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Abstract. Question Answering (QA) in vague or complex open domain
information needs is hard to be adequate, satisfying and pleasing for
end users. In this paper we investigate an approach where QA comple-
ments a general purpose interactive keyword search system over RDF.
We describe the role of QA in that context, and we detail and evaluate a
pipeline for QA that involves a general purpose entity search service over
RDF, answer type prediction, entity enrichment through SPARQL, and
pre-trained neural models. The fact that we start from a general purpose
keyword search over RDF, makes the proposed pipeline widely applicable
and realistic, in the sense that it does not pre-suppose the availability of
knowledge graph-specific training dataset. We evaluate various aspects
of the pipeline, including the effect of answer type prediction, as well as
the performance of QA over existing benchmarks. The results show that,
even by using different data sources for training, the proposed pipeline
achieves a satisfactory performance. Moreover we show that the ranking
of entities for QA can improve the entity ranking.
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1 Introduction

Question answering over knowledge bases (KBQA) is an important NLP task be-
cause of the rapid growth of knowledge bases (KBs) on the web and the commer-
cial value they bring for real-world applications [I8]. In knowledge bases, where
data is represented as a graph, e.g. using the Resource Description Framework
(RDF), methods relying on Graph Processing and SPARQL Query Generation
are adopted in order to extract the desired information [5]. At the same time,
neural network-based (NN-based) Question Answering (QA) methods have re-
ceived increasing attention in recent years and have already achieved very good
results [I]. Although such methods require large amounts of training data, pre-
trained language models [4] have become available, that can be fine-tuned on
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specific data to obtain high quality results for various tasks, such as sequence
classification and extractive QA.

Nevertheless in vague or complex open domain information needs and ques-
tions, that require considering and joining facts, QA methods are not that
good [I9]. At the same time, there is not a single QA component per QA task
that is perfect, and the performance of a QA component varies based on ques-
tions with different features; see the detailed analysis in [24]. Indeed, all the
12 baseline approaches evaluated over the QALD-2 dataset (containing natural
language questions) of the DBpedia-Entity benchmark [7] achieve NDCG@10
(Normalized Discounted Cumulative Gain at rank 10) less than 0.37 E|

Since we are interested in a general purpose and widely applicable method for
open domain QA in this paper we investigate an approach where at its core has
a keyword search service. This allows exploiting the wealth of techniques related
to text pre-processing, retrieval and language models, thus tackling some of the
weaknesses of current components, like those identified in [24], related to the
upper/lowercase of named entities, the implicit entity names (that NER tools
usually fail to identify due to the various morphological variations), the abbrevi-
ations in named entities, and others. In addition, not all question intentions can
be identified and mapped to the correct SPARQL statement (e.g. questions that
can be answered by the textual descriptions in the rdfs:comment), therefore the
exploitation of IR and NLP techniques is indispensable. In brief keyword search
can provide relevant hits for any kind of information need, and there are already
scalable and effective approaches for keyword search over RDF [10].

4E|as4RDF who is the father of Queen Elizabeth IT? Q
o3 Triples # Entities %8 Graph %8 Schema ™ QA

Answer Type Answers
Category King George VI,
From entity:
resource ce/Coronation_of Queen_Elizabeth Il
The coronation of Queen Elizabeth Il as monarch of the United Kingdom, Canada, Australia, New Zealand, Union of South Africa, Pakistan, and Ceylon took place
Type on 2 June 1953. Elizabeth ascended the thrones of these countries at age 25, upon the death of her father, King George VI, on 6 February 1952, and was
proclaimed queen by her various privy and executive councils shortly afterwards.
Person Score: 0.856

Prince Charles,

From entity:

http://dbpedia.org/resource/Monarchy of Belize

The monarchy of Belize (the Belizean monarchy) is a system of government in which a hereditary monarch is the sovereign of Belize; the incumbent is Queen

Elizabeth I, officially called Queen of Belize, who has reigned since 21 September 1981. The heir apparent is Elizabeth's eldest son, Prince Charles, though the
Queen is the only member of the royal family with any constitutional role. Monarchy of Belize first monarch Elizabeth Il. Monarchy of Belize heir apparent
Charles, Prince of Wales. Monarchy of Belize incumbent Elizabeth Il

Score: 0.592

Fig. 1. Open domain QA over knowledge graphs as part of an interactive keyword
search system over RDF.

