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ABSTRACT

The differences in spatial sampling between field mea-
surements and remote-sensing imagery can hinder the ex-
ploitation of contemporary data. When the field-based
sampling is higher than airborne and spaceborne imagery,
each pixel is naturally associated with multiple pixels due
to the multiplexing of the reflectances of different mate-
rials. To address this scale inconsistency, we propose the
introduction of the multi-label classification framework
where classifiers are trained to predict multiple labels per
pixel. Furthermore, instead of relying on raw hyperspec-
tral measurements for the classification process, we in-
vestigate the Stacked Sparse Autoencoders framework,
an example of a deep learning network, for descriptive
feature extraction. To validate the merits of the proposed
scheme, we consider real data from the Hyperion instru-
ment on-board the EO-1 and NYC land cover data from
2010.

Key words: Multi-label classification, feature learning,
hyperspectral.

1. INTRODUCTION

Information contained in the electromagnetic spectrum
is captured by Multispectral and Hyperspectral imaging
devices which can provide key insights into the distri-
bution of materials present in a scheme. Classification
schemes exploit this information in order to assign in-
dividual or groups of pixel to the single most represen-
tative class, leveraging features extracted from labelled
training examples. To fully exploit the available data,
one must address the problem of scale incompatibility be-
tween field and remote sensing measurements. Whereas
field-based measurements can be conducted at very fine
resolutions, e.g., meter scales, distance to the ground and
motion of the moving platforms are directly responsible
for the considerably lower spatial resolution of remote
sensing imagery, especially spaceborne ones. This spatial
scale incompatibility between field-based and satellite-
based sampling inevitably introduces challenges in the
exploitation of the acquired measurements.

In addition to the scale incompatibility, annotation of
satellite data relies on the application of state-of-the-
art classification methods that can leverage sufficient in-
formation from a limited number of training examples.
Overall, the performance of the classification process
primarily depends on two factors, namely the learning
capacity of the classifier and the characteristics of the
extracted features. The effects of the feature extrac-
tion process are particularly evident in computer vision
tasks, where carefully designed, hand-crafted features,
such as Scale Invariant Feature Transform (SIFT)[17]
have shown great effectiveness in a variety of tasks. De-
spite their impressive performance, the main drawback of
these descriptors is that significant human intervention is
required during their design.

In remote sensing, similar features have been consid-
ered, including the Normalized Vegetation Difference In-
dex (NDVI) and the Land Surface Temperature (LST).
Such features are highly domain-specific and have lim-
ited generalization ability, especially when dealing with
high spectral sampling rates, such as the ones in hyper-
spectral imaging. This motivates the need for efficient
feature representations extracted automatically from raw
data through Representation Learning [1], a set of tech-
niques which aim to learn useful (i.e. discriminative, ro-
bust, smooth) representations of the input data for use
in higher level tasks such as classification and recogni-
tion, minimizing the dependency of learning algorithms
on feature engineering.

In this work, we first consider the problem of multi-
label classification [23] where each satellite image pixel
is annotated with multiple labels, encoding the different
materials that can be mixed within a single pixel [13].
Furthermore, we seek “good representations” for satel-
lite data under a real-world scenario by focusing on a
particularly successful unsupervised feature learning ap-
proach by considering the deep learning framework of
Stacked Sparse Autoencoders (SSAE), a type of artifi-
cial neural network which employs nonlinear codes and
imposes sparsity constraints for representing the original
data [12].

The rest of the paper is organized as follows. Section 2
gives a brief review of the recent endeavors in introducing
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Figure 1: Block diagram of training (top part) and testing (bottom part) processes. During training, a deep learning
network is first trained for feature extraction which are used for training a multi-label classifier.

deep learning approaches for the classification of remote
sensing data. In Section 3 we outline the key theoretical
components of SSAE and how they can be consider in
the problem of multi-label classification. Section 4 pro-
vides an overview of the dataset along with experimental
results, while the paper concludes in Section 5.

2. STATE-OF-THE-ART

Inspired by the human cognitive system which exhibits a
hierarchical structure and learns in a layer-wise fashion,
researchers have tried to incorporate depth into learning
algorithms, which would allow to achieve function rep-
resentation more compactly[3], and obtain increasingly
more abstract representations. While it has been shown
that one hidden layer can approximate a function to any
level of precision, this approach becomes impractical due
to the increase in the number of the required computa-
tional units [2].

Although theoretical results have been encouraging, in
practice, training sufficiently deep architectures has been
unattainable since gradient-based optimization methods
starting from random initial weights tended to get fixated
near poor local optima [14]. Deep Learning (DL) has
gone through a revolution in the past decade by consider-
ing the strategy of greedy layer-wise unsupervised “pre-
training” followed by supervised fine-tuning [10, 19].

