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ABSTRACT
Link-flooding attacks have the potential to disconnect even
entire countries from the Internet. Moreover, newly pro-
posed indirect link-flooding attacks, such as “Crossfire”, are
extremely hard to expose and, subsequently, mitigate effec-
tively. Traffic Engineering (TE) is the network’s natural
way of mitigating link overload events, balancing the load
and restoring connectivity. This work poses the question:
Do we need a new kind of TE to expose an attack as well?
The key idea is that a carefully crafted, attack-aware TE
could force the attacker to follow improbable traffic patterns,
revealing his target and his identity over time. We show that
both existing and novel TE modules can efficiently expose
the attack, and study the benefits of each approach. We
implement defense prototypes using simulation mechanisms
and evaluate them extensively on multiple real topologies.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General-
security and protection; C.2.3 [Computer Communica-
tion Networks]: Network Operations-network management

Keywords
DDoS defense; link-flooding attack; traffic engineering.

1. INTRODUCTION
Some of the most powerful DDoS (Distributed Denial

of Service) attacks ever have been observed during 2013
and 2014, reaching traffic rates greater than 300 Gbps [1].
Moreover, new types of indirect DDoS link-flooding attacks
have been recently proposed, which are extremely difficult
to mitigate [11,21]. In particular, the Crossfire attack [11]
(illustrated in Fig. 1) seeks to cut-off a given network area
(target) from the Internet, while sending no attack traffic
directly to the target as follows: (i) the attacker detects the
link-map around the target by executing traceroutes towards
many points within the network, (ii) locates critical links
that connect the intended target to the Internet, (iii) deduces
non-targeted network areas (decoys) that are also served via
the critical links, and (iv) consumes the bandwidth of the
critical links with multiple low-bandwidth flows (e.g., normal
HTTP messages) originating from attacker-controlled bots
and destined towards the decoys. Thus, the target loses
Internet connectivity, without noticing the attacker’s traffic.

Traffic Engineering (TE) is the expected reaction of a
network on link-overload events. Regardless of their cause,
TE is triggered to perform re-routing and load-balance the

network traffic. Thus, there is a natural interplay between the
Crossfire attack and TE. Following a TE round, the attack
will pinpoint and flood new links and the cycle repeats,
potentially using different decoys and bots [11]. Despite
this core-placement of TE in the attack cycle, its effects on
the attack exposure potential remain unknown. Nonetheless,
even existing TE schemes could potentially expose the attack,
without alterations. For instance, an administrator could
exploit the repeated TE, and monitor network areas that
are persistently affected by link-flooding events. Such areas
can be marked as probable targets, gradually implying that
an attack is in progress. Additionally, traffic sources that
persistently react to re-routing can be monitored for the
purpose of affecting a specific target. If certain sources are
recorded several times in links that are DoS’ed, effectively
behaving as a bot swarm, they can be marked as suspicious.

The present work studies the effect of TE on the attack
exposure via analysis and experimentation. The focus is on
the destination-based routing case, which remains widely
adopted [20]. Our contribution is two-fold, showing that:
(i) Crossfire attacks can be exposed in a manner agnostic to
the underlying, attack-unaware TE scheme, and (ii) certain
attack-aware TE schemes can contain the effects of the attack
within a small part of the network, whereas attack-unaware
TE may cause network-wide routing changes. Nonetheless,
attack containment can increase the attack exposure time,
while optimizing this trade-off is an interesting open problem.

2. SYSTEM MODEL
The study assumes a destination-based routed network

and the Crossfire attack model [11]. The network can have
multiple gateways to the Internet, while each network node
represents an area that may contain one or more physical
machines. The network contains a node that represents the
target area of a bot swarm. Bots are entities with unique
identifiers (e.g., machines with different IPs) that operate
from beyond or within the studied network. The attack model
defines a continuous cycle of interactions between the attacker
(bot swarm) and the defender (network administrator) [11].