As application context, we consider a multi-perspective keyword search over
RDF, like the one presented in [I7], that provides perspectives (tabs) that show
the more relevant triples, the more relevant entities, graphical visualizations that
show how the top-ranked triples are connected, and schema-based filterings. In
such a context, the QA tab (as depicted in Fig. is expected to provide a

3 https://github.com/iai-group/DBpedia-Entity
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short and concise answer, if that is feasible. We could therefore say that we
investigate an approach for open-domain QA over Knowledge Bases that could
complement general purpose interactive keyword search over RDF. In such a
dynamic context, we cannot expect that a training dataset is available for the
knowledge base, and especially when the same approach needs to be deployed
over another knowledge base.

We present a QA approach that relies on: (i) an entity search system to
retrieve unstructured textual descriptions for entities, (ii) a Semantic Answer
Type prediction component to predict the answer type, (iii) SPARQL to retrieve
structured information that matches the predicted answer type, (iv) an entity
enrichment component to expand the textual description with the information
retrieved from the triplestore, and (v) a powerful language model fine-tuned for
QA to extract the final answers.

In brief, given a natural language question, we first retrieve the top-k entities
and their textual descriptions (through keyword search), then we get the triples
only of these entities that have the predicted answer type, then we generate nat-
ural language sentences and we apply extractive QA using a pre-trained neural
model, as illustrated in Fig.

Question
The Process

[ “what s the birth place of Barack Obama? |

[}
g
m

f*) 3

JElas4RDF ———+ _
R - | Entity Search Service || Answer Type di } N
http://dbpedia.org/resource/Barack_Obama 1 1 Category: Resource, type: City
Barack Hussein Obama Il (US /ba ra:k hu:'semn
©'ba:ma/; born August 4, 1961) is the 44th and
current President of the United States, and the first Fetching Triples of the entities of the
African American to hold the office. Born in predicted Type
Honolulu, Hawaii, Obama is @ graduate of Columbia { dbr:Barack_Obama, dborbirthplace, dbr:Honolulu h]
University and Harvard Law School, where he served I T
as ... his law degree. @en Append the textual description of the entities
T with natural language from the fetched triples “ul
. ) - ‘ .. enriched textual description of the entities
top-10 entities with their textual descriptions = b
Answer Extraction -~ L
3 -
The Components Entity Search Service Answer Tyf",;f’e"""“ Entity Enrichment Answer Extraction
categories i — o
<lElas4RDF
) A + SpaRL
Configuration for RDF o v {
TP lass! ... classN number date string  boolean Pre-trained RoBERTa
3 model, fine-tuned with an
BERT-based resource fype BERT-based answer Y1 additional output layer for
- classification frained with classes with  category and literal MB . )
| - h at least 10 samples, enriched with type classification Question Answering
elasticsearc! specificity rewarding [Lenient _ (A - 96.2%]
NDCG@S: 77.7%) DistilBERT 1AV !

Fig. 2. The considered QA process and components.

Related research questions are: (a) How good can the QA pipeline over DBpe-
dia be, in comparison to approaches and benchmarks over a different knowledge
graph (in our case Freebase)? (b) How does Answer Type Prediction affect the
quality of QA? (c) How can answers from this QA pipeline contribute to the
entity retrieval task over DBpedia-Entity dataset [7], and entity ranking in gen-
eral?
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The results of our evaluation indicate that the answers generated by this ap-
proach provide additional value for entity search when combined with the initial
entities retrieved by the search service used. Our approach can also perform well
on difficult QA datasets (> 52% Accuracy), without having been trained on the
specific datasets, but relying on the structured and unstructured information
retrieval methods that we use. In brief, the main contribution of this work are:
(a) we investigate a process for QA in the context of an keyword search access
paradigm, (b) we detail the QA pipeline that comprises components for Entity
Retrieval, Answer Type Prediction, Entity Enrichment, and Answer Extraction,
(c) we evaluate the pipeline over multiple datasets, showcasing the value added
by our approach. To the best of our knowledge, no previous work uses KBQA
within an interactive search system over RDF where QA complements the other
perspectives (and thus consistency with the input that feeds all perspectives is
required), nor evaluated the effect of Query Answer Type prediction. The source
code of our implementation and a running demo are publicly accessibleEI

The rest of this paper is organized as follows: Section [2| provides an overview
of the approach, Section [3]describes Answer Type Prediction, Section [4]describes
Entity Retrieval and Extraction, Section [5] describes Answer Extraction, Section
[6] focuses on evaluation, Section [7] describes related work, and finally, Section [§]
concludes the paper and identifies issues for future research.