DL has been recently considered for various problems in
remote sensing data classification, including building de-
tection from very high resolution multispectral data [27],
classification and segmentation of Satellite Orthoimagery
[16], and scene classification [31] among others. A clas-
sification framework composed of principal component
analysis, deep convolutional neural networks and logistic

regression was investigated in the context of spectralspa-
tial classification of hyperspectral images [30]. Given the
complexity of training a DL framework, the possibility of
transferring models trained on everyday objects to remote
sensing domain was investigated in [20]

In this work, we consider the framework of Autoen-
coders. Recently, several Autoencoders variants have
been developed which introduce regularization in the la-
tent space, including the denoising [28], the contractive
[22], the saturating [8], and the sparse [19, 9] autoen-
coder. The technique of greedy layer-wise unsupervised
“pretraining” has also be considered for Autoencoders
[4]. Stacked Sparse Autoencoders (SSAE) have also been
considered for the unsupervised spatio-spectral feature
learning from hyperspectral imagery [25, 5] while other
various such as Stacked Denoise Autoencoders [29] have
also been explored.

3. FEATURE LEARNING FOR CLASSIFICA-
TION

We consider training data consisting of deep learning
features extracted from hyperspectral imagery acquired
by the Hyperion instrument, and the corresponding land
cover labels are utilized in order to build a multi-label
mapping module. Once training is complete, a testing
multispectral image can be annotated with multiple labels
per pixel.

At a high-level, the basic modules of our system’s
pipeline are the following: (i) preprocessing and normal-
ization of the features, (ii) feature-mapping using Stacked
Sparse Autoencoders (SSAE) and (iii) multi-label classi-
fication based on the learned features. A visual descrip-
tion of the proposed scheme is given in Figure 1. In the



following section, we present SSAE and how they can be
applied in the concept of multi-label classification.

3.1. Stacked Sparse Autoencoders

Formally, a classical autoencoder is a deterministic feed-
forward artificial neural network comprised of an input
and an output layer of the same size with a hidden layer
in between, which is trained with backpropagation [15]
in a fully unsupervised manner, aiming to learn an ap-
proximation X of the input which would be ideally more
descriptive of the the raw input. The feature mapping that
transforms an input pattern x € R™ into a hidden repre-
sentation h (called code) of k neurons (units), is defined
by the encoder function:

f(x) = h=a;(Wiz+by), )

where ay : R — R is the activation function applied
component-wise to the input vector. The activation func-
tion is usually chosen to be nonlinear; examples include
the logistic sigmoid and the hyperbolic tangent. The
activation function is parametrized by a weight matrix
Wy € RFX™ with models the connections between the
input and the hidden layer and a bias vector by € R¥*1,
The network output is then computed by mapping the re-
sulting hidden representation h back into a reconstructed
vector # € R™*! using a separate decoder function of
the form:

9(f(x)) = & = ay(Wah + ba), (2

where « is the activation function, Wo € R™** is the
decoding matrix and bz € R™ a vector of bias parameters
which are learned from the hidden to the output layer.

The estimation of the parameters set 6 =
{Wi,b1,Wa,ba} of an autoencoder, is achieved
through the minimization of the reconstruction error
between the input and the output according to a specific
loss function. Given the training set X, a typical
loss function seeks to minimize the normalized sum
of squares error, defining the following optimization
objective:
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where  is implicitly dependent on the parameter set ¢
and || - || is the Euclidean distance.

Sparse autoencoders are a special case of the traditional
autoencoders, where the code is constrained to be sparse,
i.e. only a small fraction of hidden units are activated by
the inputs. Signal and model sparsity have had a pro-
found impact on signal processing and machine learn-
ing due to their numerous advantages, such as robustness,
model complexity, generative and discriminative capabil-
ities among others[7, 26]. In order to induce the sparsity
constraint, a sparsity constant p is selected and the av-
erage latent unit activation is enforced to be close to this

value. This is achieved by introducing a Kullback-Leibler
(KL) divergence regularization term, which measures the
difference between Bernoulli distributions which encode
the expected activation over the training set of hidden unit
u (p,,) and its target value (p) in our case:

. p —p
KL — 1-p)l 4
(pllpu) pogﬁu+( p)ogl_ﬁu 4)
where  p, = 25" [a, (2@)],u=1,...,k. The

KL distance reaches its minimum of 0 when p,, = p, and
extends to infinity up as p,, increases, enforcing the p,,
not to significantly deviate from the desired sparsity value
p. Allin all, the smaller the value of p, the sparser the rep-
resentation would be. The regularized cost function of a
sparse autoencoder constitutes of the reconstruction loss
of a classical autoencoder with an additional regulariza-
tion though a sparsity promoting term [18] given by:

k
Jspae(0) = Jae(0) + B Z KL(p||pu) - 5)

Jj=1

The hyper-parameter S determines the importance of the
sparsity regularizer. Note that there have been also de-
veloped and other techniques to encourage sparsity in the
representation [11].

