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ABSTRACT
Trying to cope with the constantly growing number of cores
per processor, hardware architects are experimenting with
modular non cache coherent architectures. Such architec-
tures delegate the memory coherency to the software. On
the contrary, high productivity languages like Java are de-
signed to abstract away the hardware details and allow de-
velopers to focus on the implementation of their algorithm.
Such programming languages rely on a process virtual ma-
chine to perform the necessary operations to implement the
corresponding memory model. Arguing, however, about the
correctness of such implementations is not trivial.
This paper presents our implementation of the Java Mem-

ory Model in a Java Virtual Machine targeting a 512-core
non cache coherent memory architecture. We shortly discuss
design decisions and present evaluation results demonstrat-
ing that our implementation scales with the number of cores,
up to 512 cores. We model our implementation as the op-
erational semantics of a Java Core Calculus that we extend
with synchronization actions, and prove its adherence to the
Java Memory Model.

CCS Concepts
•Theory of computation → Operational semantics;
•Software and its engineering → Memory management;
Virtual machines;

Keywords
Java Virtual Machine; Java Memory Model; Operational
Semantics; Non Cache Coherent Memory; Software Cache

1. INTRODUCTION
Current multicore processors rely on hardware cache co-

herence to implement shared memory abstractions. How-
ever, recent literature largely agrees that existing coherence
implementations do not scale well with the number of pro-
cessor cores, incur large energy and area costs, increase on-
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chip traffic, or limit the number of cores per chip [9, 34, 7],
despite several attempts to design less costly or more scal-
able coherence protocols [23, 25].

To address that issue, recent work on hardware design pro-
poses modular many-core architectures. Such examples are
the IntelR⃝ Runnemede [7] architecture, the Formic proto-
type [20], and the EUROSERVER architecture [11]. These
architectures are designed in a way that allows scaling up
by plugging in more modules. Each module is self-contained
and able to interface with other modules. Connecting mul-
tiple such modules builds a larger system that can be seen
as a single many-core processor. In such architectures the
trend is to use multiple mid-range cores with local scratch-
pads interconnected using efficient communication channels.

The lack of cache coherence renders the software respon-
sible for performing the necessary data transfers to ensure
data coherency in parallel programs. However, in high pro-
ductivity languages, such as Java, the memory hierarchy
is abstracted away by the process virtual machines render-
ing the latter responsible for the data transfers. Process
virtual machines provide the same language guarantees to
the developers as in cache coherent shared-memory archi-
tectures. Those guarantees are formally defined in the lan-
guage’s memory model. The efficient implementation of a
language’s memory model on non cache coherent architec-
tures is not trivial though. Furthermore, arguing about the
implementation’s correctness is even more difficult.

This paper presents an implementation of the Java Mem-
ory Model (JMM) [22] in DiSquawk, a Java Virtual Ma-
chine targeting the Formic-cube, a 512-core non cache co-
herent prototype based on the Formic architecture [20, 1].
We shortly discuss design decisions and present evaluation
results, demonstrating that our implementation scales with
the number of cores. To prove our implementation’s adher-
ence to the JMM, we model it as the operational semantics
of Distributed Java Calculus (DJC), a Java Core Calculus
that we define for that purpose.

Specifically, this work makes the following contributions:

• We present a Java Memory Model (JMM) implemen-
tation for non cache coherent architectures that scales
up to 512 cores, and we shortly discuss our design de-
cisions.

• We present Distributed Java Calculus (DJC), a Java
core calculus with support for Java synchronization ac-
tions and explicit cache operations.

• We model our JMM implementation as the operational
semantics of DJC.
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• We prove that the operational semantics of DJC ad-
heres to JMM and present the proof sketch.

The remainder of this paper is organized as follows. §2
shortly presents JDMM, a JMM extension for non cache co-
herent memory architectures, and the motivation for this
work; §3 presents our implementation of JDMM and shortly
discusses the design decisions; §4 presents DJC, its oper-
ational semantics, and a proof sketch of its adherence to
JDMM; §5 discusses related work; and §6 concludes.

2. BACKGROUND AND MOTIVATION
In order to reduce network traffic and execution time, Java

Virtual Machines (JVMs) on non cache coherent architec-
tures usually implement some kind of software caching [24, 4]
or software distributed shared memory [35, 33, 38, 12]. Both
approaches rely on similar operations; to access a remote
object they fetch a local copy; to make dirty copies globally
visible they write them back (write-back); and to free space
in the cache or force an update on the next access they in-
validate local copies. Since JMM [22] is agnostic about such
operations, we base our work on the Java Distributed Mem-
ory Model (JDMM) [36].
The JDMM is a redefinition of JMM for distributed or

non cache coherent memory architectures. It extends the
JMM with cache related operations and formally defines
when such operations need to be executed to preserve JMM’s
properties. The JDMM is designed to be as relaxed as the
JMM. Following a similar approach to that of Owens et
al. [26] in the x86 Total Store Order (x86-TSO) definition,
the JDMM first defines an abstract machine model and then
defines the memory model based on it.
Figure 1 presents an instance of the abstract machine

as presented in the JDMM paper. On the left side there
are several computation blocks with four cores in each of
them. Each computation block connects directly to its local
scratchpad memory. The scratchpad memory is split in a
local and a global slice. In this model, each local slice con-
nects with every other global slice in the system, but not
with any local slice. The connections are bi-directional: a
core can copy data from a remote global slice to the local
cache to improve performance; after finishing the job it can
transfer back the new data.
The local slice of the scratchpad is used for the local data

(i.e., Java stacks) and for caching remote data. The global
slices are partitions of a total virtual Java Heap, similarly
to Partitioned Global Address Space (PGAS) models. The
state of the memory can only be altered by the computa-
tion blocks or by committing a fetch, a write-back, or an
invalidate instruction.
In this abstract machine memory model the software needs

to explicitly transfer data in such a way that JMM guar-
anties are preserved. At a high level, JMM guarantees that
data-race-free (DRF) programs are sequentially consistent,
and that variables cannot get out-of-thin-air values under
any circumstances. To define our core calculus and couple
it with the JDMM, we use a subset of the notation used
in the JDMM paper, which we present here along with the
JDMM short presentation. The JDMM describes program
executions as tuples consisting of:

1) a set of instructions,

2) a set of actions, some of which are characterized as
synchronization actions.
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Figure 1: Memory abstraction.
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The JDMM uses the following abbreviations to de-
scribe all possible kinds of actions:

• R for read, W for write, and In for initialization
of a heap-based variable,

• Vr for read and Vw for write of a volatile variable,

• L for the lock and U for the unlock of a monitor,

• S for the start and Fi for the end of a thread,

• Ir for the interruption of a thread and Ird for
detecting such an interruption by another thread,

• Sp for spawning (Thread.start()) and J for join-
ing a thread or detecting that it terminated,

• E for external actions, i.e., I/O operations,

• F for fetch from heap-based variables,

• B for write-backs of heap-based variables,

• I for invalidations of cached variables.

Note that actions with kind In, Ir , Ird , Vr , Vw , L, U ,
S, Fi , Sp, or J are characterized as synchronization
actions and form the only communication mechanism
between threads.

3) the program order, which defines the order of actions
within each thread,

4) the synchronization order, which defines a total order-
ing among the synchronization actions,

5) the synchronizes-with order, which defines the pairs of
synchronization actions —release and acquire pairs,

6) the happens-before order that defines a partial order
among all actions and is the transitive closure of the
program order and the synchronizes-with order, and

7) some helper functions that we do not use in this paper.