2 Overview of the Approach

The QA pipeline can be summarized as follows: we retrieve the top-k entities
and their textual descriptions (through search), then we get the triples only of
these entities that have the predicted answer type, then from these triples we
generate natural language sentences for enriching the textual descriptions, and
finally we apply extractive QA using neural networks. Consequently the pipeline
is supported by 4 main components: Entity Search Service (for Entity Retrieval),
Answer Type Prediction, Entity Enrichment, and Answer Extraction (Fig. .

First, given a natural language question, we retrieve a set, of entities relevant
to the question from DBpedia, along with a short description of each entity,
using the ElasdRDF search service [10]. We query this service with the input
question after removing stop words. The output of this stage is a list of entities
described by their URI and a short textual description of the entity, extracted by
a descriptive (for the entity) property, in our case rdfs: comment. The number of
retrieved entities is set to 10, but it can be adjusted. A higher number of entities
could yield more useful answers, but will require more time to be processed.

In parallel, we predict the answer type of the input natural language question
by extending and improving a previous work on Answer Type Prediction [16]
(this step is detailed in Sect. [3)).

4 Source code: https://github.com/cnikas/isl-smart-task, Demo: https://
demos.isl.ics.forth.gr/elas4rdf/
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Then we expand the description of each entity with information from RDF
nodes matching the predicted answer type by running SPARQL queries at real-
time (this step is described in Sect. .

Finally, we use a ROBERTa [11] model fine-tuned on the SQuAD-2 dataset [20]
to perform extractive QA for the input question using the extended description
of each entity. Therefore, we obtain an natural language answer from each re-
trieved entity. Finally, we rank the answers using the score from the output of
the model and present them on the user interface of the keyword search system

(more in Sect. [5).

3 Answer Type Prediction

Here we describe how we perform Answer Type Prediction, i.e. how we predict
the type of the answer of a natural language question, given the question. In
comparison to [I6], in our work we use two classifiers (instead of three) by inte-
grating the literal type prediction classifier and the category prediction classifier.
With this change, we simplify the approach, and reduce memory footprint (more
in Sect. . Given the real-time context of out approach, we also use Distil-
BERT instead of BERT to achieve better response time and efficiency while
maintaining high performance (more in Sect. .

3.1 Overview

The task is split in two stages: Category prediction and Type prediction. In
particular, we model the problem as a two-stage classification task: in the first
step the task is to predict the general category of the answer (resource, literal,
or boolean), while in the second step the task is to predict the particular answer
type (number, date, string, or a particular resource class from a target ontology).

We use the two datasets provided by SMART Task [14], one using the DBpe-
dia ontology and the other using the Wikidata ontology. Both follow the below
structure: Each question has (a) a question id, (b) a question text in natural
language, (c) an answer category (resource/literal/boolean), and (d) an answer
type (which depends on the answer category). If the category is resource, answer
types are ontology classes from either the DBpedia ontology (~760 classes) or
the Wikidata ontology (~50K classes). If the category is literal, answer types
are either number, date, or string. Finally, if the category is boolean, answer type
is always boolean. An excerpt from this dataset is shown below:

[{
"id": "dbpedia_14427",
"question": "What is the name of the opera based on Twelfth Night?",

"category": "resource",
"type": ["dbo:0Opera", "dbo:MusicalWork", "dbo:Work" ]
A

"id": "dbpedia_23480",
"question": "Do Prince Harry and Prince William have the same parents?",
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"category": "boolean",
"type": ["boolean"]
1]

With respect to the size of the datasets, the DBpedia dataset contains 21,964
questions (train: 17,571, test: 4,393) and Wikidata 22,822 questions (train: 18,251,
test: 4,571). The DBpedia training set consists of 9,584 resource, 2,799 boolean,
and 5,188 literal questions. The Wikidata training set consists of 11,683 resource,
2,139 boolean, and 4,429 literal questions.

For question category and type prediction we use two DistilBERT sequence
classification models. We choose DistilBERT instead of BERT to reduce memory
footprint and time required to answer a question.

3.2 Question Category & Literal Type Prediction

A question can belong to one of the following three categories: (1) boolean, (2)
literal, (3) resource. Boolean questions (also referred to as Confirmation ques-
tions) only have ‘yes’ or ‘no’ as an answer (e.g. “Does the Owyhee river flow
into Oregon?”). Thus, there is no further classification for this category of ques-
tions. Resource questions have a specific fact as an answer (e.g. “What is the
highest mountain in Italy?”) that can be described by a class in an ontology
(e.g. http://dbpedia.org/ontology/Mountain). Literal questions have a lit-
eral value as answer, which can be a number, string, or date (e.g. “Which is the
cruise speed of the airbus A340%7).

