit used inter-
nally in each allocator instance to allocate a chunk of memory. The
page size, set to 1 MB, represents the basic unit at which different
allocator instances trade free address ranges. It is also the basic unit
at which schedulers request memory from the operating system (or
directly from the hardware, when the Myrmics allocator is used in
bare-metal setups). Whenever a memory allocation request is com-
pleted, the requested size is adjusted upwards to a 64-B aligned slot
size. Objects belonging to the same slot size are serviced from the
same set of slabs.

To index memory, the allocator uses a custom 8-degree Trie
library, which is tuned to fit into the minimum 64-B slot size. Tries
support fast, constant-time searches. We prefer them over hash
tables for their deterministic performance as well as their added
abilities to offer approximate searches and ordered walks. Three
different tries are used in the allocator: the Used Trie holds an entry
for each full or partial slab that is in use, keyed by the slab starting
address. The Partial Trie holds the head of a linked list for each
slot size that is currently active, keyed by the slot size. The Free
Trie holds an entry for each free range of slabs available in the
allocator, keyed by the starting address of the range. We employ
a number of performance optimizations, such as (i) preallocating
empty slabs for commonly used slot sizes, (ii) avoiding frequent
Trie updates through lazily returning free slabs and (iii) eliminating
the referencing of intermediate slabs to support efficient allocation
and freeing of arbitrarily large slot sizes.

Each allocator supports multiple slab pools that operate inde-
pendently using their own sets of slabs. Moreover, upon creation of
each pool, we specify which other pool will be used for its meta-
data. The separation of metadata from data is crucial to support ef-
ficient region-based communication. The “recursion” of slab pool
metadata stops at the runtime kernel slab pool, which handles its
own metadata, as we explain below.

The SLAB allocator, including the trie library, occupies roughly
4,000 lines of C code.

3.3 Usage for Runtime Kernel Heap
In order for Myrmics to be portable to distributed memory ma-
chines — which may have no operating system, as with accelerator
processors — we use the same SLAB allocator for the application
and for the runtime kernel heap management, through the use of
separate slab pools. The kernel heap slab pool is an exception, in
the sense that its metadata are kept in the same slab pool along with
the heap data under allocation. This combination is not straightfor-
ward. For example, allocating a new 64-B object in the kernel may
require new 64-B trie nodes that are recursively allocated by the
same code path into the same memory space. Specifically, this be-
havior may run into two problems: where to allocate the dynami-
cally allocated metadata (like trie nodes) for the kernel heap pool
and how to bootstrap the system.

To solve the first problem, we treat the kernel heap slab pool
specially, by imposing additional constraints for preallocating
empty slabs. For all object sizes necessary for the allocator data
structures, we ensure that a minimum of empty slabs is left af-
ter any allocation is finished. If there are too few, we raise a flag,
and as soon as the (possibly recursive) allocation/free requests are
served we replenish the empty slabs from the Free Trie as needed.
This procedure guarantees that we can satisfy any kernel slab pool



// Region management
rid_t sys_ralloc(rid_t parent, int level_hint);
void sys_rfree(rid_t region);

// Object management
void *sys_alloc(size_t size, rid_t region);
void sys_free(void *ptr);
void sys_realloc(void *old_ptr, size_t new_size,

rid_t new_region);
void sys_balloc(size_t size, rid_t region,

int num_objects, void **objects);

// Communication
void sys_send(int peer_worker_id,

rid_t *regions, int num_regions,
void **objects, int num_objects);

void sys_recv(int peer_worker_id,
rid_t **regions, int num_regions,
void ***objects, int num_objects);

void sys_barrier();

Figure 1. The stand-alone Myrmics memory allocator API

request solely from the preallocated empty slabs by setting bitmap
bits and without perturbing trie structures, which could require
further allocator requests. Thus, we allow allocator requests to re-
curse as needed, knowing that they can be fulfilled without further
recursion when they reach the lowest pool.