The JDMM explicitly defines the conditions that a Java
program execution needs to satisfy on a non cache coherent
architecture, to be a well-formed execution. These condi-
tions are introduced in [36, §3 and §4.2]; we briefly present
them here. WF-1–WF-9 were first introduced in [22].

WF-1 Each read of a variable sees a write to it.

WF-2 All reads and writes of volatile variables are volatile
actions.



WF-3 The number of synchronization actions preceding
another synchronization action is finite.

WF-4 Synchronization order is consistent with program or-
der.

WF-5 Lock operations are consistent with mutual exclu-
sion.

WF-6 The execution obeys intra-thread consistency.

WF-7 The execution obeys synchronization order consis-
tency.

WF-8 The execution obeys happens-before consistency.

WF-9 Every thread’s start action happens-before its other
actions except for initialization actions.

WF-10 Every read is preceded by a write or fetch action,
acting on the same variable as the read.

WF-11 There is no invalidation, update, or overwrite of a
variable’s cached value between the action that cached
it and the read that sees it.

WF-12 Fetch actions are preceded by at least one write-
back of the corresponding variable.

WF-13 Write-back actions are preceded by at least one
write to the corresponding variable.

WF-14 There are no other writes to the same variable be-
tween a write and its write-back.

WF-15 Only cached variables can be invalidated. Invalid
cached data cannot be invalidated.

WF-16 Reads that see writes performed by other threads
are preceded by a fetch action that fetches the write-
back of the corresponding write and there is no other
write-back of the corresponding variable happening be-
tween the write-back and the fetch.

WF-17 Volatile writes are immediately written back.

WF-18 A fetch of the corresponding variable happens im-
mediately before each volatile read.

WF-19 Initializations are immediately written-back; their
write-backs complete before the start of any thread.

WF-20 The happens-before order between two writes is
consistent with the happens-before order of their write-
backs.

Two additional conditions must hold for executions con-
taining thread migration actions. Intuitively:

WFE-1 There is a corresponding fetch action between a
thread migration and every read action.

WFE-2 Additionally, to make sure the fetched value is the
latest according to the happens-before order, any dirty
data on the old core need to be written-back.

Note that, in the core JDMM, context switching without
thread migration is examined only as an extension. As a
result, we hereto use a slightly modified version of WF-
16 to allow DJC to be more relaxed in the case of context
switches and still comply with the JDMM. The modified
rule enables different threads running on the same core to
share the contents of a single cache, without breaking the
adherence to JMM, as shown in [36, §5.2]. That is:
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Figure 3: Performance impact of arguments size

WF-16 Reads that see writes performed by another core
are preceded by a fetch action that fetches the write-
back of the corresponding write and there is no other
write-back of the corresponding variable happening be-
tween the write-back and the fetch.

The JDMM intuitively states that a write-back and its
corresponding fetch may be executed any time in the time
window between a write and the corresponding read, given
that the write happens-before [18] this read. For instance,
in Figure 2 the thread T1 performs a write that happens-
before the corresponding read in thread T2. The happens-
before relationship is a result of the monitor release, m-exit,
by T1 and the subsequent monitor acquisition, m-enter, by
T2. The time window that the JDMM allows a write-back
and its corresponding fetch to be performed is marked with
the big black dashed rectangle.

This flexibility on when these operations can be executed,
allows for great optimization in theory. However, in practice
it is very difficult to even estimate this time window. The
JVM needs to keep extra information for every field in the
program and constantly update it. It needs to know the se-
quence of lock acquisition, who was the last writer, if their
write has been written-back, and whether the cached value
(if any) is consistent with the main memory or not. Imple-
menting these over software caching seems prohibitive, as
the cost of the bookkeeping and the extra communication
is expected to be much higher than the expected benefits
regarding energy, space, and performance.

An intuitive implementation is to issue all the write-backs
at release actions. However, this may result in long block-
ing release actions for critical sections that perform writes
on large memory segments. To demonstrate the overhead of
such operations we perform a simple experiment, where one
core transfers a given data set from another core’s scratch-
pad to its own. Figure 3 shows the impact of the arguments’
size and number on the data transfer time. On the y-axes
we plot the clock cycles consumed to transfer all the data
from one core’s to another core’s scratchpad. On the x-axes
we plot the total size of the data in Bytes. Each line in
the plot represents a different partitioning of the data, in
1, 10, 25, 50, and 100 arguments respectively. We observe
that apart from the total data size the partitioning of the
data impacts the transfer time as well. This is a result of
performing multiple data transfers instead of a single bulk
transfer. As a result, keeping a lot of dirty data cached un-
til a release operation is expected to perform badly, as it
most probably will need to perform multiple data transfers
to write-back non contiguous dirty data.

Hera-JVM [24] —the only, to the best of our knowledge,



JVM for a non cache coherent architecture that claims ad-
herence to the JMM— issues a write-back for every write
and then waits for all pending write-backs to complete at re-
lease actions. This approach significantly reduces the block-
ing time at release actions, but results in multiple redun-
dant write-backs in cases where a variable is written multi-
ple times in a critical section. Such redundant memory op-
erations are usually overlapped with computation, keeping
their performance overhead low. However, the additional
energy consumption they impose might still be significant
in energy-critical systems. Additionally, in the case of writ-
ing to array elements, their approach results in one memory
transfer per element when a bulk transfer can be used to
improve performance and energy efficiency.
In this work we propose an alternative policy regarding

write backs, that aims to mitigate such cases by caching
dirty data up to a certain threshold. Additionally, since the
Formic architecture is more relaxed than the Cell B.E. [28]
architecture that Hera-JVM is targeting, we also present
novel mechanisms to handle synchronization.

3. IMPLEMENTATION
We implement our memory and cache management pol-

icy in DiSquawk, a JVM we developed for the Formic-cube
512-core prototype. Formic-cube is based on the Formic ar-
chitecture [20], which is modular and allows building larger
systems by connecting multiple smaller modules. The basic
module in the Formic architecture is the Formic-board. Each
board consists of 8 MicroBlazeTM-based, non cache coherent
cores and is equipped with 128MB of scratchpad memory.
Each core also features a private software-managed, non-
coherent, two-level cache hierarchy; a hardware queue (mail-
box) that supports concurrent en-queuing, and de-queuing
only by the owner core; and a DMA engine. All of Formic’s
scratchpads are addressable using a global address space,
and data are transferred through DMA transfers and mail-
box messages to and from remote memory addresses.

