Answering SPARQL Queries on the Web of Data through
Zero-Knowledge Link Traversal

Pavlos Fafalios
Information Systems Laboratory, FORTH-ICS
Heraklion, Greece
fafalios@ics.forth.gr

ABSTRACT

Link traversal has emerged as a SPARQL query processing
method that exploits the Linked Data principles to dynami-
cally discover data relevant for answering a query by derefer-
encing online Web resources (URIS) at query execution time.
While several approaches for such a lookup-based query eval-
uation method have been proposed, there exists no analy-
sis of the types (patterns) of queries that can be directly
answered on the Web of Data through a “zero-knowledge”
approach, i.e., without accessing local or remote endpoints
and without a-priori knowledge of available data sources.
In this paper, we first provide a method for examining if
a SPARQL query can be answered through zero-knowledge
link traversal and analyse a large corpus of real SPARQL
query logs for finding the frequency and distribution of an-
swerable and non-answerable query patterns. Subsequently,
we provide an algorithm for transforming answerable queries
to SPARQL-LD queries that bypass the endpoints, as well
as a method to estimate their evaluation cost which can be
useful for deciding on the query execution strategy to fol-
low. We report experimental results about the efficiency
of the transformed queries and discuss the benefits and the
limitations of this query evaluation method.

CCS Concepts

eInformation systems — Query languages;

Keywords

SPARQL; Link traversal; SPARQL-LD; Web of Data; Linked
Data; Query execution cost

1. INTRODUCTION

The Linked Data principles has enabled the extension of the
Web with a global data space based on open standards and
protocols, the so-called Web of Data [19]. The current most
common way to query this constantly increasing body of
knowledge is through SPARQL, where clients send queries
to local or remote servers through SPARQL endpoints [9].

Copyright is held by the authors. This work is based on an earlier work: SAC*19
Proceedings of the 2019 ACM Symposium on Applied Computing, Copyright
2019 ACM 978-1-4503-5933-7. http://dx.doi.org/10.1145/3297280.3297505

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

Yannis Tzitzikas
Information Systems Laboratory, FORTH-ICS,
and Department of Computer Science,
University of Crete
Heraklion, Greece
tzitzik@ics.forth.gr

However, the low reliability of SPARQL endpoints is the ma-
jor bottleneck that deters the exploitation of these knowl-
edge bases by real applications [35, 5]. Publicly available
endpoints are not optimised for efficiency and they often
do not serve many concurrent requests in order to avoid
server overloading. Buil-Aranda et al. [5] tested 427 pub-
lic endpoints and found that their performance can vary by
up to 3-4 orders of magnitude, while only 32.2% of public
endpoints can be expected to have (monthly) uptimes of 99-
100%. In general, SPARQL servers are expensive to host
and maintain, while providing a reliable public endpoint is
challenging. On the contrary, the Linked Data principles
provide a simple publishing method which is based on ro-
bust web protocols (HTTP, IRI) and can be easily included
in existing publishing workflows, e.g., through content nego-
tiation or RDFa.' Thus, there arises the need of alternative,
less demanding methods to query Web data [17, 35].

Link traversal, in particular, is a query processing method
which relies on the Linked Data principles to answer a query
by dereferencing (resolving) online web resources (URIs) dy-
namically, i.e., at query execution time [15, 17]. Inspired by
this line of research, in this paper we focus on the query types
that can be directly answered through link traversal, without
accessing local or remote endpoints and without considering
a starting graph or seed URIs for starting the link traver-
sal. Such a zero-knowledge query evaluation method is in
line with the dynamic nature of the Web, motivates decen-
tralisation, and enables answering queries without requiring
data providers to setup and maintain costly endpoints. Fig-
ure 1 positions this query execution method in the axis of
the existing interfaces that allow querying Web data. Zero-
knowledge link traversal offers high data availability and
bandwidth, and low cost of server setup and maintenance,
however it limits the supported query capabilities. On the
contrary, relying on servers offers almost unrestricted query
answering, however the server cost is high and the availabil-
ity and bandwidth low.

In this paper, we investigate the types of queries that can
be answered through zero-knowledge link traversal. We first
provide a method for checking if a SPARQL query that is to
evaluated on a SPARQL endpoint can be answered without
accessing the endpoint. We call such a query Linked Data-
answerable Query (LDa@). Then, we analyze a large corpus

"https://www.w3.org/TR/html-rdfa/

18

Zero-knowledge Link Traversal

data RFF content Triple pattern SPARQL
dump negotiation RDFa fragments endpoint
P | | |

generic requests / restricted queries
low server cost and effort
high availability / high bandwidth

specific requests / unrestricted queries
high server cost and effort
low availability / low bandwidth

Figure 1: Interfaces that allow querying Web data and positioning of zero-knowledge link traversal (the figure

is a variation of the figure in [33]).

of real query logs from known SPARQL endpoints and study
the patterns and frequency of both LDaQs and non-LDaQs.
We find that more than 85% of the examined queries are po-
tentially LDaQ, while the majority of them (>84%) follow
a few patterns (<10). Subsequently, we provide an algo-
rithm for transforming LDaQs to SPARQL-LD queries that
bypass the endpoints. SPARQL-LD [6] is a SPARQL 1.1
extension (generalization) that enables querying any HTTP
resource containing RDF data. We experimentally evaluate
the efficiency of the transformed queries and discuss the lim-
itations of this query execution method. We find that more
than half of the examined queries can be answered in less
than one second, however for queries with large number of
intermediate bindings the query execution time can become
prohibitively high, thus calling for optimisation methods.
Finally, we provide an algorithm to approximate the cost
of running a LDaQ, which can be very useful for deciding
on the overall query execution strategy to follow. We con-
sider as cost the number of remote resources that need to
be accessed since this affects both the query execution time
and the amount of data that need to be transferred over the
network.

In a nutshell, this paper makes the following contributions:?

e A method to examine if a SPARQL query is answerable
through zero-knowledge link traversal.

e A method to transform an answerable query to a
SPARQL-LD query that is executed through
zero-knowledge link traversal.

e A method to estimate the query-execution cost of an
answerable query.

e Interesting findings about the type and distribution of
frequent answerable and non-answerable queries.

e Experimental results about the efficiency of answerable
queries.

The implementation of all algorithms and methods described

2The paper is an extended version of [7]. Tt contains an
entire new section on estimating the query execution cost of
LDaQs (Sect. 5) as well as more details in all other sections.

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

in this paper, as well as the derived data (LDaQ and non-
LDaQ patterns), are publicly available as open source.®

The rest of this paper is organised as follows: Section 2
presents the related literature. Section 3 motivates our work
and describes the problem and the requirements. Section 4
introduces the methods for finding LDaQ and transforming
them to SPARQL-LD queries. Section 5 studies the cost of
running LDaQs and provides an algorithm to estimate it.
Section 6 presents experimental results. Finally, Section 7
concludes the paper and discusses interesting directions for
future research.

2. RELATED WORK

There are three main paradigms for querying distributed
RDF data provided by different Web sources: i) data cen-
tralisation, ii) query federation, and iii) link traversal.

2.1 Data centralisation

The idea of data centralisation is to provide a query ser-
vice over a collection of cross-domain or domain-specific
RDF data gathered (and maybe transformed) from differ-
ent sources [26, 30]. The current de-facto way for querying
such repositories is through SPARQL, where a client sub-
mits a SPARQL query to an RDF server through a SPARQL
endpoint and the server executes the query and returns the
results back to the client. Although data centralisation can
provide fast responses, it does not exploit the dynamic na-
ture of Web data (the query results may not reflect the more
recent data), and it comes at the cost of setting up and main-
taining a centralised repository.

A different approach has been proposed in [35, 33] where the
authors introduced the idea of Triple Pattern Fragments,
a publishing framework that allows efficient offloading of
SPARQL query execution from servers to clients. This frame-
work enables servers to maintain high availability rates, al-
lowing querying to scale reliably to much larger numbers of
clients. On the downside, the framework requires the setup
and maintenance of dedicated servers and clients.

Contrary to this line of research, in this paper we focus on
zero-knowledge query execution methods that consider the

3https://github.com/fafalios/LDaQ

19

full potential of the Web and treat a query in isolation, i.e.,
the input is only a SPARQL query and no other information
on how to answer the query is provided (like the URI of an
endpoint or resource).

2.2 Query federation

The idea of query federation is to provide integrated access
to distributed RDF sources on the Web. DARQ [25] and
SemWIQ [21] are two of the first systems to support query
federation for SPARQL. Such systems use a mediator ser-
vice that transparently distributes the execution of queries
to multiple endpoints. [28] provides a comprehensive analy-
sis and comparison of a large number of endpoint federation
systems. Given the need to address query federation, the
SPARQL W3C working group proposed a query federation
extension for SPARQL 1.1 [4]. The extension defines the
SERVICE operator which can be used for executing a graph
pattern to a remote endpoint. [4] describes the syntax of this
extension and formalizes its semantics. Similar to data cen-
tralisation, query federation requires the data to be available
through SPARQL endpoints.