Attacker Model: The attacker seeks to cut-off the paths
connecting the gateways to the target. On these paths there
exist public servers, the Decoy Servers, and the respective
Critical Links, which lead to both the target and the decoy
servers. The attacker first constructs a map of the network
links (the link-map) around the target, e.g., by executing
traceroutes towards multiple points in the network [5]. Then,
he floods critical links by sending traffic only to decoy servers.
Thus, all paths connecting the target to the gateway(s) are
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Figure 1: Attacker-Defender interaction. The attacker floods a
link l1. The defender then re-routes traffic (TE2). The attacker
updates the selected decoy servers, flooding link l2. The defender
replies with TE3 and the attacker floods link l3, and so on.

blocked due to congestion at some links, while the target sees
no apparent cause, such as a high volume of direct traffic.

Defender Model: The goal of the defender is to keep the
network running without any severe performance degradation
(e.g., flooded links) and to expose probable targets and bots.
Therefore, he: (i) monitors traffic load on his network and
detects links that are flooded, (ii) balances the incoming
traffic by re-routing load destined to different destinations
(including the target, decoys, etc.), and (iii) executes actions
to expose probable attackers and their target.

Attacker - Defender Interaction: The attacker moni-
tors the network routes and reacts to routing changes per-
formed by the defender, as exemplary shown in Fig. 1. Bots
will then change their decoy server selection in case the
re-routing has diverted their load from the critical link(s),
repeating the cycle. Thus, the attacker updates the link-
map, recalculates the critical links and floods them again
with several bot-originated flows. In the example of Fig. 1,
both the links and the decoys vary per cycle. The attacker
may also vary the bots that participate in each attack cycle,
in an effort to make their presence less persistent. In this
case, the defender can reply by simply distributing traffic
to the target across multiple routes, making future flooding
attempts harder.

3. ANALYSIS
The defense objectives are assumed to be the following:

(i) expose probable targets and, hence, an attack, and (ii) ex-
pose traffic sources which are consistently involved into the
attack.

The exposure of probable attack targets is considered as
the primary goal, and it is based on the fact that areas
affected by malevolent link-floods contain the attack target.
Thus, as shown in Fig. 1, if the intersection of the affected
areas is not empty, then there must be an attack towards a
target in this area intersection.

The exposure of bots relies on the assumption that malev-
olent traffic sources (bots) tend to: (i) change their desti-
nations, or (ii) open new connections, persistently affecting
a probable target (Fig. 1). On the contrary, benign causes
of link-floods (e.g., flash-crowds) do not re-adjust to routing
changes in such a persistent manner [24].

Nonetheless, studies have proven that bot detection ap-
proaches based on the bot reuse assumption does not guaran-
tee detection [11, 15]. For instance, if the botnet size is vast,
the attacker needs not use each bot frequently. In such cases,
the defender can raise his bot detection ratio by deploying

multiple, generic heuristics in parallel, such as reflector nets,
white holes, bot-hunters, and rate limiters [19]. The attacker
should then avoid all deployed traps on a regular basis and
for every bot, which can be extremely challenging. Thus,
the proposed scheme also considers the smooth collabora-
tion with other third-party defense mechanisms in order to
increase the chances of bot detection.

In light of these remarks, we operate as follows. Section 3.1
presents the preliminaries. The defense workflow is modeled
and analyzed in Section 3.2, assuming independence from
the underlying TE module. In Section 3.3, we study the case
of attack-aware TE modules. Collaboration with third-party
defense mechanisms is discussed in Section 3.4.

3.1 Notation and Assumptions
Notation. The network is denoted as W = {N ,L} com-

prising a set of nodes N and links L. A single node is denoted
as n ∈ N and a directed network link as l ∈ L. s(l) and d(l)
represent the source and destination nodes of l. The network
has a set G of gateway nodes g ∈ G and a persistently tar-
geted node target ∈ N . The path connecting a node n to
a destination m is expressed as −−−→p(n,m) = {l1, l2, l3, . . . , lk},
where {. . .} are the ordered links comprising the path, with
s(l1) = n, d(lk) = m. The free bandwidth of link l is B(l).