3.1 Software Cache Management
As the Formic-cube does not provide hardware cache co-

herence, we build our JVM based on software caching. Each
core is assigned a part of the local scratchpad, which it uses
as its private software cache. This software cache is entirely
managed by the JVM, transparently to the programmer.
To limit the amount of cached dirty data up to a given

threshold we split the software cache in two parts. The first
part, called object cache, is used for caching objects and is
append-only —writes on this cache are not permitted. The
second part, called write buffer, is dedicated to caching dirty
data. When the write buffer becomes full, we write back all
its data and update the corresponding fields in the object
cache, if the corresponding object is still cached. Note that
the combination of the write-buffer and the object cache
form a memory-hierarchy, where the write-buffer is below
the object cache. That is, read accesses first go through
the write-buffer and only if they miss they go to the object
cache. If they miss again, the JVM proceeds to fetch the
corresponding object. This way, we a) set an upper limit
on the release operations’ blocking time; b) allow for over-
lapping write-backs with computation when the threshold is
met; c) allow for bulk transfer of contiguous data, e.g., writ-
ten elements of an array; and d) allow for multiple writes
to the same variable without the need to write back every

time. At acquisition operations, we write back all the dirty
data, if any, and invalidate both the object cache and the
write buffer, in order to force a re-fetch of the data if they
get accessed in the future. The write-back of the dirty data
at acquisition operations is necessary since we invalidate all
the cached data. Consider an example where a monitor is
acquired then a write is performed, and a different monitor
is now acquired. In this case simply invalidating all cached
data, would result in the loss of the write.

This approach is safe and sound, as we later show, but
shrinks the aforementioned time window thus limiting the
optimization space. A visualization of the shrunk time win-
dow is presented in Figure 2. The small red dashed rectangle
on the upper left corner of the big rectangle is the time win-
dow in which the write-back can be executed. Respectively
the small green dashed rectangle on the lower right corner
is the time window in which the corresponding fetch can
be executed. Note that although pre-fetching data, even in
the shrunk time window, allows for significant performance
optimizations we do not implement it in this work. Alter-
natively, we only fetch data at cache misses. Pre-fetching
depends on program analysis to infer which data are going
to be accessed in the future. Such analyses are not specific
to non cache coherent architectures or the Java Memory
Model, thus they our out of the scope of this work.

Despite this reduction of flexibility in when a data trans-
fer can happen, and the lack of support for pre-fetching, we
are still able to achieve good performance and scale with
the number of cores due to the efficient on-chip communica-
tion channels. To demonstrate this, we use the Crypt, SOR,
and Series benchmarks from the Java Grande [32] suite and
the Black-Scholes benchmark from the PARSEC suite [5],
ported to Java. Due to the lack of garbage collection and
the upper limit of 4 GB heap we are unable to run rea-
sonable workloads with the rest of the Java Grande bench-
marks. These benchmarks require larger than 4 GB datasets
to produce meaningful results on a large number of cores and
some of them also create objects with short lifespans, relying
on garbage collection to reclaim their memory. Series and
Black-Scholes are embarrassingly parallel benchmarks. Each
thread operates on a different subset of data from an input
set and creates a new set with the corresponding results.
The results are then accessed by the main thread for valida-
tion. Crypt comprises of two phases. In the first phase each
thread encrypts a subset of the input data and then waits on
a barrier. When all threads reach the barrier they proceed
to decrypt each a subset of the encrypted data. The results
are then compared to the original input for validation. SOR
performs a number of iterations where each thread acts on a
different array block accessing the previous and next neigh-
boring blocks. To ensure the neighboring blocks are ready,
SOR uses a volatile counter for each thread. This counter
reflects the iteration the corresponding thread is on. Each
thread updates the counter at the end of each iteration and
accesses the two counters of the neighboring threads.

Figure 4 shows the speedup for the benchmarks on DiS-
quawk running on the formic-cube and HotSpot running on
a 4-chip NUMA machine with 16 cores per chip, totaling 64
cores. Since formic-cube is a prototype clocked at 10MHz,
a comparison of the throughput or the execution time is
not possible, thus we chose to compare the applications’
scaling on both architectures. We perform this compari-
son on up to 64 cores, since we do not have access to a



4

8

16

32

64

128

256

512

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

4

8

16

32

64

128

256

512

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

Linear DiSquawk HotSpot
S
p
e
e
d
u
p

Cores

Black-Scholes

S
p
e
e
d
u
p

Series

Cores

Crypt

SOR

Figure 4: Speedup Results

cache-coherent architecture with more cores. Although we
cannot compare with HotSpot beyond the limit of 64 cores,
we present results from DiSquawk to show that it keeps scal-
ing with the number of cores. The presented speedups are
over the performance of the application running on a single
core on each architecture respectively. Since DiSquawk does
not support JIT compilation, we disable it in HotSpot (us-
ing the -Xint flag); this allows us to better understand the
applications’ behavior on both architectures. The number of
Java threads, one per core, is placed on the x-axis, and the
speedup is placed on the y-axis. Both axes are in logarithmic
scale of base 2. We observe that all benchmarks manage to
scale with the number of cores in both architectures. Black-
Scholes and Series scale better on DiSquawk than HotSpot
when using 32 or more cores, while Crypt performs better
on HotSpot than DiSquawk when using up to 32 cores.

3.2 Java Monitors
Apart from the data movement, JDMM also dictates the

operation of Java monitors. Java monitors are essentially
re-entrant locks associated with Java objects. In Java, each
object is implicitly associated with a monitor and can be
used in a synchronized block as the synchronization point.
In shared-memory cache coherent architectures Java mon-
itors are usually implemented using atomic operations like
compare and swap, relying on the hardware to synchronize
multiple threads trying to obtain the monitor. Such atomic
operations are not standard in non cache coherent architec-
tures, though [14, 20].
To implement Java monitors on such architectures we use

a synchronization manager: a server running on a dedicated
core, handling monitor enter/exit requests. To keep con-
tention at low levels we use multiple synchronization man-
agers according to the number of available cores on the
system. Each synchronization manager is responsible for
a number of objects in the system and each object can be
associated with its synchronization manager using a hash

function. When a thread executes a monitor-enter, the JVM
communicates with the corresponding synchronization man-
ager and requests ownership of the monitor. This way all
requests about a single monitor end up in the corresponding
synchronization manager’s hardware message queue, from
where they are handled by the synchronization manager in
the order they arrived. We thus delegate the synchroniza-
tion of requests to the architecture’s network-on-chip and
provide mutual exclusion via the synchronization managers.

To reduce the synchronization managers’ load, the net-
work’s traffic and contention, and to keep energy consump-
tion low we take advantage of the blocking nature of mon-
itors. Instead of sending back negative responses, when a
monitor is already acquired by some other thread, we queue
the monitor-enter requests in the synchronization manager,
and assign the monitor to the oldest requester when it be-
comes available. This way we ensure fairness in the order
that the requests are handled. Although this is not required
by the Java Language Specification [13], we consider it better
than arbitrarily choosing one of the waiting threads, since
it avoids the starvation of threads. Additionally, when a
thread is waiting for a monitor it yields to free up resources
for other threads. Instead of periodically rescheduling such
waiting threads —as we do with other yielded threads—
we use a mechanism that reschedules them only when the
monitor they requested has been assigned to them. That is,
the synchronization manager has sent an acknowledgement
message to the core executing the waiting thread.

Using a synthetic micro-benchmark which constantly is-
sues requests to a single monitor manager from X cores in
the system, where 0 < X < 512, we find that, on our sys-
tem, at least one synchronization manager per 243 cores is
required to avoid scenarios where the synchronization man-
ager becomes a bottleneck.

3.3 Volatile Variables
Another challenging part is the support of volatile vari-

ables. Volatile variables are special, because accessing them
is a form of synchronization. Specifically, volatile reads act
as acquire operations, while volatile writes act as release op-
erations. That said, after a volatile read any data visible to
the last writer of the corresponding volatile variable must be-
come visible to the reader. Volatile accesses are usually im-
plemented using memory fences provided by the underlying
architecture in shared-memory cache coherent systems [19].