SPARQL-LD [6, 8] is a generalisation of SPARQL 1.1 which
extends the applicability of the SERVICE operator to en-
able querying any HTTP web source containing RDF data,
like online RDF files or web pages embedded with RDFa,
JSON-LD, or Microformats.* An important characteristic
of SPARQL-LD is that it does not require the named graphs
to have been declared, thus one can query datasets returned
by a portion of the query, i.e., whose URI derives at query
execution time. [37] proposes a set of heuristics-based query
reordering methods for optimizing the execution of federated
queries in both SPARQL 1.1 and SPARQL-LD.

In this paper we make use of SPARQL-LD for transforming
a query (to be evaluated on an endpoint) to a SPARQL-LD
query that bypasses the endpoint.

2.3 Link traversal

Link traversal exploits the Linked Data principles [19] to dy-
namically discover data relevant for answering a query [15].
The work in [16, 14] follows RDF links between data sources
based on URIs in the query and in partial results. The URIs
are resolved over the HT'TP protocol into RDF data which is
continuously added to the queried dataset using an iterator-
based pipeline. Diamond [23] is a similar in spirit query
engine to evaluate SPARQL queries through link traversal.
[13] studies how the evaluation order in link traversal affects
the size of the results and the query execution cost, and
proposes a heuristics-based method to optimize query exe-
cution. [3], [14] and [12] discuss the notion of completeness
and propose semantics to restrict the range of link traversal
queries.

Index-based link traversal approaches rely on pre-built in-
dexes for finding sources to look up during query execution
[11, 29, 36]. [11, 32] uses a combined description of instance-
and schema-level elements to summarize the content of data
sources. [29] proposes to summarize and index sources based
on frequently appearing query graph patterns mined from
query logs, while [36] proposes a top-k approach for the

“https://github.com/fafalios/sparql-1d

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

index-based source selection strategy, where partial results
are located at different sources and can only be accessed via
URI lookups. The advantage of index-based approaches is
their ability to determine all potentially relevant URIs at the
beginning of query execution, which enables to fully paral-
lelize the data retrieval process. However, it comes at the
cost of initializing and maintaining the indexes.

Regarding more recent works, [31] studies the effectiveness
of link traversal-based query execution and proposes reason-
ing extensions to help finding additional answers. [10] intro-
duces a declarative navigational language for Linked Data,
called NautiLLOD, which enables to specify data sources by
combining navigation and querying capabilities, and also
features a mechanism to specify actions that obtain their pa-
rameters from data sources reached during the navigation.
Finally, LDQL [18] is a more expressive declarative language
to query Linked Data through link traversal. LDQL sepa-
rates the selection of query-relevant regions of Linked Data
from the specification of the query result that has to be con-
structed from the data in the selected regions.

2.4 Positioning

In our work, we focus on link traversal and study the types
of queries that can be answered directly on the live Web of
Data. The starting point of link traversal is only the URI(Ss)
that exist in the query’s graph pattern and additional URIs
are dereferenced only if this is needed for satisfying a triple
pattern, i.e. for binding its variables. This means that,
in our case, if the query does not contain URIs, it cannot
be evaluated through link traversal. This query evaluation
method, called zero-knowledge link traversal, corresponds to
the query-reachable completeness class as introduced in [12].

To our knowledge, our work is the first that i) provides open
source methods to detect answerable queries and transform
them to SPARQL-LD queries that are evaluated without
accessing endpoints or indexes, and ii) analyses real query
logs from known endpoints for finding popular patterns of
queries that can be answered or cannot be answered through
zero-knowledge link traversal. While recent works have con-
ducted extensive analytical studies on the syntactical and
structural characteristics of real SPARQL queries [1, 27, 2],
no previous work has analysed queries in terms of their an-
swerability through link traversal.

3. MOTIVATION, PROBLEM AND
REQUIREMENTS

Our objective is to study the type of SPARQL queries that
can be directly executed on the live Web of Data, without
a priori knowledge of available data sources. The motiva-
tion for this zero-knowledge (or query-reachable) approach
is threefold:

e [reshness. The dynamic nature of the Web of Data
which constitutes a huge and constantly evolving in-
formation space, meaning that we may always need to
query a new (unknown) resource not existing in our
repository, index or seed URIs.

e Convenience. The capability to easily run queries di-
rectly on the Web of Data, from any client that sup-

20

ports SPARQL, without the need to build and main-
tain indexes and without requiring data providers to
setup and maintain costly servers.

e Decentralisation. the Web of Data is increasingly be-
coming a centralised data space relying on server-side

infrastructures [34]. Enabling the execution of SPARQL

queries directly on the Web of Data can motivate more
publishers to put their data online (e.g., by uploading
RDF files), since their data becomes queryable and
exploitable without putting effort on setting up and
maintaining reliable servers.

Consider, for example, the query in Figure 2 which requests
the birth date of Barack Obama, and the SPARQL end-
point of DBpedia which can provide an answer to this query.
Our aim is to answer the query without accessing DBpedia’s
endpoint. One approach is to access the URI of Barack
Obama used in the query, retrieve the triples contained in
this URI, and then run the corresponding triple pattern on
these triples. Figure 3 shows a SPARQL-LD query that
achieves this. The query uses the extended SERVICE opera-
tor of SPARQL-LD to retrieve and query the triples that are
contained in the URI of Barack Obama, thereby bypassing
DBpedia’s endpoint. However, to apply such a transforma-
tion, the URI must be dereferenceable and return all the
outgoing properties of the corresponding entity.

1SELECT ?birthDate WHERE {
2 dbr:Barack_0Obama dbo:birthDate ?birthDate }

Figure 2: Example of a LDaQ requesting the birth
date of Barack Obama.

1SELECT * WHERE {
2 SERVICE dbr:Barack_0Obama {
3 dbr:Barack_0Obama dbo:birthDate ?birthDate } }

Figure 3: The transformed SPARQL-LD query of
the query in Figure 2.

The query in Figure 4 requests the birth date of all basket-
ball players in DBpedia. In this case, to be able to bypass
DBpedia’s endpoint, the URI of the DBpedia class Basket-
ball Player must contain all its incoming properties, i.e. the
instances of the class Basketball Player. The query in Figure
5 shows the corresponding SPARQL-LD query. The query
first accesses the URI of the DBpedia class Basketball Player
to retrieve its instances, and then accesses the URI of each
instance to retrieve the values of the birth date property.

However, not all queries can be transformed to SPARQL-
LD queries. Figure 6 shows two such queries. The first
query requests all things (of unknown type) having the name
“Michael Jordan”, while the second requests the total num-
ber of triples. The first query could bypass the endpoint if
the URI of the foaf :name property provided all the triples
that contain it as predicate. However, this is not common
in Linked Data and also impractical for large datasets and
popular properties (like rdf:type and rdfs:label). With
respect to the second query, we consider the entire Web
of Data as a single RDF repository of unknown number of
triples. Thereby, in our work we are not interested in queries
that require access to the full repository.

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

1
2
3

1
2

3
4
5

1
2

1
2

SELECT 7player ?birthDate WHERE {
?player rdf:type dbo:BasketballPlayer ;
dbo:birthDate ?birthDate }

Figure 4: Example of a LDaQ requesting the birth
date of all basketball players in DBpedia.

SELECT ?player ?birthDate WHERE {
SERVICE dbo:BasketballPlayer {
?player rdf:type dbo:BasketballPlayer }
SERVICE ?player {
?player dbo:birthDate ?birthDate } }

Figure 5: The transformed SPARQL-LD query of
the query in Figure 4.

SELECT 7entity WHERE {
?entity foaf:name "Michael Jordan" ¥

SELECT COUNT(*) WHERE {
?s 7p 7o }

Figure 6: Example of non-LDaQs.

We now define two requirements that can enable this func-
tionality for a large portion of SPARQL queries:

e R1: URIs must be dereferenceable and return RDF
data.

e R2: URIs must provide both the incoming and out-
going properties of the corresponding resource, i.e.,
all triples in which the URI is the subject or the ob-
ject in the triple. This includes URIs that represent
RDFS/OWL classes, meaning that the URI of a class
should return all its instances.

These requirements are in line with the Linked Data princi-
ples [19]. An obvious problem of R2 is when the URI repre-
sents classes, since the number of instances can be very large
for generic classes (like Person or Location). We discuss this
case at Section 6.3.

4. FINDING & TRANSFORMING LINKED
DATA-ANSWERABLE QUERIES

In this section, we define the notion of Linked Data-answe-
rable query (Section 4.1), provide algorithms for checking if a
graph pattern or query is Linked Data-answerable (Section
4.2), introduce a method to transform answerable queries
to SPARQL-LD queries that bypass the endpoints (Section
4.3), and finally discuss special cases (Section 4.4) as well as
problems and limitations (Section 4.5).

The implementation of all algorithms described in this sec-
tion is publicly available as open source (see Footnote 3).