To detect question categories, we fine-tune a DistilBERT model using the
Huggingface PyTorch implementationﬂ We choose a BERT-based model be-
cause we approach answer type prediction as a classification problem where
each question is a sequence of words.

Since we only use three types to classify literal questions, we integrate literal
type prediction into the same classifier with category prediction, following the
approach of [22]. By doing this, we save computing requirements and reduce
memory footprint because we avoid using a different BERT classifier for literal
type prediction. Therefore, this model classifies each question in one of the fol-
lowing five classes: 1) boolean, 2) literal date, 3) literal number, 4) literal string,
5) resource.

To fine tune the model we used the training datasets provided for the SMART
task. Specifically, we used questions from both the DBpedia and the Wikidata
dataset. Since the data is imbalanced for categories (13.7% boolean, 26.6% literal,
59.4% resource), we randomly sampled questions for each class so that all classes
had the same number of samples.

As we will see below, this model achieves 97.7% accuracy on our test set in
this prediction task.

® https://huggingface.co/transformers/
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3.3 Resource Answer Type Prediction

The prediction of the answer type of questions in the resource category is a more
fine-grained (and thus more challenging) classification problem, because of the
large number of types a question can be classified to (~760 classes on DBpedia
and ~50K classes on Wikidata). Therefore, it is not effective to train a classifier
on all the ontology classes, especially for open-domain tasks.

To reduce the number of possible types for classification, we selected a subset
(C) of all ontology classes, based on the number of samples of each class in the
training set. This subset C' contains classes that have at least k occurrences in
the training set. We set k = 10 as this number provides a good trade-off between
number of classes and performance. The choice of this parameter is described
more extensively in §3.4] The final number of classes in C' is 88. Since we chose
to train the system on a subset of all the classes, our classifier cannot handle
questions with labels that are not included in this subset. To tackle this problem,
we replace their labels with the labels of super classes that belong in C. Then
we fine tune a DistilBERT model on them.

Since most questions in the dataset have several answer types ordered by
specificity, according to the semantic hierarchy formed in the ontology, in the
fine tuning stage we use these questions multiple times, one with each of the
provided types as the label. The goal is to find an answer type that is as specific
as possible for the question. However, the model may classify a question to a
more general answer type in the ontology. To tackle this problem, we ‘reward’
(inspired by [3]) the predictions of the classes that lie below the top class. The
reward of a class c is measured by the depth of the class in the hierarchy, specif-
ically, reward(c) = depth(c)/depthpras, where depth(c) is the depth of ¢ in its
hierarchy, while depthpra, is the maximum depth of the ontology (6 for DB-
pedia). This means that, after applying normalization and adding the rewards
on the output of the model, the top class can be a sub-class that was origi-
nally ranked below a more general class. For example, for the question “What is
the television show whose company is Playtone and written by Erik Jendresen?”
the top 5 classes that the classifier predicts are: 1) Work, 2) TelevisionShow,
3) Film, 4) MusicalWork, 5) WrittenWork. Then rewards are applied to classes
that are a subclass of Work. After applying the rewards, the top 5 classes are:
1) TelevisionShow, 2) Work, 3) Film, 4) Book, 5) MusicalWork. We can see that
TelevisionShow is now the top prediction, which is both correct and more specific
than the previous top prediction (Work).

3.4 Tuning of the k Parameter

To find the optimal value for the parameter k, which is the minimum sample size
required to include a class in the subset of classes included in the classifier, we
evaluated our system using 4 different values: 5, 10, 30 and 50. Table [I]shows the
number of classes included in the classifier for each different value of k and the
corresponding performance. We notice that the best results are obtained using
k=10, while the results for all other cases are slightly worse.



8 Christos Nikas , Pavlos Fafalios, and Yannis Tzitzikas

Table 1. Performance of Resource Answer Type Prediction for different values of k.