A particular set of weights is updated by calculating the
partial derivatives of Jgpap and applying the backpropa-
gation algorithm [15]. This way, the training typically
converges to a minimum, hopefully a global one, after
a small number of iterations. The minimization of the
model parameters 6 can be achieved by conventional op-
timization algorithms (e.g., gradient descent), as well as
with more sophisticated procedures, such as conjugate
gradient and Broyden-Fletcher-Goldfarb-Shanno (BFGS)
methods to speed up convergence.

Deep learning is a special case of representation learn-
ing which aims at learning multiple hierarchical levels
of representations, leading to more abstract features that
are more beneficial in classification. Architectures with
two or more hidden layers can be created by stacking sin-
gle layer autoencoders on top of each other. Formally,
one starts by training a sparse autoencoder with the raw
data as input. Then the decoder layer is discarded so that
the activations of the hidden units (layer 1 features) be-
come the input for the second autoencoder, which in turn
produces another representation (layer 2 features). This
greedy layer-by-layer process keeps the previous layers
fixed and ignores interactions with subsequent layers,
thus dramatically reducing the search over the parameter
space. We can formalize a stacked autoencoder according

tO: B — f@) ( L@ (fu) m)) , (6)

where h(L) denotes the representation learned by the top
layer L.

Unsupervised pretraining [10] is a recently developed yet
very influential protocol that helps to alleviate this prob-
lem by first training each layer independently in an unsu-
pervised fashion and then performing a fine-tuning over



the entire network based on the supervised classification
erTor.

3.2. Multi-label classification

The features extracted by the stacked sparse autoencoders
are then introduced for multi-label classification of mul-
tispectral pixels. In this work, we focus on a particular
class of multi-label classifier, namely ensemble classi-
fiers and more particular on the Ensemble of Classifier
Chains (ECC) [21]. ECC has established itself as a pow-
erful learning technique, based on the successful Classi-
fier Chains (CC) model [21], which involves the train-
ing of m binary classifiers. In CC, the binary classifiers
are linked along a “chain” so that each classifier is built
upon the preceding ones. In particular, during the train-
ing phase, CC enhances the feature space of each link in
the chain with binary features from ground-truth labeling.
Since true labels are not known during testing, CC aug-
ments the feature vector by all prior binary predictions.
Formally, the classification process begins with h; which
determines P(\; | x), and propagates along the chain for
every following classifier ho, ..., h; predicting:
P()\J |£B,/\1,...,)\j,1) —>/\j S {071}73227,m
(7
The binary feature vector (A1,...,A,,) represents the
predicted label set of x, Z,. Despite the incorporation
of label information, the prediction accuracy is heavily
dependent on the ordering of the labels, since only one
direction of dependency between two labels is captured.
To overcome this limitation, ECC extends this approach
by constructing multiple CC classifiers with random per-
mutations over the label space. Hence, each CC model is
likely to be unique and able to give different multi-label
predictions, while a good label order is not mandatory.
More specifically, to obtain the output of ECC, a generic
voting scheme is applied, where the sum of the predic-
tions is calculated per label, and then a threshold ¢, is
applied to select the relevant labels, such that A; > #,.

4. DATA DESCRIPTION AND EXPERIMENTAL
RESULTS

‘We consider the Hyperion sensor aboard EO-1 with a spa-
tial resolution of 30m?, acquiring images at 242 spec-
tral bands where we select only the 198 calibrated bands.
We consider the area in New York city encoded as
EO1H0130322010245110KF_SGS_01 by Hyperion from
September 2, 2010. While global or European land cover
datasets provide ground-truth data at relatively large spa-
tial resolution, e.g. 30m?, newer datasets offer a much
higher spatial resolution. Such dataset do not consider
widespread coverage as the process of labeling is ex-
tremely costly and time-consuming, yet they provide de-
tailed maps of more specific geographic areas (e.g., cities,
forests, etc.). We consider a high resolution land cover
dataset for New York City (NYC) of 2010 with a spatial

resolution of 1m (3 feet) which been recently released’.
The dataset annotates each spatial location with one of the
following labels: (1) tree canopy, (2) grass/shrub, (3) bare
earth, (4) water, (5) buildings, (6) roads, and (7) other
paved surfaces.