4.1 Linked Data-answerable graph patterns
and queries

Following the definitions of [24], let first U be an infinite set

of URIs, B an infinite set of blank nodes and £ an infinite

set of literals. The union of these sets constitutes the set of
RDF terms. A triple (s,p,0) € UUB) xU x UUBUL) is

21

1
2

[3RS BN

called an RDF triple, where s is the subject, p is the predicate
and o is the object. We denote by s(t), p(t) and o(t), the
subject, predicate and object, respectively, of a triple t. Let
also V be a set of variables that can bind to RDF terms from
UUBUL. Atriplepe (UUV) x (UUV) X (UULUY) is
called triple pattern, while a Basic Graph Pattern (BGP) is
a set of triple patterns. Finally, let V? be the set of bound
variables before the execution of the i-th triple pattern of a
BGP.

We now define the notion of Linked Data-answerable BGP:

Definition 1. A BGP is Linked Data-answerable, for short
LDaBGP, if its triple patterns T can be brought into an
order such that each triple contains at least one URI or
bound variable, i.e.: Vt; € T, s(t;) €U V o(t;) €U V s(t;) €
VPV oo(t) € VP

This definition corresponds to the query-reachable complete-
ness class and the completely-answerable BGPs as intro-
duced in [12].

Queries containing one or more UNION groups need spe-
cial handling. Through this operator, SPARQL provides a
means of combining graph patterns so that one of several
alternative graph patterns may match. Consider, for exam-
ple, the query in Figure 7 which requests the birth date and
place of basketball and football players. The query contains
two UNION groups, each one containing two UNION graph
patterns. Moreover, the query contains two triples that are
not part of the UNION groups (line 4). To decide if such
a query is Linked Data-answerable, we must check all the
graph patterns of each UNION group as well as the triples
outside the UNION patterns. However, we should not check
them in isolation. For example, the graph patterns of the
last UNION group are not Linked Data answerable by them-
selves, but they are answerable if we consider the bindings
of the preceding triples and UNION groups. We first define
the notion of Linked Data-answerable UNION group:

Definition 2. A UNION group of BGPs is Linked Data-
answerable if each of its BGPs is Linked Data-answerable.

SELECT 7player ?birthDate ?birthPlaceName WHERE {
{ ?player rdf:type dbo:BasketballPlayer }
UNION { ?player rdf:type dbo:FootballPlayer }
?player dbo:birthDate ?7birthDate ; dbo:birthPlace 7place .
{ ?place foaf:name ?birthPlaceName }
UNION { ?place rdfs:label 7birthPlaceName } }

Figure 7: Example of a SPARQL query containing
two UNION groups.

Now we define the notion of Linked Data-answerable Query
which contains as elements BGPs and UNION groups.

Definition 3. A SPARQL query containing as elements
BGPs (sets of triple patterns) and UNION groups is Linked
Data-answerable, for short LDaQ), if its elements can be
brought into an order such that each of them is answer-
able given the variable bindings before the execution of the
corresponding BGP / UNION group.

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

Algorithm 1 isLDaBGP

Input: P:graph pattern, inUnion: boolean (optional), B: bound vari-
ables (optional)
Output: true or false

1: LB = {} > Locally-bound variables
2: M = {} > Map a var to other vars that can help binding it
3: if B != NULL then

4: LB.addAll(B)

5: for t : triples(P) do

6: if isURI(t.subject) then

7 if isVariable(t.object) then LB.add(t.object) > Object

variable can be bound

if isVariable(t.predicate) then LB.add(t.predicate) >
Predicate variable can be bound
9: else if isURI(t.object) then

%

10: if isVariable(t.subject) then LB.add(t.subject) > Subject
variable can be bound

11: if isVariable(t.predicate) then LB.add(t.predicate) >
Predicate variable can be bound

12: else if isVariable(t.subject) & isVariable(t.object) then

13: if (LB.contains(t.subject) then LB.add(T.object)

14: if (isVariable(t.predicate) then LB.add(T.predicate)

15: else if (LB.contains(t.object) then LB.add(T.subject)

16: if (isVariable(t.predicate) then LB.add(T.predicate)

17: else

18: M.add(t.subject, t.object) > Binding of object
variable can bind the subject variable

19: M.add(t.object, t.subject) > Binding of subject
variable can bind the object variable

20: if isVariable(t.predicate) then

21: M.add(t.predicate, {t.subject, t.object})

22: V = getAllVariables(P) > Set of all graph pattern variables

23: for v: V do > Check for any variable that cannot be bound

24: if v ¢ LB then

25: if lisBindable(M.get(v)) then

26: return false > Recursively check if the var can be

bound through the bindings of other vars
27: if !linUnion then
28: B.addAll(LB);

29: return true

> Add to B the locally bound variables

4.2 Checking the answerability of graph pat-
terns and queries

Algorithm 1 provides a method to find out if a basic graph
pattern is Linked Data-answerable or not. In brief, the algo-
rithm goes through the triple patterns and finds “bindable”
variables, i.e., variables that can get bound by dereferenc-
ing a URI that exists in the triple, or that can get bound
through bindings of other variables. If at the end there is
at least one non-bindable variable, then the query is not a
LDaQ. The algorithm can also be provided with two optional
parameters. The parameter B (bound variables) enables to
provide a set of already-bound variables, which is useful for
cases where the input graph pattern is part of a query. The
parameter inUnion allows specifying that the input graph
pattern is part of a UNION group, thus its bindings must
not be considered when checking the other UNION graph
patterns of the same UNION group.

Algorithm 2 checks if a query is Linked Data-answerable or
not. Each triple and UNION group in the query is consid-
ered a different element. The algorithm first goes through
all the query’s elements and checks their answerability us-
ing Algorithm 1. In case the element is a UNION group the
algorithm checks the answerability of each UNION’s graph
pattern. If the element is not answerable, it is added to
a list of pending elements (since they may be answerable
when some variables in another element get bound). If the
element is answerable, the list of bound variables is updated

22

Algorithm 2 isLDaQ

Input: Q: Query graph pattern

Output: true or false

1: B={} > Bound variables

2: PEND = {} > Pending query elements

3: E = getElements(Q) > Each triple and each UNION group is
considered a different element

4: for e : E do > For each triple or UNION group
5 if isTripleElement(e) then > The element is a triple
6: if lisLDaBGP(e, false, B) then

7 PEND.add(e) > Add this element to the pending list
8 else > The element is a UNION group
9 allAnswerable = true

10: for u : getUnionGraphPatterns(e) do

11: if 1isLDaBGP(u, true, B) then

12: allAnswerable = false;

13: break;

14: if allAnswerable then B.addAll(getVariables(e))

15: else PEND.add(e)

16: while !PEND.isEmpty() do

17: foundNew = false > In each FOR loop we must find a new

answerable element

18: for pe : PEND do > For each pending element

19: if isTripleElement(pe) then

20: if isLDaBGP(pe, false, B) then

21: foundNew = true; PEND.remove(pe)

22: else > The pending element is a UNION group
23: allAnswerable = true

24: for u : getUnionGraphPatterns(pe) do

25: if lisLDaBGP(u, true, B) then

26: allAnswerable = false;

27: break;

28: if allAnswerable then

29: foundNew = true

30: PEND.remove(pe)

31: B.addAll(getVariables(pe))

32: if foundNew then

33: return false > No new answerable element was found

34: return true > The query is Linked Data-answerable

with the element’s variables. Then, the algorithm checks
the pending elements. In each loop, at least one new ele-
ment must get answerable, otherwise the query is not Linked
Data-answerable.

4.3 Transforming answerable queries to
SPARQL-LD

We now provide a method to transform a LDaQ to a
SPARQL-LD query that evaluates its graph pattern directly
over the live Web of Linked Data without accessing local or
remote endpoints. Such a transformation-based approach
to run LDaQs offers the ability to directly make use of
this query execution method through existing instances of
SPARQL-LD, i.e., without the need to setup a dedicated
server that supports the execution of link traversal queries.

Algorithm 3 transforms a BGP to a SPARQL-LD graph pat-
tern. The algorithm goes through the triples and creates
SERVICE patterns. Specifically, if the triple contains a URI
or a bound variable, it checks if there is already a SERVICE
pattern for the same URI/ variable. If so, the triple is just
added to its graph pattern, otherwise a new SERVICE pat-
tern is created. Notice that if both the subject and object
are URISs, the algorithm looks up only the subject URI (but
one could resolve both). If the triple does not contain a URI
or bound variable, it is added to a list of pending triples.
Since the BGP is Linked Data-answerable, these triples re-
quire the binding of another variable existing in a subsequent

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

triple. After checking all triple patterns, the algorithm goes
through the pending triples and, correspondingly, creates
new SERVICE patterns or updates the existing ones.

Algorithm 4 transforms a Linked Data-answerable query
(that may also contain UNION groups) to a SPARQL-LD
query. The algorithm goes through the query’s elements
(which can be either single triples or UNION groups) and
checks if they are Linked Data-answerable. If so, the pro-
cedure ‘include’ is executed (Procedure 1). This procedure
includes the element to the SPARQL-LD query, either by
appending it to an existing SERVICE or by creating a new
one. If the element is not Linked Data-answerable, it is
added to a list of pending elements whose transformation
requires the binding of a variable existing in a subsequent
triple or UNION group. Then the algorithm goes through
the pending elements and includes them in the transformed
SPARQL-LD query once they get answerable.