Since non cache coherent architectures do not provide
memory fences, in our implementation we rely on synchro-
nization managers to ensure a total ordering between the
various accesses to a volatile variable. Essentially we treat
volatile accesses as synchronized blocks protected by a spe-
cial monitor, unique per volatile variable. Therefore, we
write back and invalidate any cached data before volatile
accesses, and write back the dirty data immediately after
volatile writes. This approach comes at the cost of unneces-
sary cache invalidations in the case of volatile writes, which
should not be often since volatile variables are usually em-
ployed as a completion, interruption or status flag [27, §3.1.4]
—meaning they are being mostly read during their life-cycle.

A side-effect of this implementation is the provision of
mutual exclusion to concurrent accesses on the same volatile
variable. Since Formic provides no guarantees about the
atomicity of memory accesses, we rely on this side-effect to
ensure a volatile read will never return an out-of-thin-air



value due to a partial update.

3.4 Wait/Notify Mechanism
Java also offers the wait/notify mechanism, which allows

a thread to block its execution and wait for another thread
to unblock it. Since wait() and notify() require the mon-
itor of the corresponding object to be held by the executing
thread, we use the synchronization manager to keep track
of such operations as well. The synchronization managers
are holding a list of waiters for each object they are re-
sponsible for. Note that to keep the space overhead low we
only allocate records when the first request for an object ar-
rives. Initially, the synchronization managers hold no data
for the objects they are responsible for. Whenever a thread
invokes wait() a special message is send to the synchro-
nization manager that adds the corresponding thread to the
waiters queue and releases the monitor. As a result, before
sending such messages we write back any dirty data. To
support wait() invocations with a timeout we also support
messages to the synchronization manager that request the
removal of a thread from the waiters list. When notify() is
invoked it sends a message to the synchronization manager,
which notifies and removes the longest waiting thread (if
any). In the case of notifyAll(), all threads in the waiters
queue get notified and removed.

3.5 Liveness Detection
For the detection of thread termination and checking of

liveness we rely on volatile variables. Each thread is de-
scribed using a JVM internal object, which holds a volatile
variable with the state of the thread. The supported states
are, spawned, alive, dead. We implement isAlive() as a
simple read to that state, if it is equal to alive then we
return true. On the other hand, for the join() method
we avoid spinning on the state variable in an effort to re-
duce energy consumption and free up resources for other
threads in the system. We base our join() implementa-
tion on the wait()/notify() mechanism. Since a thread
invoking join() will have to wait until the completion of the
thread it joins, we yield it by invoking wait on the JVM inter-
nal object, describing the thread. When the corresponding
thread reaches completion it invokes notifyAll() on that
internal object and wakes up any joiners.
DiSquawk currently does not support interruptions. We

consider their implementation regarding synchronization to
be straightforward. Before sending an interrupt, all dirty
data of the sending thread need to be written back, and
upon interruption the receiving thread needs to write back
any dirty data if present and invalidate its object cache.

4. THE CALCULUS
To argue about the correctness of our implementation, we

model it using a Java core calculus and its operational se-
mantics. We base our calculus on the Java core calculus
introduced by Johnsen et al. [16], which omits inheritance,
subtyping, and type casts, and adds concurrency and ex-
plicit lock support. We extend that calculus by replacing the
explicit lock support with synchronization operations and
adding support for cache operations. We define the opera-
tional semantics of the resulting Distributed Java Calculus
(DJC) and use it to argue about the correctness of the cache
and monitor management techniques used in DiSquawk.

Program J ::= D⃗

Class Def. D ::= class C(
−−→
f : τ){e}{M⃗}

Types τ ::= C | Bool | Nat | Unit
Methods M ::= m(−−→x : τ){return e; } : τ
Expressions e ::= x | new C(e⃗) | e.f | e.f := e

| let x : τ = e in e
| if e then e else e | e.m(e⃗)
| e.acquire | e.release
| e.monitorenter | e.monitorexit

Values v ::= r | () | true | false | n
Contexts E(•) ::= new C(v, . . . , •, . . . , e) | •.f

| e.f := • | •.f := v
| let x : τ = • in e
| if • then e else e
| e.m(v, . . . , •, . . . , e)
| •.monitorenter | •.monitorexit

Threads T ::= c⟨r, start⟩ | c⟨r, e⟩ | (T ∥ T ) | 0
Object o

.
= C(

−−−→
f 7→ v) | C(

−−−→
f 7→ v, started)

| C(
−−−→
f 7→ v, spawned)

| C(
−−−→
f 7→ v, finished)

| C(
−−−→
f 7→ v, interrupted)

Heap H .
=

−−−−−−→
r 7→ (o, l)

Object Cache C .
= −−−→r 7→ o

Write Buffer D .
=

−−−−−→
r.f 7→ v

Cache per Core C⃗ .
=

−−−→
c 7→ C

Buffer per Core D⃗ .
=

−−−−→
c 7→ D

Lock State l ::= 0 | r(n)

Figure 5: Abstract syntax of DJC

4.1 Syntax
The syntax of DJC is presented in Figure 5. A Java pro-

gram J consists of a sequence D⃗ of class definitions. A

class is defined as class C(
−−→
f : τ){e}{M⃗} where C is the class

name;
−−→
f : τ is the list of field declarations, where each fi is

unique; e is the body of the class constructor; and M⃗ is a
sequence of method definitions. The calculus types are class
names C, boolean scalar types Bool , scalar natural numbers
Nat , and Unit for the unit value (). A method is defined as
m(−−→x : τ){return e; } : τ where m is the method’s name; −−→x : τ
is the set of formal arguments; e is the method body; and
τ is the return type. To keep the calculus simple we do not
support method overloading.

The syntax includes variables x; creation of class instances
as new C(e⃗); field accesses as e.f , where f is a unique field
identifier; field updates as r.f := e; and sequential compo-
sition using the let-construct as let x : τ = e in e. Note
that the evaluation of e may have side-effects. Conditional
expressions are expressed as if e then e else e; and method
calls as e.m(e⃗), where m is the method name.

The syntax also includes monitor enter and exit actions
as expressions e.monitorenter and e.monitorexit, respectively.
Note that volatile accesses do not have separate bytecodes in
Java; they appear as normal memory accesses and the JVM
checks at runtime whether they are volatile or not. Thus, we
do not provide special syntax for them. Values v are refer-
ences to objects r, the unit value (), boolean constants true
and false and scalar numerical constants n, abstracting over
all other Java scalar types. Contexts are used to show the
evaluation sequence of the expressions. In each expression
in E(•) the • is evaluated first.