We bootstrap the kernel heap slab pool by initially assigning
the needed number of preallocated empty slabs in a linear fashion.
During boot, kernel heap allocations receive objects from the pre-
defined slabs and the kernel tracks which slots are allocated. To
leave the bootstrap mode, we perform normal allocation calls for
all tracked objects, which set up all needed data structures with
new linearly allocated objects. Eventually, this process converges3

and when all objects are accounted for, the system is bootstrapped
and the linear allocation is abandoned in favor of the normal one.

4. Local Memory Allocation
4.1 Overview
The intermediate layer in the Myrmics memory allocator uses the
SLAB allocator to support hierarchical regions that are local to
a scheduler instance. Figure 1 lists the basic set of system calls
that implement the programming model application interface. The
user allocates a new region with the sys ralloc() call under an
existing parent region or the default top-level root region. A unique,
non-zero region ID, which represents the new region, is returned.
We explain the use of the optional level hint in Section 5. A
region is freed using the sys rfree() call, which destroys the
region, all objects belonging to it and its children regions.

A new object is allocated by the sys alloc() system call,
which returns a pointer to its base address. The object may be-
long to any user-created region or the default top-level root re-
gion, represented by region ID 0. Objects are destroyed by the
sys free() call and can also be resized and/or relocated to other
regions by the sys realloc() call. Since the programming model
requires all memory allocation to be done through system calls
that induce worker-scheduler communication, we also provide the
sys balloc() call, which allocates a number of same-sized ob-

3 It converges because kernel objects are smaller than 4 KB: most alloca-
tions complete using the empty slabs and only a few need new slabs that
require new trie nodes.
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jects in bulk and returns a set of pointers. This call minimizes com-
munication for common cases like the allocation of table rows.

We globally construct a Region Tree, such as the one shown in
Figure 2, based on the relationship of user-allocated regions and
objects. When the application starts, only the default “root” region
exists. A scheduler core handles a part of the global region tree.
This portion includes whole regions and any objects that belong to
them, but not necessarily all of their descendants. The latter may
belong to another scheduler core deeper in the hierarchy.

4.2 Design
We use a new slab pool to build each local region when it is cre-
ated. We dedicate the equivalent of a separate heap to each region
for many reasons. Our model hinges on communicating whole re-
gions rather than individual objects, and the transfer of regions
should therefore be as compact as possible. Packing region objects
in dedicated slabs helps to isolate them from other regions and to
enable communication on slab-based quantities. Further, a future
design choice of migrating region responsibility among schedulers
becomes feasible because different slab pools have carefully sep-
arated metadata. Allocating a new slab pool per region increases
fragmentation, because partially filled and preallocated empty slabs
are dedicated for the new region. We consider this tradeoff to be
acceptable since many future object allocations in the region will
happen quickly and will be compacted with other region objects,
increasing communication efficiency and locality of region objects.

Apart from the creation of a new slab pool and the basic book-
keeping for the part of the Region Tree that is local, each sched-
uler contains four main data structures, which are also based on the
same trie library. The first two are the Used Ranges and the Free
Ranges Tries. The former tracks which local region uses which
ranges of slabs. The latter contains ranges of slabs that the allo-
cator can give to local slab pools that request more memory. These
tries enable the allocator to determine in constant time which re-
gion is responsible for freeing an arbitrary pointer or which is the
nearest set of free slabs to give to a slab pool under pressure, in
order to keep region addresses as compact as possible.

For similar reasons, and using similar code paths, we use two
more tries: the Used Region IDs tracks which region IDs are han-
dled locally and the Free Region IDs contains the IDs that can be
assigned to new regions. These tries enable quick translation of the
globally unique, programmer-visible region IDs to the slab pools
and region data structures, which are internal to each scheduler.

We use an adaptive mechanism that is based on watermarks
to control the limit of external fragmentation. Initially, when the
allocator is not under memory pressure, the number of slabs that
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populate a new region’s free pool is set to the high watermark.
If and when many regions are requested by the application, the
allocator reclaims increasing numbers of free slabs from the regions
that have free memory above the current threshold. These are then
used for the new regions. This process stops when all local regions
have free memory equal to the low watermark, at which point the
scheduler will communicate with its parent to request more pages.
This policy reduces communication and balances increased locality
of region objects with increased fragmentation.