Algorithm 3 transformBGP

Input: Basic graph pattern P

Output: SPARQL-LD query pattern P’

P ={} > SPARQL-LD graph pattern

B={} > Bound variables

PEND = {} > Pending triple patterns

for t € getTriples(P) do > For each triple pattern
if isURI(t.subject) || isURI(t.object) then

u = isURI(t.subject) ? t.subject : t.object

subject or object URI

7 if P’.containsService(u) then > There is a service pattern
for the same URI

8: P’.getService(u).add(t) > Add the triple pattern to its
graph pattern

9: else P’.add(new ServicePattern(u, t))
service pattern

10: updateBoundVariables(t, B)
variables

11: else if B.contains(t.subject) || B.contains(t.object) then

12: v = B.contains(t.subject) ? t.subject : t.object

13: if P’.containsService(v) then

14: P’.getService(v).add(t)

15: else P’.add(new ServicePattern(v, t))

16: updateBoundVariables(t, B)

17: else PEND.add(t) > Transform this triple pattern later

18: while !PEND.isEmpty() do

19: for pt € PEND do

o

> Consider

> Create a new

> Update the set of bound

> For each pending triple pattern

20: if B.contains(pt.subject) || B.contains(pt.object) then
21: v = B.contains(pt.subject) ? t.subject : t.object
22: if P’.containsService(v) then

23: P’.getService(v).add(pt)

24: else P’.add(new ServicePattern(v, pt))

25: updateBoundVariables(pt, B); PEND.remove(pt)

26: return P’

4.4 Special cases

In this paper we do not examine the case of DESCRIBE
queries, as well as of queries containing the operators FROM,
FROM NAMED / GRAPH, and SERVICE. These queries
correspond to around 15% of the queries submitted to pop-
ular SPARQL endpoints [1]. Indicatively, for DESCRIBE
queries we can just look up the provided URI and return
all its triples. For FROM and FROM NAMED / GRAPH
queries, the triples of the provided resource should be fetched
and the corresponding graph pattern can be directly exe-
cuted over these triples (without requiring to check its an-
swerability). Finally, SERVICE patterns over remote end-
points can be also transformed to SPARQL-LD queries if
their graph pattern is Linked Data-answerable. We leave

23

Algorithm 4 transformQuery

Input: Q: query graph pattern

Output: Q’: SPARQL-LD query pattern

1: Q ={}; B={}; PEND = {} > SPARQL-LD pattern; Bound
vars; Pending elements

2: E = getElements(Q) > Each triple and each UNION group is
considered a different element

3: for e: E do > For each triple or UNION group

4 if isTripleElement(e) then > The element is a triple

5 if isLDaBGP (e, false, B) then

6: include(Q’, e, B)

7 else PEND.add(e) > Transform it later

8: else > The element is a UNION group

9 allAnswerable = true

10 for u : getUnionGraphPatterns(e) do

11: if lisLDaBGP(u, true, B) then

12: allAnswerable = false;

13: break;

14: if allAnswerable then

15: B.addAll(getVariables(e))

16: include(Q’, e, B)

17: else PEND.add(e) > Transform it later

18: while !PEND.isEmpty() do > While there exist pending
elements

19: for pe : PEND do > For each pending element

20: if isTripleElement(pe) then

21: if isLDaBGP(pe, false, B) then

22: include(Q’, e, B);

23: PEND.remove(pe)

24: else > The pending element is a UNION group

25: allAnswerable = true

26: for u : getUnionGraphPatterns(pe) do

27: if lisLDaBGP(u, true, B) then

28: allAnswerable = false; break;

29: if allAnswerable then

30: include(Q’, e, B)

31: PEND.remove(pe); B.addAll(getVariables(pe))

32: return Q’

Procedure 1 The ‘include’ procedure

1: procedure INCLUDE(Q, e, B)

2 if isTripleElement(e) then > The element is a triple

3: if isURI(e.subject) || isURI(e.object) then

4: u = isURI(e.subject) ? e.subject : e.object > Consider
the subject or object URI

5: if Q.containsService(u) then

: Q.getService(u).add(e)
graph pattern of the existing SERVICE

> Add the triple to the

7 else

8: Q.add(new ServicePattern(u, e)) > Create a new
SERVICE pattern

9: else if e.subject in B || e.object in B then

10: v = e.subject in B 7 e.subject : e.object > Consider
the subject or object variable

11: if Q.containsService(v) then

12: Q.getService(v).add(t) > Add the triple to the
existing SERVICE graph pattern

13: elseQ.add(new ServicePattern(v, t)) > Create a new
SERVICE pattern

14: else > The element is a UNION group

15: v = commonBoundVariable(e, B, Q) > Find the common
bound variable

16: if v = NULL then > Case of URI: create a UNION of
SERVICE patterns

17: U’ = new UnionGroup()

18: for u : getUnionGraphPatterns(e) do

19: U’.addUnionPattern(transformBGP (u))

20: Q.add(U’)

21: else > Case of variable: append it to an existing
SERVICE or create a new one

22: if Q.containsService(v) then

23: Q.getService(v).add(e)

24: else

25: Q.add(new ServicePattern(v, e))

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

the implementation of all these cases as part of our future
work.

4.5 Problems and limitations

There are some data access issues that must be taken into
account when running queries over the live Web of Linked
Data. The work in [15] (Section 2) discusses the main prob-
lems and limitations. In brief, dereferencing a URI may
result in the retrieval of an unforeseeable large set of RDF
triples, while response times may vary significantly between
different web servers and time periods. Moreover, some
servers put restrictions on clients such as serving only a lim-
ited number of requests per second. At any case, a Linked
Data query execution system should implement a politeness
policy to avoid overloading servers, by respecting, for exam-
ple, the robots.txt protocol® that allows web sites to demand
delays between subsequent requests from the same client,
or by using a default minimum delay between consecutive
requests on the same server [20].

5. COST ESTIMATION

We now study the cost of running LDaQs. We consider
query cost as the number of remote resources that have to be
accessed during query execution. This number affects both
the query evaluation time as well as the amount of data that
is transferred through the network. Below, we first discuss
the most common query characteristics that affect the query
cost (Section 5.1) and then provide an algorithm to estimate
it (Section 5.2).

5.1 Characteristics affecting the query cost

Given a basic graph pattern, the first characteristic that
affects the query cost is the number of distinct URIs that
appear as subjects or objects in the graph pattern’s triples.
These URIs have to be resolved during query evaluation for
either binding variables or making the necessary joins.

The second characteristic is the number of distinct variables
whose bindings can bind other variables. For each such vari-
able, the query needs to resolve all its URI bindings for
evaluating the graph pattern, which can be very costly for
cases of large number of bindings. We call these variables
necessary-to-resolve variables. Consider, for example, the
query in Fig. 8. The query requests all authors together
with the venues of their publications. The query first has
to access the URI of the :Author class for binding the vari-
able 7author. The number of bindings can be high. Then,
the query needs to access the URI of each author for bind-
ing the variable ?publication. Finally, the query needs to
access the URI of each author publication for binding the
variable ?venue. If we consider that the number of authors
returned by the :Author URI is around 10,000 and that
each author has, on average, 50 publications, then the to-
tal number of URIs that need to be accessed for evaluating
the query is 510,001 (1 for binding the variable ?author +
10,000 for binding the variable ?publication of each author
+ 10,000x50 for binding the variable ?venue of each author
publication).

Shttp://www.robotstxt.org/

24

1 SELECT ?7author ?venue WHERE {

2 ?author a :Author .

3 ?author :hasPublication ?publication .
4 T7publication :inVenue ?venue }

Figure 8: Example of SPARQL query.

The third characteristic that affects the query cost is the
type and value of the predicate used to bind a necessary-to-
resolve variable. First, if the predicate is a variable, then
the number of bindings of the necessary-to-resolve variable
can be very high since all different predicates connecting the
subject with the object are considered. The query of Fig.
9, for instance, requests all URI properties of authors (i.e.,
their related entities) together with their labels. The num-
ber of bindings of the variable ?relatedEntity (which needs
to be resolved for binding the variable ?1abel) can be very
high since all properties of all authors are considered. If
now the predicate is a URI, its value can affect the number
of bindings of the corresponding necessary-to-resolve vari-
able. There are predicates for which the objects have, on
average, small number of subjects but also predicates for
which the objects can have a very large number of subjects.
For instance, we know that the capital of a country can
be only one, thus for the :hasCapital predicate we expect
one object binding. On the contrary, a very experienced
researcher usually has a large number of publications, thus
for the :hasPublication predicate we can expect a large
number of object bindings. Likewise, we can expect a small
number of subject bindings for some predicates and a large
number for some other. For instance, on average we expect
a large number of subject bindings for the predicate birth
place (there are many persons with the same birth place),
but a small number for the predicate has capital (there is
only one country for a given capital city).