A thread instance is defined as c⟨r, start⟩ or c⟨r, e⟩, where



Notation Definition

r Reference value
m Method identifier
f Field identifier
c Core identifier

dom (X) Returns the keys of the map X
rng (X) Returns the values of the map X

X⃗[X′
i/Xi] Replaces Xi with X′

i in X

X⃗ ↓ x⃗ Subset of map bindings in X with keys in x⃗
volatile (r.f) Returns true if r.f is volatile

C
(−−−→
f 7→ v

)
A Java object that is an instance of class C

with mappings of field names to values
−−−→
f 7→ v

Figure 6: Definition of Notation

c is the unique identification of the core that executes it; r is
the corresponding instance of the Thread class; start is the
thread start action, that signals the start of its execution
and is not to be confused with the start() method of the
Thread class; and e is the thread’s body. Threads can be
composed in parallel pairs using the associative and com-
mutative binary operator ∥. The empty thread is marked
with 0 and is the neutral element of ∥.
We represent an object in the runtime syntax as C(

−−−−→
f 7→ v)

or C(
−−−−→
f 7→ v, state). The first form is used for every object in

the memory, while the second is only used for thread objects
whose start() method has been invoked, and state can be
one of spawned, started, finished, and interrupted. Each ob-
ject contains the name of its class and a map of field names
f to values v. A thread whose start() method has been
invoked is spawned. A thread whose run() method has been
invoked is started. A thread that has reached completion
is finished. A thread whose interrupt() method has been
invoked is interrupted.
The memory of the system is split into the heap H, the

object caches per core C⃗, and the write buffers per core D⃗.
The heap is a map from references r to objects o and their
monitor l. The object cache per core is a map from core ids
c to object caches C. Similarly, the write buffer per core is
a map from core ids c to write buffers D. The object cache
C is a map from references r to objects o. The write buffer
D is a map from object fields r.f to values v.
To model mutual exclusion we also add a lock state to the

runtime syntax. A lock l may be free, i.e., 0, or acquired by
some thread r, n times.

4.2 Operational Semantics
The operational semantics of DJC are based on those

introduced by Johnsen et al. [16]. In this work we intro-
duce new rules for fetch, write-back, invalidate, volatile-read,
volatile-write, start, finish, join, interrupt, interrupt detec-
tion, and migrate operations. Note that we do not model
java.util.concurrent, a Java library providing more syn-
chronization mechanisms, in our formalization, since its in-
terference with JMM is not yet fully defined.
Figure 6 presents a summary of the notations we use in the

operational semantics of DJC, along with their definitions.
We discuss these definitions in detail below, together with
the operational semantics. To improve readability, we split
the operational semantics in four categories: core seman-
tics regarding the core language; synchronization semantics
regarding volatile accesses, monitor handling, join, and in-

H; C;D ⊢ c⟨rt, e⟩
α−→ H; C;D ⊢ c⟨rt, e⟩

[CtxStep]
H; C;D ⊢ c⟨rt, e⟩

α−→ H′; C′;D′ ⊢ c⟨rt, e′⟩
H; C;D ⊢ c⟨rt, E(e)⟩ α−→ H′; C′;D′ ⊢ c⟨rt, E(e′)⟩

[IfTrue]

H; C;D ⊢ c⟨rt, if true then e1 else e2⟩ → H; C;D ⊢ c⟨rt, e1⟩

[IfFalse]
H; C;D ⊢ c⟨rt, if false then e1 else e2⟩ → H; C;D ⊢ c⟨rt, e2⟩

[Let]
H; C;D ⊢ c⟨rt, let x : τ = v in e⟩ → H; C;D ⊢ c⟨rt, e[v/x]⟩

[Call]

H(r) = C(
−−−−→
f 7→ v′) m(−−→x : τ){return e; } ∈ C

H; C;D ⊢ c⟨rt, r.m(v⃗)⟩ → H; C;D ⊢ c⟨rt, e[v⃗/x⃗][r/this]⟩

[Field]

r ∈ dom (H) ¬volatile (r.f)
C(r.f) = v r.f /∈ dom (D)

H; C;D ⊢ c⟨rt, r.f⟩
R−→ H; C;D ⊢ c⟨rt, v⟩

[FieldDirty]

r ∈ dom (H) ¬volatile (r.f)
D(r.f) = v

H; C;D ⊢ c⟨rt, r.f⟩
R−→ H; C;D ⊢ c⟨rt, v⟩

[Assign]

r ∈ dom (H)
¬volatile (r.f) D′ = D[r.f 7→ v]

H; C;D ⊢ c⟨rt, r.f := v⟩ W−−→ H; C;D′ ⊢ c⟨rt, v⟩

[New]

r − fresh

H(r) = C(
−−−→
f 7→ 0) class C(

−−→
f : τ){e}{M⃗} ∈ J

H; C;D ⊢ c⟨rt, new C(v⃗)⟩ →
H; C;D ⊢ c⟨rt, let : Unit = e[v⃗/f⃗ ][r/this] in r⟩

Figure 7: Semantics of Local Operations

terrupts; semantics for implicit operations performed by the
JVM; and global semantics regarding parallel execution.

4.2.1 Core Semantics
Figure 7 presents the core semantics of DJC. Following

the notation of Johnsen et al., local configurations are of
the form H; C;D ⊢ e. Note that in the conclusions of some
semantic rules we annotate the → binary operator with an

action kind from JDMM or α, e.g., we use
R−→ to show that

Field performs a read action R. In the proof included in
the extended version of this paper [37], we present all action
kinds along with their abbreviations used in the annotations,
and use this information to argue about the adherence of
the operational semantics to JDMM. Note that c and rt in
c⟨rt, e⟩, although present in every rule, are not involved in
any of the rules in Figure 9. We use them to argue about the
global semantics, shown in Figure 10. This syntax allows us
to argue about which core is executing a thread and what is
the corresponding object of this thread.

The CtxStep rule describes the evaluation of an expres-
sion in a context. The IfTrue and IfFalse rules handle
conditional expressions in the standard manner. Rule Let
handles substitution in the standard manner. Rule Call
handles method calls. We use r.m(v⃗) for invocations with



arguments v⃗ of the method with name m of the object ref-
erenced by r. To determine the body of the method we use
m(−−→x : τ){return e; }, where −−→x : τ are the formal arguments of
the method and e is the method body.
In our VM, all memory accesses first go through the write

buffer; if they miss they proceed to the object cache. Thus,
to access a field we need it to be present either in the write
buffer or the object cache. To reason about such accesses we
define Field and FieldDirty. Field handles non-volatile
field accesses when the field is in the object cache while
FieldDirty handles non-volatile field accesses when the
field is not in the write buffer.
In Field, the first premise requires that the object con-

taining the field being accessed is in the heap (has been
allocated and initialized). The second premise requires the
access to not refer to a volatile field. To achieve this we use
the function volatile (r.f) which returns true if the field f is
volatile in the object referenced by r and false otherwise.
This function models the distinction, performed internally
by the JVM, of volatile fields from normal fields. The third
premise requires that the core performing the read has a
copy of the field in its object cache, and the cached value
is v. The last premise requires that the field is not in the
write buffer. Considering H, C, and D as maps X, we use
X(k) to get the value of the cached object or field with
key k. We also use C(r.f) = v as a shorter notation of
C(r) = C(f ′

1 7→ v′1, . . . , f 7→ v, . . . , f ′
n 7→ v′n) to show that f

maps to v in the object returned by C(r). Additionally, we
use dom (X) to get all the map keys, i.e., references in the
case of H and C or field names in the case of D.
Similarly, FieldDirty handles field accesses of fields that

are in the write buffer. The only difference from Field is
that we require f to be in the write buffer and get its value
from there instead of the object cache.
Assign handles non-volatile field writes. Writes change

the contents of the write buffer instead of the heap, as re-
quired by the last two premises. Given a map X, X ′ = X \k
is used to show that X ′ contains the same mappings as X
except a mapping for key k, thus k ̸∈ dom (X ′) and X ′ ⊆ X.
Note that we use ⊆ instead of ⊂, since k might not be in
the map in the first place.
Rule New invokes the constructor of the corresponding

class C(
−−→
f : τ){e}{M⃗} in a similar manner to Call. Rule

CtxStep ensures that the constructor will be evaluated be-
fore the reference r will be assigned to any variable. This
ensures that final fields are initialized before publishing the
new object. Similarly to Johnsen et al., we use C (v⃗) for
instances of class C with field values v⃗, i.e., field fi contains
the value vi. Note that according to the JMM“conceptually
every object is created at the start of the program” [22, §4.3].
That said, in DJC we assume that the object is already
present in the memory, with its fields initialized to the de-
fault value, and that New just invokes the constructor and
returns a reference to the object. We use r − fresh to show
that there is no other reference to that object already.