Link-flooding attacks deplete the bandwidth of certain
network links, using bots to send traffic over the gateways
to the network. The defender deduces if a link l is flooded,
i.e., flooded(l) → true/false, based on existing approaches
(e.g., [24]). We define Src {l} as the set of IP addresses,
i.e., malevolent or legitimate data sources that contribute to
the traffic flowing within link l. Likewise, Dst {l} denotes
the nodes served via link l in the examined down-stream
direction, i.e., Dst {l} =

{
n : l ∈ −−−→p(g,n)

}
.

Routing Changes. We next define RTE as the set that
contains all routing configurations that can be deployed in W .
The instance of routing rules presently adopted within the
network is denoted as rTE ∈ RTE . Migrating from rTE to
another configuration r′TE requires the addition/removal of
rules at the routing tables Tn, n ∈ N , of the network nodes
that route/switch traffic. In order to denote the rule modifi-
cations needed for this migration, we define the associative
operator 	 on two routing instances, rTE and r′TE , which
counts the required routing table changes as [22]:

rTE 	 r∗TE =
∑
∀n∈N

∥∥∥T rTE
n ∪ T r

′
TE
n − T rTE

n ∩ T r
′
TE
n

∥∥∥ (1)

where ∩, ∪, − are the set intersection, union and difference
operators, and ‖∗‖ is the cardinality of a set ∗. The migration
from rTE to r′TE is done with existing approaches [10].

Attack. The attacker first discovers the paths −−−−−−→p(g,target),
g ∈ G, for the current routing tree, rTE . A practical proce-
dure based on distributed traceroutes is detailed in [5]. Then,
for each path, he selects and attacks the link with the small-
est amount of free bandwidth, seeking to limit the number
of required bots [11]. In the traceroutes approach, link loads
can be inferred via the corresponding delays. Increased link
delay indicates high queuing delay and, therefore, high load
as well. In addition, the selected link should be on the path
to some minimum number of decoy nodes, Dmin [11]. More
decoys mean that the attacker can mask his traffic more
effectively as legitimate, since each destination will receive
less bot traffic. Thus, the critical links are selected as:
l = argmin(l)

{
B(l) : l ∈ −−−−−−→p(g,target), ‖Dst {l}‖ ≥ Dmin

}



Finally, he selects the bots with the lowest participation in
past attack steps and launches the new attack.

3.2 Defense Analysis and Workflow
Let t = 0, 1, . . . denote the time moments when the network

administrator notices link-flooding events. Let the flooded
links at time t be lti , i = 0, 1, . . .. The set of nodes whose
connectivity is affected by these flooded links is:

Dstt =
⋃
∀i
Dst

{
lti
}

(2)

The TE module is naturally called to load-balance the traffic,
relieving the congested links and restoring connectivity. In
terms of attack target exposure, it would be desirable to
apply a new routing tree, rt+1

TE , that decouples each node
n ∈ Dstt from the rest of the set Dstt. In Fig. 1, for example,
the attack at cycle 1 affects 3 decoys and the intended target.
Thus, the defender sees 4 probable targets. If the subsequent
TE assigned dedicated, link-disjoint paths to each of the four
nodes, the attacker would not affect the 3 original decoys
again. Thus, the real target would stand out. In general,
the rt+1

TE that connects each node n ∈ Dstt to the network
gateways via link-disjoint paths is:

rt+1
TE :

⋂
∀n∈Nt

−−−→
pt+1

(G,n) = ∅ (3)

Based on condition (3), we observe:

Remark 1. Topological path-diversity favors the exposure
of Crossfire attack targets.