1 SELECT * WHERE {

2 ?author a :Author .

3 7author ?property ?relatedEntity .
4 7?relatedEntity :label ?label }

Figure 9: Example of SPARQL query.

The fourth characteristic is the number of star-shaped joins
that limit the bindings of necessary-to-resolve variables
(which, in this case, are the common variables in the joins).
For example, consider the query in Fig. 10. Compared to
the query of Fig. 8, this query contains one additional triple
pattern (line 3) which limits the bindings of the variable
7author to only those having a :director0f property. This
triple pattern forms a star-shaped join with the first triple
pattern (line 2), requesting only authors who have a direc-
tor position at an institution. In this case, the number of
bindings of the variable 7author can be highly reduced. For
example, if the number of authors in the knowledge base
who are directors is 100, then the total number of URIs
that need to be accessed for evaluating the query is limited
from 510,001 to 15,101 (1 for binding the variable ?author +
10,000 for checking the director0f property of all authors
+ 100 for binding the variable ?publication of each au-
thor who is also director + 100x50 for binding the variable
?venue of each author publication).

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

1SELECT 7author ?venue WHERE {

2 7author a :Author .

3 Tauthor :directorOf 7institution .

4 7author :hasPublication ?publication .
5 7publication :inVenue ?venue 1}

Figure 10: Example of SPARQL query.

The number of bindings can be also reduced if the necessary-
to-resolve variable is involved in a chain-shaped join whose
other subject or object elements are URIs or literals. Con-
sider, for example, the query in Fig. 11. The query is the
same with that of Fig. 8 with an addition of one triple (line
1) which requires the authors to belong to a specific party.
The two triples in lines 1 and 2 form a chain-shaped join
which limits the number of bindings of the variable 7au-
thor.

1 SELECT ?author ?venue WHERE {

2 :partyl2 :hasMember 7author .

3 7author a :Author .

4 7author :hasPublication ?publication .
5 7publication :inVenue ?venue 1}

Figure 11: Example of SPARQL query.

Another query characteristic that can highly limit the bind-
ings of a necessary-to-resolve variable and thus the query
cost is the appearance of FILTER operators. The FILTER
operator is a constraint which restricts the solutions (vari-
able bindings) of the whole group of triple patterns in which
it appears. Consider, for example, the query in Fig. 12.
The query is the same with that of Fig. 10 with an addi-
tion of one triple pattern and one FILTER operator (line
3). The triple pattern requests the birth date of each au-
thor while the filter operator restricts the accepted values
of the 7birthDate bindings to only those of year after 1985.
Since the 7author variable exists in the same triple with the
?birthDate variable, the filter operator can highly limit its
bindings. For instance, if the number of authors who are di-
rectors and have a birth date after 1985 is 10, then the total
number of URIs that need to be accessed is further limited
to 10,511 (1 for binding the variable 7author + 10,000 for
checking the director0f property of all authors 4+ 10 for
binding the variable ?publication of each author who is di-
rector and has a birth date after 1985 + 10x50 for binding
the variable venue of each author publication).

1SELECT ?7author ?venue WHERE {

?7author a :Author .

?author :directorOf 7institution .

?author :birthDate ?birthDate . FILTER(year(7birthDate) > 1985)
?author :hasPublication ?7publication .

?publication :inVenue ?venue }

o woe W N

Figure 12: Example of SPARQL query.

A last characteristic that can affect the query cost is the or-
der of the triples and FILTERs in the graph pattern. Query
writing is not always optimal and this can affect the execu-
tion time of a query if the underlying SPARQL implemen-
tation does not apply a query optimisation technique, e.g.,
a query re-ordering method [37]. For example, in the query
of Fig. 12, if we move the second and third triple to the
end, the query cost is highly increased (considering that no

25

query reordering is applied), since the query needs to first
retrieve the venues of all publications of all 10,000 authors
before restricting the bindings of the 7author variable.

Below we describe an algorithm to estimate the query cost
based on the abovementioned characteristics of a query graph
pattern.

5.2 Estimating the query execution cost

Algorithm 5 estimates the query execution cost of a basic
graph pattern.® The algorithm goes through the triples of
the graph pattern and first checks if the subject or object of
the triple is a URI (line 7). In this case the cost is increased
if the URI has not been previously resolved. If the other ele-
ments of the triple are variables, then we add them in the list
of bound variables (function ‘addVar’) together with addi-
tional information about the triple required for better cost
estimation, in particular: i) the predicate used to bind the
variable, ii) the position of the variable in the triple (‘sub-
ject’, ‘object’, or ‘predicate’), and ii) the element of the triple
that bound the variable (lines 12-19). If both the subject
and the object of the triple are variables (line 20), then the
URI bindings of the subject (or object) variable need to be
resolved (if not yet) for binding the object (or subject) and
predicate variables. In this case, we need to estimate the
expected number of bindings for that necessary-to-resolve
variable using the function ‘estimBindingsNum’ (we detail
this function below) and increase the cost accordingly (lines
24 and 31). The same needs to be done if the subject is
a variable and the object a literal (lines 39-45), since this
is required in order to perform the corresponding joins. If
both the subject and the object variables are not bound (line
23), then we skip the triple by adding it to a list of pending
triples (since the query is a LDaQ, one of the variables will
get bound in a subsequent triple). We do the same if the
subject of the triple is an unbound variable and the object
a literal (lines 46-47). If both the subject and the object
variables are bound (line 37) then no action is required (no
need to resolve any URI bindings). Finally, the algorithm
goes through the pending triples (lines 48-50) and repeats
the same procedure. At each loop, at least one of the pend-
ing triples is expected to be removed from this list (since the
query is a LDaQ).

Estimating the number of variable bindings. To es-
timate the expected number of bindings of a necessary-to-
resolve variable (function ‘estimBindingsNum’ in Alg. 5),
we need to consider the previous estimations of other nec-
essary-to-resolve variables. For example, as we say in the
query of Fig. 8, for estimating the maximum number of
bindings of the variable ?publication (whose URI bind-
ings should be resolved for binding the variable ?venue),
we need to know the estimated number of bindings of the
variable 7author and multiple it with the expected num-
ber of object bindings of the predicate :hasPublication. If
the number of authors is 100 and each author has 10 pub-
lications on average, the estimated number of publications
that need to be accessed is 1,000 (in the worst case where
no authors share the same publications). To accelerate this
process, we can pre-compute the average number of subject

5The implementation of the algorithm is publicly available
(see Footnote 3).

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

A

lgorithm 5 estimateCost

Input: P: query graph pattern
Output: cost: query cost

—
SRR

=
[

H
@

14:
15:
16:

17:

19:
20:

21:

23:
24:

25:

27:

28:
29:

30:
31:

44:
45:

46:
47:

48:
50:

51:

ISR A e

B={} > Bound variables

:U={} > Resolved URIs
R={} > Variables whose URIs have been resolved
PEND = {} > Pending triples
cost = 0

for t : triples(P) do
if isURI(t.subject) || isURI(t.object) then > If the subject or
object is a URI

u = isURI(t.subject) ? t.subject : t.object > Get the URI
if u ¢ U then
c++ > The URI must be resolved, increase the cost
U.add(u) > Add the URI in the list of resolved URIs

if isVar(t.object) then > If the object is a variable, it can
be bound from the subject URI
B.addVar(t.object, t.predicate, “OBJ”, t.subject) >
Add the variable to B, together with additional information re-
quired for cost estimation
if isVar(t.predicate) then
B.addVar(t.predicate,-, “PRED”, t.subject)
if isVar(t.subject) then > If the subject is a variable, it
can be bound from the object URI
B.addVar(t.subject, t.predicate, “SUB”, t.object)
if isVar(t.predicate) then
B.addVar(t.predicate,-, “PRED”, t.object)
else if isVar(t.subject) && isVar(t.object) then
subject and object are variables
if B.contains(t.subject) && !B.contains(t.object) then
if !R.contains(t.subject) then > All URIs of the
subject var should be resolved for binding the object var
R.add(t.subject)
cost += estimBindingsNum(t.subject, B) >
Estimate the num of bindings of the necessary-to-resolve variable,
considering the previous estimations of other necessary-to-resolve
variables, as well as the predicate(s) used to bind this variable
and additional information like appearance of joins and FILTERs
B.addVar(t.object, t.predicate, “OBJ”, t.subject)
if isVar(t.predicate) then
B.addVar(t.predicate,-, “PRED”, t.subject)
if B.contains(t.object) && !B.contains(t.subject) then
if 'R.contains(t.object) then > All URIs of the object
variable should be resolved for binding the subject variable
R.add(t.object)
cost += estimBindingsNum(t.subject, B) >
Estimate the num of bindings of the necessary-to-resolve variable,
considering the previous estimations of other necessary-to-resolve
variables, as well as the predicate(s) used to bind this variable
and additional information like appearance of joins and FILTERs
B.addVar(t.subject, t.predicate, “SUB”, t.object)
if isVar(t.predicate) then
B.addVar(t.predicate,-, “PRED”, t.object)
if !B.contains(t.subject) && !B.contains(t.object) then
PEND.add(t) > The vars will get bound in next triples

if B.contains(t.subject) && B.contains(t.object) then
// nothing; the two variables are already bound