4.2.2 Semantics of Implicit Operations
Figure 8 presents the operational semantics for implicit

operations. These are operations performed implicitly by
the virtual machine and do not map to language expres-
sions. Rules Fetch, WriteBack, and Invalidate handle
fetching, write-back, and invalidation of a cached object, re-
spectively. Fetching an object requires that it exists in the

H; C;D ⊢ c⟨rt, e⟩ → H; C;D ⊢ c⟨rt, e⟩

[Fetch]
H(r) = C(

−−−→
f 7→ v) C′ = C[r 7→ H(r)]

H; C;D ⊢ c⟨rt, e⟩
F−→ H; C′;D ⊢ c⟨rt, e⟩

[WriteBack]
r ∈ dom (H) r ∈ dom (C)

¬volatile (r.f) r.f ∈ dom (D) H′ = H[r.f 7→ D(r.f)]
C′ = C[r.f 7→ D(r.f)] D′ = D \ r.f

H; C;D ⊢ c⟨rt, e⟩
B−→ H′; C′;D′ ⊢ c⟨rt, e⟩

[Invalidate]
r ∈ dom (C) C′ = C \ r

H; C;D ⊢ c⟨rt, e⟩
I−→ H; C′;D ⊢ c⟨rt, e⟩

[Start]

C = ∅ D = ∅ H(rt) = C(
−−−→
f 7→ v, spawned)

H′(rt) = C(
−−−→
f 7→ v, started)

H; C;D ⊢ c⟨rt, start⟩
S−→ H′; C;D ⊢ c⟨rt, rt.run()⟩

[Finish]

D = ∅ H(rt) = C(
−−−→
f 7→ v, started)

H′(rt) = C(
−−−→
f 7→ v, finished)

H; C;D ⊢ c⟨rt, ()⟩
Fi−−→ H′; C;D ⊢ c⟨rt, ()⟩

Figure 8: Semantics of Implicit Operations

heap (first and second premise). A fetch results in the ad-
dition of the object referenced by r in the object cache C.
Writing back a field r.f requires that the object referenced
by r is present in the heap H and the object cache C, r.f is
not volatile, and there is a dirty copy of it in the write buffer
D. Writing-back a field results in the update of its value both
in the heap H and the object cache C. Invalidating an ob-
ject’s cached copy requires that it is cached. An invalidation
results in the removal of the object referenced by r from the
object cache, C, of the core executing the invalidation. Note
that invalidations do not affect the write buffer. Start en-
forces the evaluation of the thread start action before any
other action in the thread and —treating thread start as
an acquire action— requires the object cache and the write
buffer to be empty on the running core. Finish handles the
completion of a thread. Note that a thread reaches com-
pletion when its thread body is equal to the unit value ().
Finish, as a release action, requires the write buffer to be
empty, and changes the state of the thread.

4.2.3 Semantics of Synchronization Operations
Figure 9 presents the synchronization operational seman-

tics. That is, rules about volatile accesses, monitor handling,
join, and interrupts.

Rules VolatileReadL and VolatileRead handle reads
of volatiles. Rules VolatileWriteL and VolatileWrite
handle volatile writes. The combination of VolatileReadL
and VolatileRead results in a single volatile-read. The
same holds for VolatileWriteL, VolatileWrite and the
volatile-write action. Specifically, for each volatile field r.f
we assume a synthetic lock r.f.l. This lock is used to force
a total ordering on the accesses to this variable and guar-
antee atomicity to the corresponding hardware memory ac-
cesses, as described in §3.3. When r.f.l is 0, it means the
volatile variable r.f is not being accessed by another thread.



H; C;D ⊢ c⟨rt, e⟩ → H; C;D ⊢ c⟨rt, e⟩

[VolatileReadL]

r ∈ dom (H) volatile (r.f)
H(r.f.l) = 0 H′ = H[r.f.l 7→ rt]

H; C;D ⊢ c⟨rt, r.f⟩ → H′; C;D ⊢ c⟨rt, r.f⟩

[VolatileRead]

r ∈ dom (H) H(r.f.l) = rt
C = ∅ D = ∅ H′ = H[r.f.l 7→ 0] H(r.f) = v

H; C;D ⊢ c⟨rt, r.f⟩
Vr−−→ H′; C;D ⊢ c⟨rt, v⟩

[VolatileWriteL]
r ∈ dom (H)

volatile (r.f) H(r.f.l) = 0 H′ = H[r.f.l 7→ rt]

H; C;D ⊢ c⟨rt, r.f := v⟩ → H′; C;D ⊢ c⟨rt, r.f := v⟩

[VolatileWrite]
r ∈ dom (H)

H(r.f.l) = rt D = ∅ H′ = H[r.f 7→ v][r.f.l 7→ 0]

H; C;D ⊢ c⟨rt, r.f := v⟩ Vw−−→ H′; C;D ⊢ c⟨rt, v⟩

[MonitorEnter]
r ∈ dom (H)

C = ∅ D = ∅ H(r) = (o, 0) H′ = H[r 7→ (o, rt(1))]

H; C;D ⊢ c⟨rt, r.monitorenter⟩ L−→ H′; C;D ⊢ c⟨rt, ()⟩

[NestedMonitorEnter]
r ∈ dom (H)

H(r) = (o, rt(n)) H′ = H[r 7→ (o, rt(n+ 1))]

H; C;D ⊢ c⟨rt, r.monitorenter⟩ L−→ H′; C;D ⊢ c⟨rt, ()⟩

[MonitorExit]

r ∈ dom (H)
D = ∅ H(r) = (o, rt(1)) H′ = H[r 7→ (o, 0)]

H; C;D ⊢ c⟨rt, r.monitorexit⟩ U−→ H′; C;D ⊢ c⟨rt, ()⟩

[NestedMonitorExit]
r ∈ dom (H)

H(r) = (o, rt(n+ 2)) H′ = H[r 7→ (o, rt(n+ 1))]

H; C;D ⊢ c⟨rt, r.monitorexit⟩ U−→ H′; C;D ⊢ c⟨rt, ()⟩

[Join]
C = ∅ D = ∅ H(r′t) = C(

−−−→
f 7→ v, finished)

H; C;D ⊢ c⟨rt, r′t.join()⟩
J−→ H; C;D ⊢ c⟨rt, ()⟩

[Interrupt]
D = ∅

H(r′t) = C(
−−−→
f 7→ v, started) H′(r′t) = C(

−−−→
f 7→ v, interrupted)

H; C;D ⊢ c⟨rt, r′t.interrupt()⟩
Ir−→ H′; C;D ⊢ c⟨rt, ()⟩

[InterruptedT]

C = ∅ D = ∅ H(r′t) = C(
−−−→
f 7→ v, interrupted)

H; C;D ⊢ c⟨rt, r′t.interrupted()⟩
Ird−−→ H; C;D ⊢ c⟨rt, ()⟩

[InterruptedF]

state ̸= interrupted H(r′t) = C(
−−−→
f 7→ v, state)

H; C;D ⊢ c⟨rt, r′t.interrupted()⟩ −→ H; C;D ⊢ c⟨rt, ()⟩

Figure 9: Semantics of Synchronization Operations

Assigning the thread rt to r.f.l we essentially block other
threads from accessing this volatile variable. Additionally,

volatile accesses are exceptions to the rule that all accesses
go through the cache. Since volatile reads are acquire ac-
tions and volatile writes are release actions, before volatile
writes, any dirty data in the corresponding core’s cache must
be written-back and before volatile reads, the corresponding
core’s cache must be invalidated. We use ∅ for empty maps.