The performance evaluation of multi-label classifiers is
more complicated than conventional single-label learn-
ing, since an example may be partially correct. As a con-
sequence, several metrics have been proposed for classi-
fication and ranking [32, 24]. In this work, we consider
two representative error metrics, namely Hamming Loss,
which measures the average number of locations where
this is a discrepancy between predicted label and ground-
truth label (lower is better) and Averaged AUC, the av-
eraged Area-Under-the-Curve encodes the overall qual-
ity of performance, independently of individual threshold
configurations (higher is better).
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Figure 2: Hamming error (top) and Micro-averaged AUC
(bottom) as a function of the number of hidden units for 1
and 2 hidden layers, as well as the regularization param-
eter for sparsity.

Figure 2 presents the classification performance of the
ECC classifier based on features extracted by a SSAE ar-
chitecture as a function of the number of hidden units
considered in the hidden layers. These figures exam-

ttps://nycopendata.socrata.com/Environment/
Landcover—Raster-Data-2010-/9auy-76zt



ine two key parameters, (i) the number of hidden layers
(depth) and (ii) the regularization parameter 3 with fixed
sparsity target p = 0.1.

Regarding the number of hidden layer, the results indi-
cate that if sufficient hidden units are considered, shallow
architectures (1 layer) perform comparably to deep ones
(2 layers), both in terms of Hamming error and Micro-
averaged AUC. This situation is more pronounced when
the sparsity promoting term ((3) is active compared to in-
active. Especially when the sparsity regularization is en-
abled, we observe that even a moderate number of hidden
units and shallow architectures provide very good perfor-
mance.

5. CONCLUSIONS

In this work we consider the case where relatively low hy-
perspectral images are available, where each pixel must
be annotated with labels from a multi-label corpus. We
investigate the potential of the recently developed deep
learning paradigm, as an effective mechanism for extract-
ing features that offer more abstract representations of the
raw data. More specifically, we consider the paradigm
of Stacked Sparse Autoencoders (SSAE) as an efficient
mechanism feature extraction for multi-label classifica-
tion. Experimental results suggest that although the deep
of the network can aid in the classification process, the in-
troduction of the sparsity constraints can have more dra-
matic gains in terms of performance.

ACKNOWLEDGMENTS

This work was partially funded by the PHySIS project
(contract no. 640174) and the DEDALE project (contract
no. 665044) within the H2020 Framework Program of
the EC.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent. Represen-
tation learning: A review and new perspectives. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 35(8):1798-1828, Aug 2013.

[2] Yoshua Bengio. Learning deep architectures for
ai. Found. Trends Mach. Learn., 2(1):1-127, January
2009.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici,
Hugo Larochelle, Universit De Montral, and Montral
Qubec. Greedy layer-wise training of deep networks.
In In NIPS. MIT Press, 2007.

[4] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang,
and Yanfeng Gu. Deep learning-based classification of
hyperspectral data. Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Journal of,
7(6):2094-2107, June 2014.

[5] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang,
and Yanfeng Gu. Deep learning-based classification of
hyperspectral data. Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Journal of,
7(6):2094-2107, 2014.

[6] N.Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886—893 vol.
1, June 2005.

[7] Konstantina Fotiadou, Grigorios Tsagkatakis, and
Panagiotis Tsakalides. Low light image enhancement
via sparse representations. In Image Analysis and
Recognition, pages 84-93. Springer International Pub-
lishing, 2014.

[8] Rostislav Goroshin and Yann LeCun. Saturating
auto-encoder. CoRR, abs/1301.3577, 2013.

[9] Ian Goodfellow, Honglak Lee, Quoc V. Le, Andrew
Saxe, and Andrew Y. Ng. Measuring invariances in
deep networks. In Y. Bengio, D. Schuurmans, J.D.
Lafferty, C.K.I. Williams, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems 22,
pages 646—654. Curran Associates, Inc., 2009.

[10] G.E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504-507, 2006.

[11] K. Kavukcuoglu, M.A. Ranzato, R. Fergus, and
Yann LeCun. Learning invariant features through to-
pographic filter maps. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 1605-1612, June 2009.

[12] Konstantinos Karalas, Grigorios Tsagkatakis,
Michalis Zervakis, and Panagiotis Tsakalides. Deep
learning for multi-label land cover classification.
In SPIE Remote Sensing, pages 96430Q-96430Q.
International Society for Optics and Photonics, 2015.