> Both

else > The subject is a variable and the object a literal
if B.contains(t.subject) then
if 'R.contains(t.subject) then
R.add(t.subject)
cost += estimBindingsNum(t.subject, B) >
Estimate the num of bindings of the necessary-to-resolve variable,
considering the previous estimations of other necessary-to-resolve
variables, as well as the predicate(s) used to bind this variable
and additional information like appearance of joins and FILTERs
if isVar(t.predicate) then
B.addVar(t.predicate,-, “PRED”, t.subject)
else
PEND.add(t) > The subject var will get bound later
while !PEND.isEmpty() do
for t : PEND do
//Repeat lines 7-42 and at each iteration remove from
PEND the triple(s) whose all variables exist in B

return cost

26

and object values for all known URI predicates. For exam-
ple, for the predicate :birthPlace, we might know that the
average number of subjects (persons) for any given object
(country) is around 100 (i.e., 100 persons in the knowledge
base, on average, were born in a specific country), while the
average number of objects (countries) for any given subject
(persons) is only 1 (i.e., 1 country is the birth place of a per-
son). Using these pre-computed mappings, we can estimate
the expected number of bindings very fast, e.g., at query
evaluation time. If computing them is not possible, we can
consider a constant number > 1 for all cases. Such an ap-
proach provides an estimation considering only the structure
of graph pattern, thus it can sometimes provide wrong esti-
mations. If now the predicate is not a URI but a variable,
we saw that this highly increases the estimated number of
bindings of the corresponding subject or object variable. In
this case, we can precompute the average number of predi-
cates per subject or object (or consider an arbitrary number)
and multiply it with the average number of subject or object
values of all predicates.

For better cost estimation, the function can also consider if
the variable forms a join (star- or chain-shaped) in triples of

different predicates, where the other elements (subject/object)

of the two triples are URIs. In this case, we can consider
the minimum number of expected bindings of the two pred-
icates. Consider, for instance, the query in Fig. 11. If the
number of subjects who belong to at least one party (line 1)
is 100 and the number of authors 10,000 (line 2), the maxi-
mum number of bindings for the variable ?author is 100, and
thus the query needs to access the publication URIs (lines
3-4) of 100 persons. We can do the same in cases where
the variable is involved in star-shaped joins, as explained
in the example of query 10. In addition, the function can
check for any FILTER operators in the query graph pattern
and reduce the expected number of bindings of the involved
variables (as explained in the example of query 12). Since it
is almost impossible to catch all different cases of FILTER
operators and study how they affect the number of bindings
of the involved variables, a general approach is to apply a
constant reduction function in all cases, e.g., divide it by n,
for example n = 10, or consider its log value.

Finally, in case of queries containing UNION groups, we
need to sum the costs of all union graph patterns and the
estimated number of bindings of the involved variables.

6. EXPERIMENTAL RESULTS

6.1 Datasets

We experimented with real SPARQL query logs provided
by the Linked SPARQL Queries Dataset (LSQ) [27] and the
USEWOD series of workshops [22]. From LSQ, we used
all the queries of Linked Geo Data (LGD), Semantic Web
Dog Food (SWDF), British Museum (BM), and DBpedia,
while from USEWOD we used the queries of LGD, SWDF,
BIO2RDF, and the more recent DBpedia 2014 and 2015
queries. The total number of queries in these datasets is
67,849,121.

We first fixed some common errors found in the queries (like
the absence of popular prefixes), and then used Jena 3.2 to

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

parse them and get their graph pattern. In our experiments,
we did not consider the queries that are not valid according
to Jena 3.2 and the queries that use property paths or con-
tain one of the following operators: DESCRIBE, FROM,
GRAPH, SERVICE, MINUS, EXISTS, BIND, VALUES,
SUB-SELECT (nested queries).

Table 1 shows the main statistics per dataset. The last
column shows the total number of unique queries that we
consider in our analysis. For finding the unique queries,
we compared only the query graph patterns, i.e., without
considering the prefixes, the SELECT clause, and any OR-
DER/GROUP BY operators.

6.2 Pattern-based analysis of answerable and
non-answerable queries

We examined the Linked Data-answerability of all unique
queries (using Algorithm 2) as well as the pattern (tem-
plate) they follow. For getting the pattern of a query, we
considered only its graph pattern (text under WHERE), re-
moved the FILTER operators, and replaced all variables,
URIs, literals, and blank nodes with the strings [V], [U], [L],
and [B], respectively.” For example, the pattern of the query
in Figure 7 is the following:

{ (vl [u] [u]l »unioN { [v] [U] [U] } vl [ul vl 5 [U] V]
{ vl [ul (vl ¥ uNION { [V] [U] [V] }

Table 2 shows the number and percentage of LDaQ and
non-LDaQ, and the corresponding number of unique pat-
terns. We notice that the percentage of LDa() is more than
85% in all datasets. BM and BIO2RDF contain the highest
percentage of LDaQ (99,9% and 96.7%, respectively), how-
ever we also notice that the number of unique patterns in
these two datasets is very small (only 5 for BM and 14 for
BIO2RDF) which means that, possibly, the queries in these
collections come from fixed templates. As regards DBPE-
DIA, the largest and most popular dataset in our collection,
we see that the majority of its unique queries (87.7%) are
potentially LDaQ.

Figures 13-15 show the distribution of LDaQ and non-LDaQ
for LGD, SWDF, and DBPEDIA. We notice that all follow
a similar power-law distribution: there is a very small num-
ber of patterns having a very large number of queries and a
long tail of patterns each one having only a few queries. The
top-10 LDaQ patterns in LGD and SWDF correspond to the
95% of all answerable queries, and the top-10 non-LDaQ to
the 98% and 96%, respectively, of all non-answerable queries.
Regarding the DBPEDIA dataset, the top-10 LDaQ pat-
terns correspond to the 84% of the answerable queries and
the non-LDaQ to the 86% of the non-answerable queries.

The listings in Figures 16-18 show the top-5 LDa(and non-
LDaQ patterns for LGD, SWDF and DBPEDIA (where UN
= UNION, 0PT = OPTIONAL). We notice that the ma-
jority of the frequent LDaQ patterns are short and request
either the properties of a URI (like the patterns [U] [V]

"The implementation of pattern extraction is publicly avail-
able (cf. Footnote 3).

27

Table 1: Dataset statistics.

Dataset #Queries #Invalid #Unconsidered #Remaining #Unique
LGD 4,240,736 456,393 1,148,809 2,635,534 670,809
SWDF 13,990,138 224,849 3,326,767 10,438,522 789,049
BM 129,989 0 0 129,989 129,989
BIO2RDF 192,057 47 2 192,008 62,819
DBPEDIA 49,296,201 2,003,381 3,869,723 43,423,097 16,028,271

Table 2: Linked Data answerable and no-answerable queries and unique patterns.

#Test #LDaQ #non-LDaQ

Dataset queries #LDaQ patterns #Non-LDaQ patterns
LGD 670,809 572,720 (85.4%) 444 98,089 (14.6%) 197
SWDF 789,049 677,923 (85.9%) 570 111,126 (14.1%) 202
BM 129,989 129,936 (99.9%) 4 53 (0.04%) 1
BIO2RDF 62,819 60,740 (96.7%) 9 2,079 (3.30%) 5
DBPEDIA 16,028,271 14,053,584 (87.7%) 2,816 1,974,687 (12.3%) 780

1,000,000
100,000
10,000
1,000
S
100
10
1

Number of Queries
(log sc:

0 100 200 300 400 500
Pattern

100,000

Number of Queries
(log scale)

Pattern

Figure 13: LDaQ (left) and non-LDaQ (right) pat-

tern distribution in LGD.

0 100 200 300 400 500 600

Pattern

1,000,000
100,000
£ 10,000
é %1,000
g8 100
S w10
v O
!
2 0

50

100 150 200

Pattern

Figure 14: LDaQ (left) and non-LDaQ (right) pat-
tern distribution in SWDF.

10,000,000
1,000,000
100,000

)
[
o
=3
s]
]

1,000
100
10

1

Number of Queries
(log scale

0 1,000 2,000
Pattern

3,000

1,000,000

100,000
10,000
1,000

=
=]
o o

Number of Queries
(log scale)

[
=]

200

400
Pattern

600 800

Figure 15: LDaQ (left) and non-LDaQ (right) pat-
tern distribution in DBPEDIA.

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

[Vl and [U] [U] [V]) or the URIs having a specific prop-
erty value (like the patterns [V] [V] [U] and [V] [U] [U]).
Regarding the non-LDaQ queries, we see that [V] [U] [V]
and [V] [U] [L] are the more frequent patterns. In DB-
PEDIA) it is interesting that some of the top patterns are
long and contain many UNION and OPTIONAL operators.
These patterns probably correspond to a large number of
similar (template-based) queries, possibly submitted by a
small number of clients.