4.3 Complexity
The local region layer adds a single trie lookup to most common-
case operations for allocating and freeing objects. We consult the
Used Ranges or Used Region IDs Tries to translate the pointer or
region ID of the programming model API to a slab pool.

To allocate a new region, when the local allocator has enough
memory and region IDs, it takes a new region ID from the Free
Region IDs Trie and a range of slabs from the Free Ranges Trie. We
create a new slab pool, initializing all related structures described
in Section 3. In the case of increasing memory pressure between
the high and low watermarks, local regions are visited — starting
from the one last visited — possibly to trim free slabs. If we have
already performed this process and still need more memory, we use
inter-scheduler communication to request more memory.

Freeing regions is fast and independent of the number of allo-
cated objects. We destroy the region slab pool by discarding its data
structures altogether and returning all used and free slab ranges to
the scheduler Free Ranges Trie. The programming model assumes
that if the region has children regions, all of them are also de-
stroyed. Thus, the complexity of hierarchical region freeing grows
linearly with the number of children regions.

Transferring regions adds a new intra-scheduler operation on
top of those required by the programming model API. Region
packing accumulates a list of starting addresses and sizes that
correspond to the memory usage of a region. The list encompasses
all region objects as well as all children region objects. For each
region involved, all slabs in the pool that are full or partially full are
traversed in order4 and a list is built by coalescing adjacent slabs on
the fly, further increasing communication efficiency.

The local regions layer is 2,000 lines of C code.

4 The Used Trie enables fast traversals by remembering the last visited node
and following the appropriate turns on the trees to find the next one.

5. Distributed Allocation
5.1 Overview
A single memory allocator instance can service a limited number
of requests from workers efficiently. All memory allocation calls
involve scheduler-worker communication, so we must keep the la-
tency of these operations low. As we have not yet implemented
the rest of the runtime system, we do not know the full impact of
other important scheduler duties, such as task arguments depen-
dency analysis. Thus, the memory allocation system must scale to
a high number of schedulers, the number and organization of which
we will finalize in the future.

We organize the multiple scheduler instances, which contain
only the memory allocator and basic interprocessor communica-
tion mechanisms, in a tree hierarchy, as Figure 3 shows. The tree
has one top-level scheduler with a configurable number (equal to
the scheduler-to-scheduler ratio) of next-level children. The sched-
uler tree descends for some levels. We attach multiple worker cores
(equal to the scheduler-to-worker ratio) to each lowest-level sched-
uler. Processor cores can communicate directly only with cores that
are one level above or below them in the hierarchy. This restriction
targets future mesh-based, many-core hardware messaging layers
by localizing communication patterns. It also helps to expose hard-
ware locality constraints to the software architecture.

We divide work between schedulers based on the regions that
are local to them. Figure 2 shows an example of how we can split
the Global Region Tree among four schedulers. The mechanisms
that we described in Section 4 handle all objects that belong to
local regions. Worker access to objects and regions that are not local
to the lowest-level scheduler incurs inter-scheduler communication
so that the scheduler that is responsible for the region can handle
the request. In Myrmics, the scheduling system primarily attempts
to minimize this cost. The workers closest to the schedulers that
handle the related regions should run the tasks. Another alternative,
which we leave for future work, would migrate region metadata
among schedulers in order to balance the load of irregular cases.

5.2 Design
The highest layer of the memory allocator is an expandable,
generic, asynchronous, event-based server. If an incoming event
refers to a local region, the server immediately processes it and
responds. Otherwise, the server forwards the event to its parent or
child schedulers. Replies from other schedulers are intercepted if
they refer to pending actions for which the local scheduler awaits
reply. Otherwise we forward them to the original requesters. Fi-
nally, we support reentrant events with saved local state for more
complex situations in which we can handle part of the request
locally or the final response should be assembled from multiple
remote responses.