Condition (3) and Remark 1 are generally aligned to the
load-balancing objective of TE. Relieving flooded links means
that certain nodes need to be served via decoupled paths,
while path-diversity is known to favor the efficiency of TE [8,
13]. Nonetheless, in terms of attack exposure, rt+1

TE should
also decouple Dstt from all past sets Dstτ , τ = 0 . . . t− 1:

rt+1
TE :

∥∥∥⋂t+1

τ=0
Dstτ

∥∥∥ = 1 (4)

Condition (4) also incorporates the concern that no past
rTE should be repeated at t + 1, in order to avoid loops,
which benefit the attacker. Thus, the paths available to
the TE process will reduce with t, eventually hindering its
load-balancing potential.

Due to this limitation, we initially study the case where
TE and defense are decoupled. This constitutes the common,
real-world case, where TE is executed just for load-balancing,
without Crossfire-derived path restrictions or memory [8,13].
Then, assuming sufficient path-diversity for efficient load
balancing, we study the probability of a network node being
coupled to the attack target by chance.

Lemma 1. The probability of a non-targeted node being
coupled to the target at any attack step is bounded in [0, 1/2].

Proof. See Appendix.

Lemma 1 states that, despite the lack of interaction be-
tween the TE and defense modules, the target will still
stand-out from the remaining nodes, with at least two times
more appearances in attack-affected areas than the next
suspect, in the worst case. The probability reaches zero
when the attack takes place near the network leaves (see
Appendix). The upper bound corresponds to attacks closer

Algorithm 1 Defense Workflow against Crossfire.

1: On init do //Applies at initialization as well.
2: suspectIPs ← ∅; //Hash[IP ]→ penalty.
3: suspecttargets ← ∅; //Hash[node]→ penalty.
4: rTE ←any from RTE ; // Initial TE routing rules.
5: On event flooded(l) do
6: async call: Penalize(Src {l} , Dst {l}) //Non-blocking call.
7: rTE ← r′TE ∈ RTE ; //Execute new TE routing.
8: Procedure Penalize(Src, Dst) //Reinforcement learning.
9: suspectIPs ← penalize IPs(suspectIPs, Src);

10: suspecttargets ← penalize nodes (suspecttargets, Dst) ;
11: if penalization conclusive (suspectIPs, suspecttargets)
12: Deduce the attack target from suspecttargets;
13: Deduce bots using suspectIPs;
14: suspectIPs ← ∅;
15: suspecttargets ← ∅;
16: end if

to the gateways. In both cases, however, the cumulative
appearances of nodes within Dstt favor the exposure of the
target. Similarly, cumulative appearances of IPs in flooded
links favor in principle the exposure of bots.

Based on these remarks, we define a TE-agnostic defense
workflow, formulated as Algorithm 1. The workflow is event-
based, defining an initialization event and a TE event. The
initialization takes place once, at the defense module setup
phase. Any routing instance rTE ∈ RTE can be active in
the network at this stage. The TE event is triggered when
flooded(l) yields true for any network link(s), which is the
common case. The TE event then calls a reinforcement
learning module to update the probable bots and targets,
and executes the underlying TE scheme. The reinforcement
learning module is called in a non-blocking fashion, therefore
causing no delay or other overhead to the TE process.

A generic template for the reinforcement learning module
is outlined in lines 8−16. It requires two standard hash tables
(i.e., O(1) average complexity for insert, search and delete
operations) for storing the needed state. The two hash tables
assign “penalties” to traffic sources and to network nodes.
Penalizing an IP (penalize IPs) has the generic meaning of
gradually collecting evidence of its malevolence, taking into
account its persistence (i.e., after re-routing). On the other
hand, penalizing a node (penalize node) corresponds to the
generic process of gradually gathering evidence of an attack
being launched against it (e.g., flooding its connecting links).
If a custom criterion (penalization conclusive) yields that
the penalization process is conclusive (e.g., penalties surpass
a threshold set by the network administrator), the network
administrator can enforce an attack mitigation policy of
his choice. For instance, blacklisting can be applied to the
deduced bots, while extra paths can be deployed between
the network gateways and the attack target. Examples of
instantiating the mentioned abstract functions and mitigation
policies are given in Section 4.