Rules MonitorEnter and NestedMonitorEnter han-
dle monitor acquisition; similarly, rules MonitorExit and
NestedMonitorExit handle monitor release. These rules
use r.l —not to be confused with the synthetic lock r.f.l of
volatile variables— to represent the implicit monitor associ-
ated with the object with identity r. Our monitor handling
is similar to the lock handling introduced in [16]. The nota-
tion H(r.l) = 0 dictates that the corresponding monitor is
not acquired by any thread in the system. H(r.l) = rt(n)
dictates that the corresponding monitor has been acquired
n times by the thread rt. Rule MonitorEnter requires
that a monitor must be free before its acquisition. Rule
NestedMonitorEnter requires that a monitor is already
owned by some thread before it gets re-entered by that same
thread. Rules MonitorExit and NestedMonitorExit
ensure that a monitor is released only by its owner and the
same number of times it was previously acquired.

In the case of nested monitor acquisition we can avoid in-
validating the object caches and writing-back data at nesting
monitor release. By definition, nested acquisition of moni-
tors requires that the monitor is owned by the same thread
at any nesting level. Thus, any concurrent actions operat-
ing on cached data used in the critical section would be the
result of a data-race, meaning that the program is not DRF.
Then it is not necessary for any of the corresponding dirty
data to become visible to the threads performing the racy
accesses, at nested monitor releases. Racy accesses are not
guaranteed to see the latest write if their thread did not
synchronize-with an action that happens-after that write.
Similarly, since the monitor is already owned by the current
thread, there is no need to invalidate its core’s cache in order
to get the latest values, since those values are the results of
some data-race. As a result, rules NestedMonitorEnter
and NestedMonitorExit do not need any special premises
regarding object caches and write buffers.

Rule Join handles invocations to the join() method of a
thread. Its first two premises require that the object cache
and the write buffer are empty, since join is an acquire ac-
tion. The third premise requires the state of the thread
object to be finished, modeling the way a join blocks on the
state of a thread in the JVM implementation.

Rule Interrupt handles invocations to the interrupt()

method of a thread. Its first premise requires that the write
buffer is empty, since interrupt is a release action. The sec-
ond and third premises require the state of the thread object
to be started before the interrupt and interrupted after it,
modeling the way interrupts are implemented by changing
the thread’s state in the JVM implementation or setting a
hardware register in the case of using hardware interrupts.

Rules InterruptedT and InterruptedF handle invo-
cations to the interrupted() method of a thread. Rule
InterruptedT handles cases where the thread is inter-
rupted. Its first two premises require that the object cache
and write buffer are empty, since interrupt detection is an
acquire action. The third premise requires the state of the
thread object to be interrupted. Rule InterruptedF han-
dles cases where the thread is not interrupted. In such cases



H; C⃗; D⃗ ⊢ T
α⃗−→
c⃗

H; C⃗; D⃗ ⊢ T

[Lift]

Cc = C⃗(c) Dc = D⃗(c) C′
c = C⃗′(c) D′

c = D⃗′(c)

H; Cc;Dc ⊢ c⟨rt, e⟩
α−→ H′; C′

c;D′
c ⊢ c⟨rt, e′⟩

C⃗′ = C⃗[c 7→ C′
c] D⃗′ = D⃗[c 7→ D′

c]

H; C⃗; D⃗ ⊢ c⟨rt, e⟩
{α}−−−→
{c}

H′; C⃗′; D⃗′ ⊢ c⟨rt, e′⟩

[Spawn]

H(rt′ ) = C(
−−−→
f 7→ v) H′(rt′ ) = C(

−−−→
f 7→ v, spawned)

run(){return e; } ∈ C D⃗(c) = ∅ c′ ∈ Cids

H; C⃗; D⃗ ⊢ c⟨rt, rt′ .start()⟩
{Sp}−−−→
{c}

H′; C⃗; D⃗ ⊢ c⟨rt, ()⟩ ∥ c′⟨rt′ , start⟩

[Migrate]

c′ ∈ Cids c ̸= c′

D(c) = ∅ D(c′) = ∅ C(c′) = ∅

H; C⃗; D⃗ ⊢ c⟨rt, e⟩
{M}−−−→
{c}

H; C⃗; D⃗ ⊢ c′⟨rt, e⟩

[Blocked]
H; C⃗; D⃗ ⊢ T1

∅−→
∅

H; C⃗; D⃗ ⊢ T1

[ParG]

c⃗1 ∩ c⃗2 = ∅
C⃗1 = C⃗ ↓ c⃗1 C⃗2 = C⃗ ↓ c⃗2 C⃗3 = C⃗ \ (C⃗1 ∪ C⃗2)

D⃗1 = D⃗ ↓ c⃗1 D⃗2 = D⃗ ↓ c⃗2 D⃗3 = D⃗ \ (D⃗1 ∪ D⃗2)

H; C⃗1; D⃗ ⊢ T1
α⃗1−−→
c⃗1

H′; C⃗′
1; D⃗′

1 ⊢ T ′
1

H; C⃗2; D⃗ ⊢ T2
α⃗2−−→
c⃗2

H; C⃗′
2; D⃗′

2 ⊢ T ′
2

C⃗′ = C⃗′
1 ∪ C⃗′

2 ∪ C⃗3 D⃗′ = D⃗′
1 ∪ D⃗′

2 ∪ D⃗3

H; C⃗; D⃗ ⊢ T1 ∥ T2
α⃗1∪α⃗2−−−−−→
c⃗1∪c⃗2

H′; C⃗′; D⃗′ ⊢ T ′
1 ∥ T ′

2

Figure 10: Global Semantics

the invocation is not a synchronization action so there is no
need for flushing the object cache or the write buffer.

4.2.4 Semantics of Global Operations
In Figure 10 we present the global operational semantics

of DJC. Similarly to the local configurations, the global con-
figurations are of the form H; C⃗; D⃗ ⊢ e, where C⃗ and D⃗ are
all the system’s object caches and write buffers respectively,
while C⃗(c) and D⃗(c) are the object cache and write buffer of
core c, respectively. Note that the heap is the same in global
and local configurations since it is shared among all cores.
Lift lifts local reduction steps to the global level. We use

C⃗[c 7→ C′
c] and D⃗[c 7→ D′

c] to show that the state of C⃗(c) and
D⃗(c) in the system is replaced by C′

c and D′
c, respectively.