We assign regions to schedulers using both an optional level hint
from the programmer and load-balancing criteria. The application
may know how many levels of regions it will create, so it can help
position the new region at an appropriate level within the region
hierarchy, which the runtime translates to a scheduler level. Thus,
we use the hint to estimate the “vertical” positioning of a region on
the scheduler hierarchy. If the user does not supply a level hint, we
assign new regions to lower-level schedulers. We use load balanc-
ing to determine the “horizontal” positioning; a non-leaf scheduler
that must assign a new region to one of its children does so by
selecting the one with the lowest region load. Schedulers periodi-
cally exchange upstream load information messages, whenever the
previous reported load differs by a configurable threshold. Thus,
higher-level schedulers always know the load status of their entire
subtrees with a programmable degree of certainty.



The top-level scheduler initially owns all memory and all region
IDs. During boot, middle- and low-level schedulers request chunks
of both from their parent schedulers. The chunk, which represents
a high watermark, is proportional to the total number of descendant
schedulers. When a scheduler cannot service more requests by the
internal balancing mechanism described in Section 4, or when a
local request brings the free pools below a low watermark, the
scheduler requests and receives more memory and/or region IDs
from its parent. Extra memory pages and/or IDs are piggybacked to
the last request to bring the scheduler back to the high watermark
level without additional messages. Memory among schedulers is
always traded in whole 1-MB page boundaries.

Schedulers know how to route requests for remote regions and
objects by extending the Used Ranges and Used Region IDs Tries
of non-leaf schedulers to include which child is responsible for the
next hop. We tightly couple this mechanism to the memory and
region ID assignment described above, so the information is readily
available and does not require extra communication.

5.3 Complexity
When a worker core issues a memory allocation request that its leaf
scheduler cannot handle, the request must pass through a number of
schedulers in the hierarchy before they reach the the scheduler that
can handle it. For each hop, we access the Used Ranges or Used
Region IDs Tries to determine if (part of) the request can be han-
dled locally. If not, but the tries contain an entry, we forward the
request to the appropriate child scheduler, which is either directly
responsible or knows to which of its children to delegate the re-
quest. If the address or region ID is not in the tries, we forward the
request to the parent scheduler. Finally, if the top-level scheduler
does not contain a corresponding entry, then we propagate error
handling responses down the tree to indicate a programmer error.
Programmer errors include freeing an invalid pointer and allocat-
ing an object in a nonexistent region. Thus, all non-local memory
allocation requests incur a cost that is logarithmically proportional
to the distance to the responsible scheduler in network hops. This
cost is generally low since we assign tasks to workers as close to
the data as possible.

The boundary cases of scheduler responsibilities present slightly
more complex cases. In the example of Figure 2, creating region
Mb as a child of region M requires a few additional messages
between the two schedulers, since the L1 scheduler cannot fully
complete the delegation to a child region for which the region ID is
unknown at creation time. Handling of this and similar cases, such
as deleting boundary regions or hierarchically packing regions that
multiple schedulers own, is straightforward but generally requires
more inter-scheduler communication. We create reentrant, stateful
events that track each scheduler’s local progress, until the operation
completes successfully.

The distributed memory layer is written in 3,000 lines of C code.

6. Evaluation
6.1 Benchmark design
To evaluate the Myrmics memory allocator, we developed a num-
ber of microbenchmarks as well as two larger, application-quality
benchmarks. We used a number of small test programs to test the
allocator and to verify its correctness. Apart from these, we also
present the results on four benchmarks: (i) a non-MPI, single-core,
random object allocator that analyzes the fragmentation inside a
region slab pool, (ii) a parallel, region-based, Barnes-Hut N-body
simulation application, (iii) a parallel, region-based, Delaunay tri-
angulation application and (iv) a comparison to Unified Parallel C
for dynamically allocated lists.