We should note that the modeled workflow does not require
any additional input parameters, apart from the ones already
gathered by most network operators. Particularly, network
routes, and subsequently Dst {l}, are the needed output
of any TE scheme, which is critical to the operation of any
network. In addition, the monitoring of flows over each route,
and subsequently Src {l}, is required by standard defense
mechanisms for commonplace attacks [9]. A trivial example
is the mitigation of link-flooding due to direct attacks with
elephant flows. Moreover, the asynchronous call mode of



the learning module ensures that the defense module runs in
parallel to the TE objectives, without altering or obstructing
its operation. Finally, the complexity of the discussed defense
workflow is determined by the chosen reinforcement learning
module.

3.3 Defense with Attack-aware TE
While an attack-unaware TE process allows for the ex-

posure of the attack, potentially more can be achieved by
incorporating an attack-aware TE module to the modeled
workflow. Particularly, a classic, load-balancing TE will re-
main oblivious of the attack and overlook the continuous
routing changes required to migrate from rtTE to rt+1

TE . In
cases of repeated and frequent migrations, such as in DDoS
attacks, these changes can be expensive in terms of routing
table space and disruptions caused to applications [6]. Most
importantly, the attacker is inherently allowed to affect the
routing of potentially the whole network. Therefore, the
posed question is whether an attack-aware TE module can
limit the routing changes and contain the disruptions, while
still exposing the attack.

First, we employ the routing disruption metric M(t) [22]:

M(t) =
∑t

τ=1
rτ+1
TE 	 rτTE (5)

Then, the novel ReMOTE (Routing MOdification minimiz-
ing TE) limits M by (i) reusing big parts of rtTE , effectively
retaining some memory of past routing paths, and (ii) af-
fecting potential target areas only. ReMOTE is essentially a
binary search for the target over several attack cycles, while
ensuring that all flooded links are relieved, i.e., their loads
remain below a given threshold. ReMOTE comprises two
steps, executed at each cycle:
¶. Bisect the routing tree defined by node set Dstt and
rtTE , e.g. by using the process of Reed et al. [18] which has
O(
∥∥Dstt

∥∥) complexity. Thus, Dstt+1 will comprise half of

the Dstt set.
·. Rehome each of the ensuing routing trees to any gateway
g ∈ G, using link-disjoint paths that can support the added
traffic load. This is achieved with a path finding algorithm
(e.g., Dijkstra or A∗) for −−−→pg,d(l), sequentially for each flooded
link l and a gateway g ∈ G.

An example of ReMOTE is given in Fig. 2, where the
attacker aims to disconnect node 7. He thus sends load to
other decoy nodes and tries to cut the link lg,5, denoted in
bold. The nodes in Fig. 2 are annotated with their traffic
demand ratio at this point. Once the link flooding is detected,
ReMOTE applies step 1, bisecting the original routing tree
comprising nodes 1-9. The tree bisection process seeks to
define two routing subtrees that are approximately equal
both in terms of total traffic demand and number of nodes.
In the context of Fig. 2, the bisection process returns the
subtrees comprising nodes 1-5 and 6-9, each yielding 4 nodes
and 0.5 total traffic demand.

Subsequently, step 2 of ReMOTE is executed, and the
sub-tree with nodes 6-9 is routed to the gateway via a new
path g → 6 (dashed line, Fig. 2) which is link-disjoint to
the previous, g → 5 → 6. The new path is selected so as
to handle the added traffic demand of nodes 6-9 (i.e., 0.5)
without causing new flooding events. At the next attack
cycle, ReMOTE will focus on nodes 7-8, etc., eventually
pinpointing the target.

Finally, we collectively handle all exceptional cases, occur-

1

3

4

2 5 6

8

9

7

g0.1

0.1

0.1 0.1 0.1 0.1 0.1

0.2

0.1

Group A Group B

Group C

0.2

Target

Node Traffic 
Demand 

ReMOTE 
retracted path

ReMOTE 
installed path

Figure 2: An example of ReMOTE in practice. The link g, 5 is
flooded by an attacker, and ReMOTE replies by isolating nodes
1-5 from 6-9 while also balancing their annotated load. Subsequent
attacks lead to the isolation of nodes (7, 8) from (6, 9), closing in
on the target (7).

ring, e.g., when the maximum link utilization remains high
after TE, or when step 1 of ReMOTE returns empty sets. In
any exceptional case, ReMOTE hands over operation to a
pure load-balancing TE [13], for the current cycle only.