The full lists of LDa@Q and non-LDaQ patterns are publicly
available (cf. Footnote 3).

6.3 Efficiency of answerable queries

6.3.1 Querying a single URI

This is the simplest case where we request one or more prop-
erties (incoming or outgoing) of a single resource (patterns
like [U] [V] [V] and [V] [U] [U]). This query type corre-
sponds to around 77% of all unique queries in the SWDF
dataset, 70% in LGD, 97% in BIO2RDF, and 56% in DB-
pedia.

As shown in [8], the time to answer this query type is pro-
portional to the number of triples contained in the resource.
Querying a resource of 10,000 triples requires around 1 sec
while the time increases to 30 secs for resources with 1M
triples. The same work examined the case of querying DBpe-
dia URIs and showed that the average query time is around
320 ms if we access the N3 files and 650 ms through content
negotiation, while the time to run the same query at DB-
pedia’s endpoint is around 300 ms. Requesting one or more
of the outgoing properties of a URI corresponds to 52% of
all unique queries in the examined DBPEDIA dataset. This
means that more than half of the queries can bypass the
endpoint and be efficiently answered through link traversal.
In general, this query type does not increase the data that
is transferred over the network, while for queries request-
ing the outgoing properties of a specific entity, the query
execution time is very low (since the number of triples is
usually small). The time can be high for queries request-

28

[ul vl [vl
vl vl [ul
OpT { [U] [U] [v] }
[vl [ul [ul ; [vl [V]
vl [ul [ul

g wWwN e

vl [ul [v]
vl [ul [v]
vl [ul [L]
(vl [ul (L] opT {[v] [ul [vl} OPT {[V] [Ul [VI}
vl vl [v]

. [vl [ul [v]

gD wWwN

Figure 16: Top-5 LDaQ (up) and non-LDaQ (down)
patterns in LGD.

(U]l U]l [v]

vl [ul [u]

[ul vl [v]

{ [ul vl [vl > un { [v]l [v] [U] %
[ul vl [vl opT { [U] [U] [V] }

g WwN -

vl [ul [L]

vl [ul [v]

vl [ul [L] ; (Ul (V] .
0pT { [v] [Ul [v] %
vl [ul [vl ; [uU]l [V]

vl [ul [v]

g WwN e

Figure 17: Top-5 LDaQ (up) and non-LDaQ (down)
patterns in SWDF.

1 [u] [U] [v]

2 {[U] (U] (U] »uN { (Ul (U (U7 %

3 [vl [U] (U] ; [U] (L] . [v] [Ul [U] { (vl [U] [v] } ON { [V]
[U] vl >un { [v]l (U] [v]l }»UN { [v] [U] (V] } { [v] [U]
[viyuon { (vl [Ul [vI} OPT { [Vl [U] [Vl } OPT { [V] [U]
vl ¥ opT { [v] [U] [V] }

4 [u]l [Vl [V]

5 { [vl [u] [U] }un { [v] [U] [U] 3 [v] [U] (L]
[U] L] ; [U] [v]

. vl [u] V1 ;

1 { [vl [u]l [L] }uN { [U] [U] [v] } [v] [U] [v] ; [U] [v] .
vl [ul vl

2 [v] [U] (L] ; [Vl vl opT { [Vl [U] (V] }

3 { vl (Ul (L] }UNA{ V] [U] (V] ; [Ul (L] > UN { [V] (U] [V] ;
[ul [L] } opT { [Vv] [U] [Vv] } opT { [V] [U] [V] ; [U] [V] } OPT
{ vl (U] vl } oPT { [v] [U] [v] } oPT { [V] [U] [V] } OPT {
[vl [ul vl } oPT { [v] [U] [V] }

4 [v]l [Ul [L]

5 [vl [vl (vl . [v] (Ul [L]

Figure 18: Top-5 LDaQ (up) and non-LDaQ (down)
patterns in DBPEDIA.

ing the incoming properties of resources representing classes
since in some cases the number of instances can be very
large. For example, in DBpedia 2016, there are 3,218,716
instances of type dbo:Person.® If we consider that query-
ing a resource of 1M triples requires around 30 seconds [§],
the time to retrieve all instances of such a general class is
around 1.5 minute. Requesting the incoming properties of
a URI corresponds to around 3.6% of all unique queries in
the DBPEDIA dataset, 20% in SWDF, and 25% in LGD.

6.3.2 Querying multiple URIs

This case includes the majority of queries containing joins
(patterns like [V] [U] [U]l ; [U] [V]). For instance, the
query in Figure 5, which requests a specific property value
(birth date) of all entities of a specific type (basketball play-
ers), is such a query. The query execution time in this case

®http://wiki.dbpedia.org/dbpedia-2016-04-statistics

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

Table 3: Query execution time (in sec) of the trans-
formed SPARQL-LD queries for different number of
intermediate bindings (resources to be fetched): (a)
136, (b) 262, (c) 502, (d) 1,030, (e) 9,787.

(@) () (o) (d) (o)

Non-optimised 26 44 79 152 1,322
Optimised 7 13 24 48 423

highly depends on the number of intermediate bindings.

We run experiments for the popular pattern [V] [U] [U] ;
[Ul [V] for different number of intermediate results. The
submitted query requests the English label of all instances
belonging to a particular class. We tested the following
Wikicat classes containing varied number of instances: (a)
American Civil Rights Lawyers (136 instances), (b) Video
Artists (262 instances), (¢) People From Sheffield (502 in-
stances), (d) American Magazines (1,030 instances), and
(e) American Male Film Actors (9,787 instances). We run
the queries 10 times in different time points, and computed
the average time to execute the corresponding SPARQL-
LD query and store the results. We tried two different
methods: 1) non-optimised (sequential fetching of remote
resources), and ii) optimised (using a simple parallelisation
method which runs maximum 10 parallel threads at the same
time for fetching the remote resources).

Table 3 shows the results. As expected, the query execution
time is proportional to the number of intermediate bindings
since the query needs to fetch the triples of each binding cor-
responding to a URI. We see that for large number of bind-
ings the query execution time can be very high, especially
if we do not optimise the query evaluation process. Such
queries can highly increase the traffic of the HTTP server,
thus the corresponding SPARQL-LD implementation should
apply a politeness policy (c.f. Section 4.5).

7. CONCLUSIONS

We have investigated a SPARQL query evaluation method
where the queries are directly answered on the live Web
of Data through zero-knowledge link traversal, without ac-
cessing local or remote endpoints and without considering
a starting graph or seed URIs. We introduced a method
for checking if a SPARQL query can be answered through
this query evaluation method and analysed a large dataset
of real query logs for identifying frequent answerable and
non-answerable query patterns. The analysis showed that
more than 85% of the examined queries are potentially an-
swerable, while the majority (>84%) of both answerable and
non-answerable queries follow a few (<10) specific patterns.

Subsequently we provided an algorithm for transforming an-
swerable queries to SPARQL-LD queries that bypass the
endpoints. Such a method to query Linked Data is based
on standard and well-established Web technologies (HT'TP,
URI) and does not require the installation and maintenance
of new servers and clients. With respect to the efficiency of
the transformed queries, the query execution time highly de-
pends on the number of remote resources that need to be ac-
cessed and the size of these resources (number of triples). We

29

saw that more than half of the examined DBpedia queries
can be answered through this method in < 1 sec. How-
ever, for queries with large number of intermediate bindings,
which in turn might require large number of URI lookups,
the query execution time can become prohibitively high. Fi-
nally, we studied the query characteristics that affect the
cost of running an answerable query and provided an algo-
rithm to approximate this cost. Approximating the query
cost can help, for example, on deciding the query execution
strategy to follow for answering the query.

As expected, the results showed that we cannot totally avoid
the SPARQL endpoints and offer unrestricted query capabil-
ities through this query execution method. We also expect
that query evaluation is (almost) always faster in endpoints
than through link traversal, since endpoints rely on pre-built
indexes/databases. Nevertheless, our results showed that
this query evaluation method can be offered efficiently for
a large portion of queries, which could potentially decrease
the load of these endpoints and increase their availability.

In future, we plan to evaluate different approaches on esti-
mating the execution cost of answerable queries, from gen-
eral ones that are widely applicable without requiring any
prior knowledge (like the average number of object values
for a given predicate) to more specific and accurate ones
that make use of knowledge base statistics. Another in-
teresting future direction is the design of adaptive query
processing methods that combine different query execution
strategies based on the load of the servers, the availability
of the remote sources, and the estimated query execution
cost. We also plan to study approaches on how to improve
the execution time of the transformed SPARQL-LD queries,
e.g., through caching or better query planning. Finally, fur-
ther examination of the non-answerable query patterns is
needed for understanding, for example, if a different policy
for publishing Linked Data could be beneficial for making
more queries answerable.

8. REFERENCES

[1] A. Bonifati, W. Martens, and T. Timm. An analytical
study of large sparql query logs. VLDB Endowment,
11(2):149-161, 2017.