Value Classes NDCG@5 NDCG@Q10

5 180 0.775 0.765
10 151 0.786 0.778
30 79 0.785 0.772
50 55 0.785 0.748

3.5 Model Selection

DistilBERT [21] is a smaller general-purpose language representation model
based on BERT [4]. A DistilBERT model can be 40% smaller in size than an
equivalent BERT model, while retaining 97% of its language understanding capa-
bilities and being 60% faster. We chose this model for category classification and
answer type classification because the compromise in the language understand-
ing capabilities is not significant for us, since our models perform well enough
for the required tasks. At the same time, answer type prediction is part of a QA
system that runs as part of a keyword search Web application, therefore answer
time speed and memory footprint are important in this context.

4 Entity Enrichment

For Resource and Literal questions, as predicted by the Answer Type Prediction
step, we exploit the SPARQL endpoint of the underlying KB to find facts about
the retrieved entities that match the predicted answer type. In our case, since
the entity retrieval stage works over DBpedia, we selected DBpedia, however
any KB could be used. Then, we generate natural language sentences from these
facts and append the sentences to the entity description.

For Resource questions, for each entity, we retrieve all RDF triples where
the subject is the entity, and the object has an RDF type that matches the top
type returned by the Answer Type Prediction component, or an equivalent class,
using the following query:

select distinct str(?pl) as 7plabel 7a where {
<entity uri> 7p 7a .
?p rdfs:label 7pl .
<answer type> owl:equivalentClass 7eq .
7a rdf:type 7eq .
FILTER(lang(?pl) = ’en’ || lang(?pl) = ’’) }

For Literal Date questions we retrieve triples where the property that con-
nects the entity with the candidate answer has an rdfs:range equal to xsd:date.

For Literal Number and String questions we retrieve all triples where the
subject is the entity and the object is a literal. Then we check programmatically
if the object is numeric or a string depending on the answer type. We follow this
process because not all literal RDF Nodes have an XSD Schema data type.
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From the retrieved triples we use the label of the corresponding entity, the
object which is a candidate answer, and the label of the property that connects
the entity with this answer. Then we generate a sentence of the form “entity_label
+ property_label + object” and append it to the textual description of the entity.

5 Answer Extraction

This stage receives a list of entity URIs and their expanded textual descriptions.
For each entity in the list, we generate an answer from the expanded entity
description using a RoBERTa model for extractive QA from the huggingface
transformers libraryﬂ Then, we sort the answers by their score and display them
on the QA perspective of the web application, along with the answer category
and type.

The model that we use is fine-tuned on the SQuAD dataset provided by
deepset.aim RoBERTa (Robustly optimized BERT approach) is a retraining
of BERT with improved training methodology, using 10 times more data and
compute power. We chose this model over BERT because of the increased diffi-
culty of the extractive QA task.

A few indicative examples of Q-A pairs follow: (Q: Who did Mozart write
his four horn concertos for? A: Joseph Leutgeb), (Q: What things did Martin
Luther King do? A: human rights advocate and community activist), (Q: When
did Charles Goodyear invent rubber? A: 1839) (Q: Who is the father of Queen
Elizabeth 11?7 A:King George VI).

6 Evaluation

In Sect. we evaluate our approach over WebQuestions [2], a benchmark con-
sisting of popular questions asked on the web that are answerable by Freebase, a
different knowledge base than DBpedia, which our system retrieves information
from, so essentially we evaluate how good our approach for open domain QA
is while retrieving information from a different source and without having been
previously trained over this specific dataset. In Sect. we investigate how the
task of Answer Type Prediction affects the effectiveness of QA. In Sect. we
evaluate the performance of our approach as a standalone QA system over the
DBpedia-Entity collection [7]. In Sect. we evaluate how answers from our
QA pipeline can contribute to the entity retrieval task over the DBpedia-Entity
dataset, and entity ranking in general. In Sect. [6.5 we discuss the efficiency of
the system and in Sect. we provide a summary of the evaluation results.

6.1 Experiment 1: Webquestions

WebQuestions [2] is a popular dataset for benchmarking QA engines, especially
ones that work on structured knowledge bases. It is a dataset of question-answer

S https://huggingface.co/transformers/
" https://huggingface.co/deepset/roberta-base-squad?
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pairs obtained from non-experts. It contains 6,642 questions collected using the
Google Suggest API to obtain questions that begin with a wh-word and contain
exactly one entity. Answers were generated using Amazon Mechanical Turk. The
AMT task requested that workers answer the question using only the Freebase
page of the question’s entity. An example of a question-answer pair is the fol-
lowing;:

Question: "What countries are part of the UK?"
Answers: "Scotland","England","Wales","Northern Ireland"

To evaluate our approach over this benchmark, we obtained answers from
our system for all 2,032 questions in the test collection. Then, we compute the
following metrics:

— Precision: The percentage of terms retrieved as answers by our system, that
are included in the correct answers, averaged over all questions

— Recall: The percentage of terms in the correct answers, that are also retrieved
as answers by our system, averaged over all questions

— F1: The harmonic mean of precision and recall

— Accuracy: The percentage of questions that received at least one correct
answer

For reasons of performance, we limit the number of facts returned by the
SPARQL endpoint to 20 (more in Sect. . We compute the evaluation scores
for different sets of answers of varying confidence by considering only answers
that have a score above a specific threshold ¢ and trying different values for t.
The results are displayed in Table

Table 2. Evaluation results over WebQuestions.

Threshold| 0.0 | 01 | 02 | 03 | 04 | 05 | 06 | 0.7 | 08 | 09

Precision | 7.007 [16.170|18.607|21.290|23.710|25.261|28.101|31.185|37.543(43.363
Recall 31.263 [27.712|29.016|27.894|29.078|30.882|31.279|33.465|34.506|40.477
F1 9.710 |16.957(19.074|19.695|21.664|23.224|25.039|28.356|31.443|39.200
Accuracy [53.759|47.597|47.570|46.893|47.697|48.031|47.867|48.765|52.380| 52.174

We can see that a threshold value of 0.9 yields the best values for Precision,
Recall and F1. Accuracy is higher for a threshold value of 0 because (as expected)
including all answers (score >= 0) leads to a higher probability that at least
one correct answer will be included, however the 0.9 threshold gives a close to
the optimal accuracy. Overall, our system has a satisfactory performance even
though it has not been previously trained on this specific dataset, such as the
systems in codalalﬁ (e.g., [9]), or end-to-end neural-based models (e.g., [13]).

8 lhttps://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a
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6.2 Without Answer Type Prediction

To examine the value that is added to this QA pipeline by the answer type
prediction component, we evaluate our system over the same dataset and metrics
as in Sect. but without using the answer type prediction component.

Therefore, in this case, the text provided to the extractive QA model is the
textual description of each entity retrieved by the entity search system, without
being expanded with facts matching the answer type, as described in Sections
and [l We report the following results using the best value for the answer score
threshold (0.9) determined in Experiment 1: Precision: 37.356, Recall: 32.966,
F1: 32.181, Accuracy: 48.122. We see that results are lower by 4-8 percentage
points, suggesting the positive effect of answer type prediction.

6.3 Experiment 2: DBpedia Entity: QA

DBpedia-Entity is a standard test collection for entity search over DBpedia [7].
It is meant for evaluating retrieval systems that return a ranked list of entities
(DBpedia URIs) in response to a free text user query. This dataset contains
named entity queries, keyword queries, list queries and QA queries. We consider
the subset of QA queries, which contains 140 queries from the QALD-2 chal-
lenge (Question Answering over Linked Data) [I2]. These are natural language
questions that can be answered by DBpedia entities, for example, “Who is the
mayor of Berlin? Each entity/answer is accompanied by a score in 3-point rel-
evance scale: highly relevant (2) (the entity is a direct answer to the query),
relevant (1) (the entity can be shown as an answer to the query, but not among
the top results), irrelevant (0).

Other systems that report results over this benchmark use the NDCG@10
and NDCG@100 metrics because they focus on entity search. In our case, since
we use this benchmark for QA, we consider Precision scores, in order to find out
whether the top answers returned by our system are relevant to the query.

We evaluate the performance of our approach as a standalone QA system for
the task of entity search. To do this we compute the Precision scores at the values
1, 3 and 5. The results obtained for varying values of answer score threshold are
given in Table

Table 3. Precision @1, @3, @5 for varying answer score threshold over DBpedia-Entity.

Threshold| 0 | 01 | 02 | 03 | 04 | 05 | 0.6 | 0.7 | 08 | 0.9

pail 33.573(49.331|55.432|55.641|55.938|56.190|58.857|57.241|57.273|69.444
pP@3 27.840(42.006|48.265|47.951|46.595|50.813|52.905|51.207|52.348|69.444
5 24.543]41.008|47.147)|46.836|45.768(49.716|51.905|51.207|52.348|69.444

The results are good in the sense that more than 69% of answers are relevant
to their corresponding questions. Below (in Sect. we also explore how this
component can improve the performance of a dedicated Entity Search system by
adding the set of answers to the set of entities retrieved by the search system.
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6.4 Experiment 3: DBpedia Entity: QA+RANKING