In the described manner, the attack is in principle con-
tained within a progressively-shrinking node set. Likewise,
the defender’s actions will disrupt smaller parts of the net-
work. As a binary search approach, ReMOTE is completed
at time τ ≈ log2

∥∥Dst1
∥∥. However, due to step (1), certain

nodes will be persistently coupled with the target. In partic-
ular, at time τ , one node (i.e., 21− 1) will have been coupled
to the target τ − 1 times, 22 − 1 nodes τ − 2 times, and
so on. Thus, in order to finally differentiate between the
target and suspect nodes, additional iterations are needed as
follows. The defender alters the specific routing of the most
probable target(s) (as of time τ), deploying node-disjoint
paths per iteration. Thus, persistent couplings are broken
and the target becomes more discernible.

Notice that, counter-intuitively, an attack-unaware TE will
generally yield a more confident target detection. According
to Lemma 1, at an attack cycle τ , the attack-unaware TE will
have counted τ participations of the real target in the affected
node sets, whereas any other node will have been observed
just τ

2
times. ReMOTE, on the other hand, will have counted

τ − 1 participations (out of τ) for one non-targeted node,
yielding a smaller detection confidence. Thus, a possible
trade-off between the two types of TE is revealed. Particu-
larly, an attack-unaware TE may discern the attack target
better than ReMOTE for the same number of iterations (i.e.,
faster detection). On the other hand, an attack-unaware TE
can alter the routing of the complete network, as opposed
to the logarithmically shrinking area-of-effect of ReMOTE.
This trade-off is evaluated in Section 4.

3.4 Collaboration with other defense schemes
The effective mitigation of Crossfire requires collaboration

among existing defenses, especially when countering large
botnets, as mentioned in Section 3. Within an Autonomous
System (AS), for example, existing solutions can force the
attacker to use more bots per attack iteration, facilitating
their exposure [11]. Particularly, defenses based on flow
rate monitoring can force the attacker to use less traffic per
bot and, hence, more bots to achieve the same impact [3].
Packet inspectors and other heuristics can also peel-off the
botnet by detecting and blocking malevolent traffic sources
independently. Thus, the bots at the attacker’s disposal de-
crease, forcing him to increase the reuse rate of the remaining
ones [24]. For instance, IP traceback and TTL inspectors can



detect the origins of spoofed packets [4]. Bot-Hunters can de-
tect bots based on the similarity of their traffic patterns [19].
Phantom Nets can mislead an attacker into producing a
false topology of the network, while White-Holes can dis-
guise real network nodes as honeypots, tricking the attacker
into an inefficient use of his bots [19]. Such solutions can
run independently, forming a defense stack, while not being
obstructed by (or obstruct) the TE module.

TE needs to trigger and work closely with inter-AS de-
fenses, in the case where a Crossfire attack has e.g., flooded
all links around the gateways. Thus, network-internal TE
will be unable to load-balance the traffic, calling for external
help. TE is then applied in synergy with the surrounding
ASes [14]. The AS-internal defense stack can still run in
parallel, removing as many bots as possible in the process.

4. EXPERIMENTAL EVALUATION
The defense workflow is implemented in the AnyLogic

simulation platform [23], which offers visual, multi-paradigm
programming and debugging, while automating run repe-
titions to achieve a user-supplied confidence level (set to
95% for the present simulations). We incorporate an attack-
unaware TE [13] to Algorithm 1, to validate the analytical
findings (Section 3.2). This TE is representative of the load-
balancing class of algorithms. It uses path optimization
driven by a Genetic Algorithm to achieve a classic min-max
link load utilization. We denote this approach as GATE.
We then incorporate ReMOTE to Algorithm 1, in order to
evaluate the prospects of attack-aware TE (Section 3.3). The
attacker model is as detailed in Section 3.1.