In this section, MPI processes request all memory in advance
from the Linux kernel, through large mmap() calls. This memory
is subsequently managed by the memory allocator by intercepting
all glibc allocation calls: we use a single runtime kernel slab pool
for both the allocator and for MPI. The runtime kernel slab pool
is private per processor, but we do not otherwise separate address
spaces or vary privilege levels. For the stand-alone Myrmics allo-
cator, the API of Figure 1 provides three calls. The sys send()
and sys recv() calls take a target MPI rank and a variable num-
ber of region IDs or object pointers as arguments. Internally, we
translate these arguments to lists of addresses and sizes (by packing
regions and querying pointers) and then wrap around the respective
MPI Send() and MPI Recv() calls. Also, a sys barrier() call
performs an MPI barrier among all worker cores.

All MPI-based measurements are done on the Lawrence Liv-
ermore National Laboratory Atlas cluster. Atlas has 1,152 nodes,
each of them equipped with four Dual core AMD Opteron 2.4 GHz
processors and 16 GB of main memory. The machines are intercon-
nected with an Infiniband DDR network.

6.2 Fragmentation measurements
Our first benchmark, a serial program, allocates and frees objects
within a single region. The application tracks all allocated pointers
and randomly either allocates an additional object or frees a ran-
domly chosen existing object. Figure 4a presents an execution for
single-sized 192-B objects, with a 60% probability of allocating
a new one and 40% probability to free one. The dotted gray line
shows the application-requested size of all active objects with units
on the left Y axis. The right Y axis shows the number of full and
partial slabs. While the total number of objects grows, the allocator
can compact most objects into full slabs; the number of partially
filled slabs is kept constantly low.

Full slabs are demoted to partial ones whenever a free is per-
formed. Figure 4b, in which we vary the alloc/free probability in
phases, shows this issue more clearly. The phases can be allocation-
intensive or free-intensive as indicated by the slope of the applica-
tion size curve. When frees are more common, full slabs become
partial as they develop “holes” of 192 bytes. When the application
returns to an allocation-intensive phase, first all holes in the partial
slabs are discovered and plugged. We observe that this behavior
is consistent with our prime concern to keep a region as packed in
full slabs as possible, so that a region communication operation can
access few address/size pairs.

In Figure 4c, the application runs with the same alloc/free
phases, but uses six object sizes randomly during allocation. Three
sizes are aligned to the slab size (64, 1024 and 4096 bytes), and
the other three are not (192, 1536 and 50048 bytes). Behavior is
similar to the previous measurements, although the large objects
(4096 and 50048 bytes) consume correspondingly more full slabs
and thus the ratio of full to partial slabs is much greater.

6.3 Barnes-Hut N-Body simulation
The second benchmark is a 3D N-body simulation application that
calculates the movement of a number of astronomical objects in
space as affected by their gravitational forces. To avoid O(N2)
force computations, the Barnes-Hut method approximates clusters
of bodies that are far enough from a given point by equivalent large
objects at the clusters’ centers of mass.

From the many variations of the Barnes-Hut method in the
literature, we choose to start with the Dubinski 1996 approach [9],
which is a well-known MPI-based implementation. This approach
dynamically allocates parallel trees, parts of which are transferred
among processors. Thus, it is a prime candidate for region-based
memory allocation. Dubinski employs index-based structures with
non-trivial mechanisms to allow for efficient transfer, pruning and
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grafting of subtrees over MPI. Our programming model supports
a much more intuitive, pointer-based implementation in which we
can easily graft trees since pointers retain their meaning after data
transfers. MPI-based applications commonly resort to complex,
“assembly-like” techniques to marshal data efficiently for transfers.
The Myrmics allocator automates this tedious task.

In our benchmark, each worker core builds a local oct-tree in
each simulation step for each body that it owns. We build the
tree with each level belonging to a different memory region. The
bounding box of the local bodies is communicated in pairs with all
other workers, which compute based on that portion (i.e., number
of levels) of the local tree that must be sent to the communicating
peer. We send the respective regions en masse. After we fetch
and graft the portions of the remote trees, we perform the force
simulation and body movement in isolation. A recursive bisection
load-balancing stage in which we split processors into successively
smaller groups follows each simulation step. We cut and exchange
bodies along the longest dimension, balancing the load based on
the number of force calculations that each body performed in the
previous iteration. The recursive bisection load-balancer requires
that the number of worker cores is a power of two.