We use the DBpedia Entity dataset [7] to evaluate the performance of Elas4dRDF
as an entity retrieval system for QA. Our goal for this experiment is to find out
how the answers retrieved using this work affect the performance of ElasdRDF
for QA tasks. Therefore, we use the group of queries from the DBpedia En-
tity collection that are Natural Language Questions (e.g. “Who is the mayor of
Berlin?”). This group contains 140 of the 467 total queries in the benchmark.
Over this group of queries, we compute the NDCG scores (@10 and @100) for:

— Entities retrieved by the ElasdRDF search service [10]
— Entities retrieved by the ElasdRDF search service combined with high scoring
answers from the QA tab

To fuse the set of answers from the QA tab with the set of entities from the
search service, we retrieve all entities from the search service, then we select a
number (a) of answers from the QA tab and add them to the list of entities.
Each entity has a score computed by the search service and each answer a score
computed by the QA component. All scores are in the range scale of 0 to 1. We
try two approaches to compute these scores:

I Keep the score from each entity and answer as computed by the entity search
system and the QA component.
II Sum scores for entities in both rankings.

Finally, we sort the list of combined entities and answers by these scores, and
we keep the top 10 or 100 results, depending on the NDCG metric that we wish
to compute.

The results are displayed in Tables [4] and [5| The first row (baseline) cor-
responds to results for the entities returned by the QA component when no
additional answers have been added. The next rows correspond to results for
varying number of top answers from the QA component added to the baseline.
We can see that including answers from the QA tab improves the NDCG score
in all cases. The highest improvement in almost all cases occurs when the top-5
answers are added to the list of entities.

Table 4. NDCG scores over Natural Language Questions of the DBpedia Entity col-
lection for approach I: Keep Initial Scores

NDCG@100 NDCG@10
Answers added| Score |Difference| Score |Difference
0 (baseline) 0.325 0 0.325 0

1 0.352| 0.027 |0.352| 0.027
3 0.372| 0.047 |0.353| 0.028
5 0.384| 0.059 |0.354| 0.029

10 0.382| 0.057 |0.353| 0.028
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Table 5. NDCG scores over Natural Language Questions of the DBpedia Entity col-
lection for approach II: Sum Scores

NDCG@100 NDCG@10
Answers added| Score |Difference| Score |Difference
0 (baseline) 0.325 0 0.325 0

1 0.355 0.03 0.355 0.03
3 0.375 0.05 |0.358| 0.033
5 0.387| 0.062 |0.357| 0.032
10 0.386| 0.061 |0.356| 0.031

As regards the comparison of approaches I and II, we can see that approach 11
obtains better results with a small difference (0.003 improvement of NDCG@100
using 5 answers). The reason for this is that approach II handles cases were an
answer is returned by both the entity search system and the QA component.

Overall we can say that our QA pipeline could be considered as a method
for ranking entities in the context of entity search. In comparison to a “plain”
entity search, our pipeline is computationally more expensive because of the
memory and time requirements added by the answer type prediction, entity
enrichment and answer extraction components (see Section , but it can give
better results in certain cases. Specifically, it can improve NDCG@100 by 6.2
percentage points.

6.5 Efficiency

While running, the system’s memory footprint is approximately 1.4 GB, and it
takes up 511 MB of space to store all required models. To evaluate the time
required to answer a question, we record times for each step of the pipeline
as well as the overall time required to provide the final answers for all (2,032)
questions in the Webquestions dataset (Sect. and compute their average.
This experiment was performed on a machine with 6 physical cores running
Debian Linux. We found that the average time for the Answer Type Prediction
stage is 0.1 second, for the Entity Enrichment stage 3.9 seconds, for the Answer
Extraction stage 4.3 seconds and the overall average time required to provide
the final answers is 8.3 seconds. We can see that answer type prediction is the
fastest stage, because it uses a lighter language model (DistilBERT) while the
other 2 stages are quite slower, because of the response time of the SPARQL
queries for Entity Enrichment and the larger language model used for Answer
Extraction.

Table 6. Average time cost for each stage of the pipeline

Answer Type Prediction‘Entity Enrichment‘Answer Extraction

0.1 sec (1.2%) | 3.9sec (47%) | 4.3 sec (51.8%)
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One could highly improve the efficiency by using a locally hosted triplestore
that would provide a faster response time. Moreover one could speed up the an-
swer extraction stage by using the RoOBERTa model on a GPU. Finally, the num-
ber of returned facts could also be limited by setting a maximum response size,
or using more strict SPARQL queries (e.g., by ignoring the equivalent classes),
or using equivalence-aware indexes like those described in [15].