Setup. The simulations assume e = 10, 000 IPs in total,
which reside beyond the gateways. Out of these, Bsize (%)
are malevolent. The botnet of size (Bsize · e) uses Bpart (%)
randomly selected bots at each attack cycle, in order to hinder
detection. At the same time, a Prehome (%) fraction of the
benign (1−Bsize) ·e hosts randomly picks a new destination
within the network, accentuating the appearance of benign
link-flooding traffic as well. We use several real topologies
from the TopologyZoo [12] (full list in Fig. 3), and set the
nodes in each topology with the northern and southern-most
geo-coordinates as gateway and target, respectively. The
bandwidth of each link is set to 1Gbps. Each host, benign
or bot, generates up to 100Kbps, indistinguishably. A link
is flooded if its load exceeded 90% at the past timestep.

Penalization. We use the algorithm of Misra et al. for
the reinforcement learning, which runs on linear complexity
over the Src, Dst data structures and follows an event-
counting logic [17]. A node (potential target) receives a +1
penalty each time its connectivity to the gateway is affected
by a link-flooding event. Likewise, an IP (potential bot) is
penalized by either +1 if it is found sending traffic over a
flooded link, or by +2 if it has also changed its previous
destination to contribute again to the link-flooding event. If
these criteria are not met, all non-zero penalties of nodes/IPs
are reduced by one. The penalization is deemed conclusive at
timestep τ , when the set of the most penalized nodes has not
changed for the last 5 iterations, for stable detection. Then,
a host is classified as part of the botnet if it has accumulated
more than τ + 1 penalty points. The bot detection is more
efficient when Bpart is near 100%, since there will be at least
one penalization per bot per iteration.

Simulation Results. Table 1 shows six evaluation met-
rics averaged over all topologies and simulation runs for se-
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1b 10 50 100
75 14 13 25 0 95 R

65 12 59 29 0 99 G

1c 10 10 100
76 14 13 11 0 95 R

67 12 57 10 0 99 G

2 50 100 0
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69 14 12 98 0 95 R
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Table 1: Evaluation metrics averaged over all topologies using
ReMOTE∗ and GATE∗ under different parameter settings.

lected parameters. We first observe that the TE choice yields
the expected trade-off between detection speed/rate and the
number of routing rule modifications needed (Section 3.3).
The routing of GATE results in slightly fewer iterations and
higher detection rates. Nonetheless, ReMOTE achieves less
routing changes per node. Besides, the average bot detection
rate is not significantly affected by botnet size variations
(scenarios 1, 2 and 3). Scenario 1.a sets Prehome = 100%, ac-
centuating the appearance of random flood events attributed
to benign hosts. However, random flood events have no
persistent target area in general. In contrast, malicious flood-
ing has a persistent target and can be accurately detected.
Scenarios 1.b and 1.c assume an attacker that seeks to avoid
detection by decreasing the Bpart ratio. As expected, the
bot detection rate drops considerably [11]. The detection
rates of the attack target are promising for both schemes, but
GATE has the advantage, as explained in Section 3.3. GATE
achieves lower link utilization after TE than ReMOTE, given
that it constitutes its sole optimization objective.

On the other hand, ReMOTE requires far fewer routing
changes than GATE. Fig. 3 shows boxplots of the number of
modifications per node for ReMOTE and GATE. Further-
more, the variance of this number of changes is very low for
ReMOTE, given that it contains the attack within rapidly
shrinking network areas.