Figure 4e presents application scaling on up to 512 worker cores
with a single scheduler core. For each run, stacked bars show the
average time of each worker. Time is spent either communicating
with other workers (“Worker comm”), communicating with the
scheduler via any other API call (“Sched comm”) or doing local
work (“Computation”). The first bar, marked “Serial” on the X
axis, shows a single-core run in which the scheduler and a single
worker are on the same processor. The next bar shows the scheduler
and the single worker on separate processors. This distribution
increases the cost of scheduler communication for the same work
from 2% to 8%. For more worker cores, scaling is irregular, which
is a data-dependent feature of the recursive bisection load balancer
and the Barnes-Hut cell opening criterion, which needs more tree
levels when any cell dimension exceeds certain quality constraints.
Replacing the cell opening criterion gives much smoother scaling
results, but unfortunately sacrifices simulation accuracy. A second
observation concerns the scheduler communication time. As the
application scales, each worker requires fewer allocations for its
own tree, but the scheduler services more workers and its latency
increases. This increase becomes a problem as early as in 32 cores,
after which it grows worse. Last, worker communication becomes
a bottleneck after 256 cores and overtakes the simulation time at
512 cores. Thus, the given problem size cannot scale further, which
is a known limitation of this Barnes-Hut algorithm [9].

Figure 4f verifies our hypothesis that we can successfully dis-
tribute the memory allocation on multiple schedulers. In these ex-
periments, up to eight workers are dedicated to a single scheduler.
When multiple schedulers are present, they are organized in a two-
level tree with a single top-level scheduler. The parenthesized num-
ber in the X axis specifies the number of leaf schedulers that we use.
As expected, the scheduler communication time drops consistently
as the application scales up to 128 workers. After that, the increased
work needed to fetch all remote trees also involves the scheduler to
pack all the remote regions; this work appears as scheduler com-
munication time.

6.4 Delaunay triangulation
Our third benchmark, a Delaunay triangulation algorithm, creates a
set of well-shaped triangles that connect a number of points in a 2D
plane. Delaunay triangulation is a popular research topic with many
serial and parallel algorithms. We base our code on the implemen-
tation of the serial Bowyer-Watson algorithm by Arens [1]. The al-
gorithm adds each new point into the existing triangulation, deletes
the triangles around it that violate the given quality constraints and
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Figure 5. Parallelization of the Bower-Watson algorithm on four
cores. Each core works on four sub-quadrants, which successive
rotations to the right, down, left and up communicate among cores.

re-triangulates the convex cavity locally. We use the optimization
that Arens described to walk the neighboring triangles in order to
determine the triangles that build the cavity quickly.

The Bowyer-Watson algorithm is difficult to parallelize, so it is
an active research topic; Linardakis [25] wrote an extensive survey.
State of the art distributed memory approaches combine algorithms
of great complexity, such as graph partitioning and multiple passes
that handle the borders of the decomposition. Understanding and
modifying these algorithms to use regions effectively is beyond the
scope of testing and evaluating the memory allocator, so we follow
a simpler parallelization approach.

Our benchmark uses a grid decomposition to divide the 2D
space statically into a number of regions equal to four times the
number of worker cores. Each region holds the triangles with cir-
cumcenters within its bounds. All regions are at the lowest level of
a hierarchy with a degree of four; e.g., the top-level master region
owns the whole space and its four children own one fourth of the
space. Initially, after we create all regions, the space is empty ex-
cept for placeholder triangles that form the borders. A single core
begins the triangulation process by inserting a small number of
points up to a limit. We dynamically allocate all triangles into the
appropriate last-level regions of the hierarchy, according to the tri-
angle centers. When we have inserted enough points to create an
adequate number of triangles, the core delegates the four quadrants
to three other cores and to itself and the algorithm recurses with
four times more workers.