6.6 Executive Summary

We summarize the evaluation results as follows: We have shown that our ap-
proach for open domain QA can obtain satisfactory results, i.e. 54% accuracy,
39% F1 over popular QA benchmarks, something that is very interesting because
it does not follow a supervised end-to-end approach trained on the same knowl-
edge base, but makes use of different information sources than those intended
by the benchmarks. We have also showed that the answer type prediction and
entity enrichment stages improve Precision by 6%, Recall by 7% and F1 score
by 7% (over WebQuestions). In addition we have shown that our approach can
be used in combination with an entity search system to improve entity search
tasks by 6% NDCG@100 (over DBpedia Entity dataset).

7 Related Work

For a survey of QA approaches over knowledge bases see [0]. In general, sys-
tems have converged to two major approaches: (i) Semantic Parsing (SP), and
(ii) Information Extraction (IE); the former focuses on question understanding
and therefore attempts to convert sentences into their semantic representation,
such as logical forms, while the latter (IE) approach aims at identifying topic
(focus) entities in the input question and then, via pre-defined templates, map
the question to the KB predicates, and finally, explore the KG neighborhood
of the matched entities. Our approach cannot be classified to any of these two
extremes: although it starts from keyword search (that has an IE flavor), in par-
allel it performs Answer Type Prediction (that has a SP flavor), it enriches the
textual description with SPARQL-fetched triples of the entities of the predicted
type (SP and IE-flavors), and then it exploits pre-trained Neural Networks for
the extraction of the final answer.

In comparison to related work, e.g. see [24] for a recent overview of QA
approaches over DBpedia, the most related works are: [§] which converts the
natural language question into two subqueries: SPARQL query and keyword
search. That work uses a keyword index for special keywords rather than a
whole knowledge graph for keyword search and produces the final answer using
an algorithm to combine SPARQL results and keyword search results. Another
work regarding QA and Keyword Search is SINA [23]. That system performs
query preprocessing to tokenize, remove stopwords and lemmatize terms in the
query, then groups keywords into segments and generates conjunctive federated
SPARQL queries to retrieve answers. In contrast to our approach, that work
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relies fully on a SPARQL endpoint instead of using a dataset-specific index for
keyword search. However, from our experience, and as stated in [§], not all query
intentions can be identified and mapped to the correct SPARQL statement.

Finally, we should note that the effect of Answer Type Prediction has been
investigated in entity search ([6] shows that it improves significantly NDCG@10),
however, to the best of our knowledge, no other work has investigated how it
affects QA over knowledge graphs. Moreover, as mentioned in the introductory
section, to our knowledge no previous work uses KBQA within an interactive
search system over RDF where QA complements the other perspectives (and
thus consistency with the input that feeds all perspectives is required).

8 Concluding Remarks

Since QA over knowledge graphs is hard to be adequate, satisfying and pleasing
for end users, in this paper we have investigated an approach for QA in a more
realistic context, i.e. in the context of an interactive search system over RDF
where QA complements the other perspectives that are given to the users. We
start from the entity ranking that is offered by the keyword search system, and
we build on top a pipeline for QA that involves SPARQL, semantic answer type
prediction, and pre-trained neural networks. We have evaluated our approach
over two different datasets and showcased the value it provides for QA and
entity search tasks. We have shown that for open domain QA this approach
achieves satisfactory results, i.e. 54% accuracy and 39% F1 over a popular QA
benchmark (WebQuestions), even if (a) no training has been performed over this
particular benchmark, and (b) the method uses a different information source
(DBpedia) than the one intended by the benchmark (FreeBase).

We have also showed how the Answer Type Prediction and Entity Enrich-
ment stages, do improve Precision by 6%, Recall by 7% and F1 score by 7%
(over WebQuestions). Finally, we have shown that our approach can be used in
combination with an entity search system to improve entity search tasks by 6%
NDCG@100 (over DBpedia Entity dataset).

Overall, the proposed pipeline can be applied over large knowledge graphs,
since the process starts from an efficient and effective keyword search system,
while the next steps exploit pre-trained neural network models.

As regards future research, it is worth investigating more questions from the
DBpedia Entity dataset (not only QA-related), to see whether the entity ranking
is improved in all cases, and to investigate methods for further improving the
effectiveness of the approach without limiting its applicability.
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