5. RELATED WORK
DDoS attacks have attracted notable research interest,

particularly in recent years. Braga et al. [3] presented a low-
overhead technique for traffic analysis using Self Organizing
Maps (SOMs) to classify flows and enable DDoS attack de-
tection caused by direct heavy hitters. Ashraf et al. [2] study
several machine learning approaches for use in counter-DDoS
heuristics. Hommes et al. investigate DoS attacks from the
aspect of routing table space depletion [7]. Lim et al. pro-
pose a scheme to block botnet-based DDoS attacks that
do not exhibit detectable statistical anomalies [16]. They
focus on HTTP communications between clients and servers
and they employ CAPTCHA challenges for HTTP URL
redirection. Besides, Xue et al. [24] propose LinkScope to
detect new classes of link-flooding attacks and locate criti-
cal links whenever possible. LinkScope employs end-to-end
and hop-by-hop network measurement techniques to capture



Figure 3: Boxplots of the number of rule modifications per node
with ReMOTE and GATE for several real topologies.

abrupt performance degradation, while packet inspection is
required. The work of Lee et al. (CoDef) [14] is an inter-AS
approach towards defeating attacks such as Coremelt [21]
and Crossfire [11]. CoDef proposes a cooperative method for
identifying low-rate attack traffic. Nonetheless, the empha-
sis is on the communication among distrustful autonomous
systems, and not on the role of the TE process. We refer the
reader to the survey of Zargar et al. [25] for a comprehensive
overview of defenses against link flooding attacks.

The present paper differentiates by studying the role of TE
in Crossfire detection and mitigation. We note, however, that
the presented workflow can coexist with related solutions
as well (cf. Section 3.4). The authors’ prior work studied
the use of TE against Crossfire in networks that employ
source-based routing and static paths [15]. The present work
refers to destination-based routing and variable paths. In
this context, it contributes a practical workflow for Crossfire
mitigation, which can be used in conjunction with existing
TE, as well as with novel attack-aware TE schemes.

6. CONCLUSION
The present study showed that a class of stealthy link-

flooding attacks can be exposed by exploiting existing and
novel TE schemes. A generic defense workflow was formu-
lated, which can be used efficiently in conjunction even with
common TE algorithms. A trade-off was indicated, show-
ing that there exist TE schemes that contain the attack
within isolated network areas, at the cost of slower exposure.
Optimizing this trade-off is the objective of future work.
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Appendix
Proof of Lemma 1. Consider a physical topology and all
possible routing tree choices RTE . We will assume that for
every possible subset S of the topology nodes, there exists
a link l and a routing tree rtTE ∈ RTE such as Dst {l} = S.
In other words, the attack can potentially focus on any node
subset. In addition, let the attacker be able to flood links that
serve k or less nodes. The variable k qualitatively expresses
the severity of the attack. Attacks against network leaves
affect few nodes (low k), while attacks near, e.g., a gateway
affect great parts of the network (higher k).

The number of all possible subsets of N , with size up

to k, that contain one given target is gk =
∑k
m=1

(‖N‖−1
m−1

)
.

Any non-targeted node is contained in such an m-sized set
with probability m−1

‖N‖−1
. Thus, the probability of a non-

targeted node being coupled to the target in groups of up
to k nodes is pk = fk

gk
, where fk =

∑k
m=1

m−1
‖N‖−1

(‖N‖−1
m−1

)
=∑k

m=1

(‖N‖−2
m−2

)
.

Finally, p1 = 0 and p‖N‖ ≈ 1
2

due to the binomial theorem,
while pk is strictly rising:
Let ∆p = pk+1 − pk. Then, via finite differences we write:

∆p =
∆f · gk − fk ·∆g
gk · (gk + ∆g)

, ∆g = (‖N‖−1
k ),∆f = (‖N‖−2

k−1 ) (6)

Notice that ∆g
∆f

= ‖N‖−1
k

. Thus, ∆p ∝ ∆f
(
gk − fk ‖N‖−1

k

)
.

In addition, fk =
∑k
m=1

m−1
‖N‖−1

(‖N‖−1
m−1

)
. Therefore:

∆p ∝
∑k
m=1

(
k−m+1

k

) (‖N‖−1
m−1

)
> 0, hence pk+1 > pk, QED.�
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