[2] A. Bonifati, W. Martens, and T. Timm. Darql: Deep
analysis of sparql queries. In Companion of the The
Web Conference 2018, pages 187—-190. International
World Wide Web Conferences Steering Committee,
2018.

[3] P. Bouquet, C. Ghidini, and L. Serafini. Querying the
web of data: A formal approach. In Asian Semantic
Web Conference, pages 291-305. Springer, 2009.

[4] C. Buil-Aranda, M. Arenas, O. Corcho, and
A. Polleres. Federating queries in SPARQL 1.1:
Syntax, semantics and evaluation. Web Semantics:
Science, Services and Agents on the World Wide Web,
18(1):1-17, 2013.

[5] C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y.
Vandenbussche. SPARQL web-querying infrastructure:
Ready for action? In International Semantic Web
Conference, pages 277-293. Springer, 2013.

[6] P. Fafalios and Y. Tzitzikas. SPARQL-LD: A
SPARQL Extension for Fetching and Querying Linked

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

(10]

(11]

(12]

(13]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

Data. In The Semantic Web—ISWC 2015 (Posters &
Demonstrations Track), Bethlehem, Pennsylvania,
USA, 2015.

P. Fafalios and Y. Tzitzikas. How Many and What
Types of SPARQL Queries can be Answered through
Zero-Knowledge Link Traversal? In 34th
ACM/SIGAPP Symposium On Applied Computing,
Limassol, Cyprus, 2019.

P. Fafalios, T. Yannakis, and Y. Tzitzikas. Querying
the Web of Data with SPARQL-LD. In International
Conference on Theory and Practice of Digital
Libraries, pages 175—187. Springer, 2016.

L. Feigenbaum, G. T. Williams, K. G. Clark, and

E. Torres. Sparql 1.1 protocol. Recommendation,
W38C, March, 2013.

V. Fionda, G. Pirrd, and C. Gutierrez. NautiLOD: A
formal language for the web of data graph. ACM
Transactions on the Web (TWEB), 9(1):5, 2015.

A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U.
Sattler, and J. Umbrich. Data summaries for
on-demand queries over linked data. In 19th
international conference on World Wide Web, pages
411-420. ACM, 2010.

A. Harth and S. Speiser. On Completeness Classes for
Query Evaluation on Linked Data. In 26th AAAI
Conference on Artificial Intelligence, 2012.

O. Hartig. Zero-knowledge query planning for an
iterator implementation of link traversal based query
execution. In Extended Semantic Web Conference,
pages 154—169. Springer, 2011.

O. Hartig. SPARQL for a Web of Linked Data:
Semantics and computability. In Extended Semantic
Web Conference, pages 8-23. Springer, 2012.

O. Hartig. An overview on execution strategies for
Linked Data queries. Datenbank-Spektrum,
13(2):89-99, 2013.

O. Hartig, C. Bizer, and J.-C. Freytag. Executing
SPARQL queries over the web of linked data. In
International Semantic Web Conference, pages
293-309. Springer, 2009.

O. Hartig and J.-C. Freytag. Foundations of traversal
based query execution over linked data. In Proceedings
of the 23rd ACM conference on Hypertext and social
media, pages 43-52. ACM, 2012.

O. Hartig and J. Pérez. LDQL: A query language for
the web of linked data. Web Semantics: Science,
Services and Agents on the World Wide Web, 41:9-29,
2016.

T. Heath and C. Bizer. Linked Data: Evolving the
web into a global data space. Synthesis lectures on the
semantic web: theory and technology, 1(1):1-136, 2011.
A. Hogan, A. Harth, J. Umbrich, S. Kinsella,

A. Polleres, and S. Decker. Searching and browsing
linked data with swse: The semantic web search
engine. Web semantics: science, services and agents
on the world wide web, 9(4):365-401, 2011.

A. Langegger, W. W68, and M. Blochl. A semantic
web middleware for virtual data integration on the
web. In Furopean Semantic Web Conference, pages
493-507. Springer, 2008.

30

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Luczak-Roesch, S. Aljaloud, B. Berendt,

L. Hollink, et al. Usewod 2016 research dataset
(http://usewod.org/). 2016.

D. P. Miranker, R. K. Depena, H. Jung, J. F. Sequeda,
and C. Reyna. Diamond: A SPARQL query engine,
for linked data based on the rete match. In Workshop
on Artificial Intelligence meets the Web of Data, 2012.
J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of sparql. ACM Transactions on Database
Systems, 34(3):16, 2009.

B. Quilitz and U. Leser. Querying distributed RDF
data sources with SPARQL. In Furopean Semantic
Web Conference, pages 524-538. Springer, 2008.

S. Sakr, M. Wylot, R. Mutharaju, D. Le Phuoc, and
I. Fundulaki. Centralized RDF Query Processing,
pages 33-49. Springer, 2018.

M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and
A.-C. N. Ngomo. LSQ: the linked SPARQL queries
dataset. In International Semantic Web Conference,
pages 261-269. Springer, 2015.

M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and
A.-C. Ngonga Ngomo. A fine-grained evaluation of
sparql endpoint federation systems. Semantic Web,
7(5):493-518, 2016.

Y. Tian, J. Umbrich, and Y. Yu. Enhancing source
selection for live queries over linked data via query log
mining. In Joint International Semantic Technology
Conference, pages 176—-191. Springer, 2011.

Y. Tzitzikas, N. Minadakis, Y. Marketakis, P. Fafalios,
C. Allocca, M. Mountantonakis, and I. Zidianaki.
Matware: Constructing and exploiting domain specific
warehouses by aggregating semantic data. In 11th
Extended Semantic Web Conference (ESWC’14), May

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

(31]

(32]

33]

(34]

(35]

2014.

J. Umbrich, A. Hogan, A. Polleres, and S. Decker.
Link traversal querying for a diverse web of data.
Semantic Web, 6(6):585—624, 2015.

J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and

A. Polleres. Comparing data summaries for processing
live queries over linked data. World Wide Web,
14(5-6):495-544, 2011.

R. Verborgh, O. Hartig, B. De Meester,

G. Haesendonck, L. De Vocht, M. Vander Sande,

R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle. Querying datasets on the web with high
availability. In International Semantic Web
Conference, pages 180-196. Springer, 2014.

R. Verborgh, T. Kuhn, and A. Sambra. Proceedings of
the workshop on decentralizing the semantic web. In
Workshop on Decentralizing the Semantic Web,
co-located with ISWC 2017, 2017.

R. Verborgh, M. Vander Sande, O. Hartig,

J. Van Herwegen, L. De Vocht, B. De Meester,

G. Haesendonck, and P. Colpaert. Triple Pattern
Fragments: a low-cost knowledge graph interface for
the Web. Web Semantics: Science, Services and
Agents on the World Wide Web, 37:184-206, 2016.

A. Wagner, T. T. Duc, G. Ladwig, A. Harth, and

R. Studer. Top-k linked data query processing. In
Extended Semantic Web Conference, pages 56—71.
Springer, 2012.

T. Yannakis, P. Fafalios, and Y. Tzitzikas.
Heuristics-based query reordering for federated queries
in sparql 1.1 and sparql-ld. In 2nd Workshop on
Querying the Web of Data (QuWeDa’18), Heraklion,
Greece, June 2018.

31

ABOUT THE AUTHORS:

Pavlos Fafalios is a postdoctoral researcher at the Information Systems Laboratory
(ISL) and the Centre for Cultural Informatics (CCI) of FORTH-ICS (Greece) since
June 2019. Before joining FORTH-ICS, he was a postdoctoral researcher at the L3S
Research Center of the Leibniz University of Hanover (Germany). He obtained his
MSc and PhD in 2012 and 2016, respectively, from the Computer Science
Department of University of Crete (Greece). During his graduate studies, he was
also a member of ISL at FORTH-ICS where he conducted basic and applied research
within the context of several EU-founded research projects. His research interests
fall in the areas of Information Retrieval, Semantic Web, Knowledge
Representation, and Data Mining, with focus one exploratory and semantic search,
semantic data management, and Linked Data. The results of his research have been
published in more than 35 refereed research articles.

Yannis Tzitzikas is currently an associate professor in the Computer Science
Department at the University of Crete (Greece) and Affiliated Researcher of the
Information Systems Laboratory at FORTH-ICS (Greece). Before joining University
of Crete and FORTH-ICS he was postdoctoral fellow at the University of Namur
(Belgium) and ERCIM postdoctoral fellow at ISTI-CNR (Pisa, Italy) and at VIT
Technical Research Centre of Finland. He conducted his undergraduate and graduate
studies (MSc, PhD) in the Computer Science Department at the University of Crete.
His research focuses on: exploratory search (principles, techniques, modern
applications such as conversational faceted search), semantic data management
(comparison functions, knowledge evolution, indexes, integration, visualization),
and methodologies and technologies for building advanced information systems for
digital preservation. The results of his research have been published in more than
140 papers in refereed international conferences and journals.

APPLIED COMPUTING REVIEW SEP. 2019, VOL. 19, NO. 3

32