Spawn handles thread spawns, i.e. Thread.start() invo-
cations. For every spawn –which is also a release action– we
require that all dirty data are written-back. Then the JVM
picks one of the available cores, marked as c′ and schedules
thread v′ to it. We represent this by introducing c′⟨r′t, start⟩
in parallel to the previously running c⟨rt, r′t.start()⟩. Note
that Spawn changes the state of the thread to started to
mark that this thread has started and forbid any re-spawns.
Migrate handles the Java thread migration to another core
by the scheduler. It picks one of the available cores, marked
as c′ and replaces c with it, representing that thread r will
continue its execution on core c instead of c′. Blocked is

essentially a no-op that allows threads to block and not step
in every transition in an execution trace, as e.g., a finished
but not joined thread.

In DJC, two (or more) Java threads can step concurrently
through the ParG rule. Each thread may change its core’s
object cache and write buffer state and thus affect C⃗ and D⃗.
Since the object caches and write buffers are disjoint for each
core, the resulting global state of object caches and write
buffers after a concurrent step is the union of the changed
object buffers and write buffers by each set of cores that
step in the parallel transition and those that where left un-
changed by both. To get the object caches and write buffers
that a set of cores c⃗ changes we use C⃗ ↓ c⃗ (projection). Note
that the first premise of ParG requires the two sets of cores
that perform a step in the parallel transition to be disjoint.
This way we model that each core is running a single thread
and performs a single step each time. Additionally, its eighth
and ninth premise only allow a single set of threads to mod-
ify the heap. This limitation partially models the hardware
memory bus and how it orders memory transfers. We allow
only one write per step to the heap, this way we allow par-
allelism but not concurrent writes to the heap. To improve
this, one can slice the heap. Then different threads may
write to different slices of the heap and increase parallelism.

4.3 Proof Sketch
This section briefly describes the proof of DJC’s adherence

to the JDMM. The extended version of this paper contains a
detailed proof of adherence [37]. Intuitively, the correctness
property can be expressed as:

Theorem 1. DJC’s operational semantics generates only
well-formed execution traces.

To prove Theorem 1, we show by induction that DJC’s oper-
ational semantics satisfies every well-formedness rule. That
is, given any well formed execution trace:

H; C⃗; D⃗ ⊢ T1 ∥ T2 →∗ H′; C⃗′; D⃗′ ⊢ T ′
1 ∥ T ′

2

we show that the trace after taking one more step:

H; C⃗; D⃗ ⊢ T1 ∥ T2 →∗ H′; C⃗′; D⃗′ ⊢ T ′
1 ∥ T ′

2

→ H′′; C⃗′′; D⃗′′ ⊢ T ′′
1 ∥ T ′′

2

is well-formed as well.
The proof first shows DJC’s local operational semantics

generates only well-formed execution traces. We then show
that lifting a well-formed execution trace from the local op-
erational semantics to the global operational semantics pre-
serves the well-formedness of the execution. Last, we show
that the global operational semantics preserves the well-
formedness of the execution, thus DJC’s operational seman-
tics generates only well-formed execution traces.

This amounts to essentially a preservation proof for each
rule, many of which are straightforward. It is trivial to show
that structural rules with conclusions that do not affect the
memory state and do not regard synchronization actions pre-
serve the well-formedness of the execution. For the rest,
we argue about their effects on the execution state. Since
DJC’s operational semantics is tailored after JDMM’s well-
formedness rules, for most inference rules, inspecting their
premises and conclusions is enough to show that a well-
formedness rule is preserved. As DJC models DiSquawk
executions, we claim that DiSquawk executions adhere to
the JDMM, and consequently to the JMM.



5. RELATED WORK
To the best of our knowledge, the only other JVM imple-

menting the Java memory model on a non cache coherent ar-
chitecture is Hera-JVM [24]. Hera-JVM also employs caches
which it handles in a similar manner to our implementation,
with the difference that it starts a write-back at every write,
as we discuss in §3. Regarding the synchronization mech-
anisms, Hera-JVM relies on the Cell B.E.’s GETLLAR and
PUTLLC instructions to build an atomic compare-and-swap
operation. However, such instructions are not available on
the architectures at hand [14, 20]. Additionally, Hera-JVM
did not aim to formally prove its adherence to the JMM.
Contrary to the implementation, language operational se-

mantics are often used to formalize memory models. Previ-
ous work describes the memory semantics for shared mem-
ory multicore processor architectures, such as Power [21],
x86 [26, 31], and ARM [3] processors, without focusing on
a specific language semantics or memory model. Sarkar
et al. [30] first combined the semantics of an architecture
with the memory model definition of the C++ language,
focusing on its execution on shared-memory Power proces-
sors. Pratikakis et al. [29] similarly present operational se-
mantics for a specialized task-parallel programming model
designed to target distributed-memory architectures. Our
work differs from the aforementioned in that it is targeting
distributed or non cache coherent memory architectures.
Boudol and Petri [6] define a relaxed memory model us-

ing an operational semantics for the Core ML language.
Their work takes into account write buffers that must be-
come empty before a lock release. Although the handling of
write buffers is similar to handling caches regarding the write
backs, the fetching and invalidation handling part is not cov-
ered in that work. Additionally, the authors only consider
lock releases as synchronization points, while in the Java
language there are multiple synchronization points accord-
ing to JMM. Joshi and Prasad [17] extend the above work
and define an operational semantics that accounts for caches,
namely update and invalidation cache operations not previ-
ously supported. The authors use a simple imperative lan-
guage, claiming it has greater applicability. Unfortunately,
this approach further abstracts away details regarding the
correct implementation of a specific programming language’s
memory model. In our work we focus on the Java language
and provide all the needed details for the implementation
of its memory model. Furthermore, both of the above pa-
pers define operational semantics for generic relaxed mem-
ory models. We believe that defining the operational seman-
tics for a specific memory model, in this case the JMM, is a
different task that focuses on the issues specific to Java.
Demange et al. [10] present the operational semantics of

BMM, a redefinition of JMM for the TSO memory model.
BMM is similar to this work in that it aims to bring JMM
definition closer to the hardware details. BMM, however,
focuses on buffers instead of caches and assumes the TSO
memory model, which is stricter than the memory model of
the architectures at hand.
Jagadeesan et al. [15] also describe an operational seman-

tics for JMM. Their work, however, does not account for
caches or buffers. It abstracts away the hardware details
and considers reads and writes to become actions that float
into the evaluation context. This approach does not explic-
itly define when and where writes should be eventually com-
mitted to satisfy the JMM. In our approach, we explicitly

define where data get stored after any evaluation step.
We thus consider our approach to be closer to the imple-

mentation. Cenciarelli et al. [8] use a combination of opera-
tional, denotational, and axiomatic semantics to define the
JMM. In that work, the authors show that all the generated
executions adhere to the JMM, but as in [15] they do not
account for the memory hierarchy.

6. CONCLUSIONS
This paper presents DiSquawk, a Java VM implementa-

tion of the Java Memory Model that targets a 512-core non
cache coherent architecture, and a proof sketch that it ad-
heres to JMM. We discuss design decisions and present eval-
uation results from the execution of a set of benchmarks from
the Java Grande suite [32]. To prove the correctness of our
implementation, we model all key points of the design us-
ing a core calculus DJC and its operational semantics. DJC
is a concurrent Java calculus aware of software caches and
their mechanisms. DiSquawk has been developed as part of
the GreenVM project [2] and is available for download at
https://github.com/CARV-ICS-FORTH/disquawk.
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