Apart from the first step, in which a single core owns the en-
tire space, points near the borders of the space owned by a core
may need to modify triangles that belong to other cores. Our
algorithm postpones the processing of these points, when three
re-triangulation phases occur. Figure 5 shows the concept used
with four active cores. The main triangulation is in the top-left,
where each core owns a quadrant of space comprised of four sub-
quadrants, which are the regions one level below in the region
hierarchy. The first re-triangulation uses communication with other



cores and rotates the four sub-quadrants to the right. For example, a
point that needs triangles from regions 3 and 6 would be postponed
in the main triangulation, but handled successfully by the blue core
in the first re-triangulation. The two next re-triangulations rotate
the sub-quadrants down and left, while a fourth rotation brings the
sub-quadrants upwards back to their original position, in order to
be split to more workers5.

Figure 4d shows the results for a triangulation with 5 million
points. The dotted line represents the ideal scaling. We find that the
scaling is superlinear due to the increased caching effects that the
division of work has over the approximately 650 MB dataset. This
memory locality effect is also apparent from the difference between
the serial run and the one in which a single worker communicates
with a single scheduler. In contrast to the Barnes-Hut runs, the two-
process run is faster despite the MPI communication.

6.5 Comparison to Unified Parallel C
With our fourth benchmark, we compare the Myrmics memory al-
locator to Unified Parallel C (UPC) [10]. We use the Berkeley UPC
2.14.0 for these measurements. For the most faithful comparison
possible, we instruct the UPC compiler to use its MPI backend for
interprocess communication.

Each worker core (in Myrmics) or thread (in UPC) begins by dy-
namically building a linked list of objects. After all cores are done,
an all-to-all communication pattern happens in multiple stages,
separated by barriers. In each stage, a pair of workers exchange
their lists, the receiving core modifies all objects and the lists are
swapped back to their original owners.

In UPC, we allocate the list nodes in the shared address space
of each thread using the upc alloc() call. In the exchange phase,
each thread fetches a list node locally with upc memget() for the
node, modifies it and returns it to its owner with upc memput().
In Myrmics, each worker creates a region and then allocates all list
nodes inside it, which supports a more efficient exchange. To fetch
a remote list, a worker fetches the whole region. We traverse the
list nodes by following the pointers locally. When the whole list is
modified, we send the region back in one operation.

Figure 4g shows how the benchmark performs in UPC and Myr-
mics. For both implementations, we use 16 worker cores/threads;
in Myrmics a 17th core runs the scheduler. All list nodes are 256 B
(including the shared pointer to the next node), as dynamic memory
allocation requests for typical applications are on average less than
256 B [4]. The X axis shows the number of objects that are allo-
cated for each worker list. Myrmics performs 3.7–3.9 times better.
Sending or receiving the whole list in one call more than compen-
sates for communication between the scheduler and worker, which
happens for every memory allocation, and region packing, while
we must communicate the list nodes one by one in UPC.

Figure 4h shows that the benchmark scales to more than 16
workers; the time scale on the Y axis is logarithmic. We keep the
list size constant at 30,000 objects per core. We could not use larger
problem sizes due to UPC’s limits on total shared memory avail-
able. When using a single scheduler core, Myrmics outperforms
UPC by a factor of 3.8–7.0×. The scheduler overhead can be fur-
ther improved when using hierarchical scheduling, which makes
Myrmics 4.6–10.7× faster than UPC.

7. Related Work
Serial region-based memory management. Tofte and Talpin
introduced managing memory in regions for serial programs in
1997 [30] as a programming discipline to facilitate mass dealloca-
tion of dead objects in languages, replacing the garbage collector.

5 Our algorithm assumes each point can be triangulated within two adjacent
sub-quadrants and requires the number of workers to be a power of four.

Memory is managed as a stack of regions and static compiler anal-
ysis determines when regions can be scrapped in their entirety, thus
avoiding the expensive operations of freeing or garbage-collecting
dead objects individually. Gay and Aiken implement RC [13], a
compiler of an enhanced version of C for dynamic region-based
memory management that supports regions and sub-regions. RC
focuses on safety: reference counts are kept to warn about un-
safe region deletions or to disable them. The authors claim up to
58% improvement over traditional garbage collection-based pro-
grams. Berger et al. [3] verify that region-based allocation offers
significant performance benefits, but the inability to free individual
pointers can lead to high memory consumption.