[13] K. Karalas, G. Tsagkatakis, M. Zervakis, and
P. Tsakalides. Land classification using remotely
sensed data: Going multilabel. IEEE Transactions on
Geoscience and Remote Sensing, 54(6):3548-3563,
June 2016.

[14] Hugo Larochelle, Yoshua Bengio, Jérome
Louradour, and Pascal Lamblin. Exploring strategies
for training deep neural networks. J. Mach. Learn.
Res., 10:1-40, June 2009.

[15] Yann A. LeCun, Léon Bottou, Genevieve B. Orr,
and Klaus-Robert Miiller. Efficient backprop. In
Grégoire Montavon, GeneviveB. Orr, and Klaus-
Robert Miiller, editors, Neural Networks: Tricks of the
Trade, volume 7700 of Lecture Notes in Computer Sci-
ence, pages 9—48. Springer Berlin Heidelberg, 2012.

[16] Martin Léangkvist, Andrey Kiselev, Marjan
Alirezaie, and Amy Loutfi. Classification and
segmentation of satellite orthoimagery using convo-
lutional neural networks. Remote Sensing, 8(4):329,
2016.

[17] DavidG. Lowe. Distinctive image features from

scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91-110, 2004.



[18] Andrew Ng. Sparse autoencoder. CS294A Lecture
notes, 72, 2011.

[19] Christopher Poultney, Sumit Chopra, and Yann Le-
cun. Efficient learning of sparse representations with
an energy-based model. In Advances in Neural Infor-
mation Processing Systems (NIPS 2006. MIT Press,
2006.

[20] Otavio Penatti, Keiller Nogueira, and Jefersson
Santos. Do deep features generalize from everyday
objects to remote sensing and aerial scenes domains?
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 44—
51, 2015.

[21] Jesse Read, Bernhard Pfahringer, Geoff Holmes,
and Eibe Frank. Classifier chains for multi-label clas-
sification. volume 85, pages 335-359, 2011.

[22] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier
Glorot, and Yoshua Bengio.  Contracting auto-
encoders: Explicit invariance during feature extrac-
tion. In In Proceedings of the Twenty-eight Inter-
national Conference on Machine Learning (ICMLI 1,
2011.

[23] Grigorios Tsoumakas and Ioannis Katakis. Multi-
label classification: An overview. Int. J. of Data Ware-
housing and Mining, 3(3):1-13, 2007.

[24] Grigorios Tsoumakas, loannis Katakis, and Ioannis
Vlahavas. Mining multi-label data. In Oded Maimon
and Lior Rokach, editors, Data Mining and Knowl-
edge Discovery Handbook, pages 667-685. Springer
Us, 2010.

[25] Chao Tao, Hongbo Pan, Yansheng Li, and Zhengrou
Zou. Unsupervised spectral-spatial feature learning
with stacked sparse autoencoder for hyperspectral im-

agery classification. Geoscience and Remote Sensing
Letters, IEEE, 12(12):2438-2442, 2015.

[26] Grigorios Tsagkatakis and Andreas Savakis. Sparse
representations and distance learning for attribute
based category recognition. In Trends and Topics in
Computer Vision, pages 29-42. Springer Berlin Hei-
delberg, 2012.

[27] M Vakalopoulou, Konstantinos Karantzalos, Nikos
Komodakis, and Nikos Paragios. Building detection
in very high resolution multispectral data with deep
learning features. In Geoscience and Remote Sens-
ing Symposium (IGARSS), 2015 IEEE International,
pages 1873-1876. IEEE, 2015.

[28] Pascal Vincent, Hugo Larochelle, Yoshua Bengio,
and Pierre-Antoine Manzagol. Extracting and com-
posing robust features with denoising autoencoders.
In Proceedings of the 25th International Conference
on Machine Learning, ICML *08, pages 1096-1103,
New York, NY, USA, 2008. ACM.

[29] Chen Xing, Li Ma, and Xiaoquan Yang. Stacked de-
noise autoencoder based feature extraction and classi-
fication for hyperspectral images. Journal of Sensors,
2016, 2015.

[30] Jun Yue, Wenzhi Zhao, Shanjun Mao, and Hui Liu.
Spectral—spatial classification of hyperspectral images

using deep convolutional neural networks. Remote
Sensing Letters, 6(6):468—477, 2015.

[31] YanfeiZhong, Feng Fei, and Liangpei Zhang. Large
patch convolutional neural networks for the scene clas-
sification of high spatial resolution imagery. Journal
of Applied Remote Sensing, 10(2):025006-025006,
2016.

[32] Min-Ling Zhang and Zhi-Hua Zhou. A review on
multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8):1819-1837,
Aug 2014.