Parallel region-based memory management. To our knowledge,
our work is the first to introduce parallel region-based allocation.
Titanium [17] uses “private” regions for efficient garbage collec-
tion, in the same way as serial region-based allocators do. There
is some tentative support for “shared” regions, which are imple-
mented inefficiently with global, barrier-like synchronization of
all cores. Gay’s thesis [14] provides some details on the Titanium
shared regions and briefly mentions a sketch of a truly parallel im-
plementation as future work. Parallel regions in Myrmics must not
be confused with the X10 language regions [8], which are defined
as array subsets and not as arbitrary collection of objects.

Partitioned Global Address Spaces. PGAS languages are specif-
ically designed to offer parallel semantics by differentiating be-
tween local and global memory accesses. Unified Parallel C
(UPC) [10] is a popular example: it extends C by providing two
kinds of pointers: private pointers, which must point to objects lo-
cal to a thread, and shared pointers, which point to objects that
all threads can access but may have affinity to specific cores. The
Berkeley UPC compiler [20], which is a reference implementation,
translates UPC source code to plain C code with hooks to the UPC
runtime system, which manages shared memory aspects. Other
well-known PGAS languages are X10 [8, 15], which defines light-
weight tasks (activities) that run on specific address spaces (places),
Co-Array Fortran [27], which extends Fortran 95 to include remote
objects accessible through communication, Titanium [17], which
extends Java to support local and global references and Chapel [7],
which is a language written from scratch that aims to increase high-
end user productivity by supporting multiple levels of abstractions.

Our programming model resembles PGAS since we base com-
munication on data structures. Myrmics, however, does not pin ob-
ject and region locality to cores; a task can specify any accesses
and the runtime attempts to schedule the task close to the data.

Shared memory parallel allocators. For thread-based, shared-
memory architectures, Hoard [4] is considered one of the best par-
allel memory allocators. Hoard implements a small number of per-
processor local heaps, which are backed by a global heap when
they run out of memory, which is backed in turn by the operating
system virtual memory system. While Hoard focuses on increased
throughput, Michael [26] improves on multi-threaded, lock-based
allocators by presenting a scalable lock-free allocator that guaran-
tees progress even when threads are delayed, killed or deprioritized
by the scheduler. MAMA [22] is a recent high-end parallel alloca-
tor that introduces client-thread cooperation to aggregate requests
on their way to the allocator. McRT-malloc [19] follows a different
approach, by implementing a software transactional memory layer
to support concurrent requests; threads maintain a small local array
of bins for specific, small-sized slots and they revert to accessing a
public free list to get more blocks; larger slot sizes than 8 KB are
directly referred to the Linux kernel.

Our work resembles, in many respects, parallel memory alloca-
tors that use heap replication. Our schedulers trade address ranges
hierarchically and serve requests from these ranges. In the MAMA



paper, the authors describe a three-way tradeoff for memory allo-
cators: they can only feature two of the benefits of space efficiency,
low latency or high throughput. The Myrmics memory system sac-
rifices space efficiency (memory is hoarded by multiple schedulers
and preallocated for region usage) but offers high throughput, low
latency and also compactness for memory objects inside regions.

8. Conclusion
This work presents the design, implementation and evaluation of
the hierarchical memory allocator of the Myrmics runtime sys-
tem. To our knowledge, our implementation is the first distributed
region-based memory allocator. As the number of available cores
continually scales, we must evolve programming models towards
easier, or more automated parallelization. Scalable memory allo-
cation is a basic prerequisite for this transformation. Hierarchi-
cally organized region-based memory allocation is an interesting
approach with many benefits for parallel programmers. It offers the
programmer better control over memory management, abstracts te-
dious communication primitives, and allows the programmer to ex-
pose locality constraints naturally to the scheduling subsystems.
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