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Abstract— The spectral dimension of hyperspectral
imaging (HSI) systems plays a fundamental role in
numerous terrestrial and earth observation applications,
including spectral unmixing, target detection, and classi-
fication among others. However, in several cases the spec-
tral resolution of HSI systems is sacrificed for the shake of
spatial resolution, as such in the case of snapshot spectral
imaging systems that acquire simultaneously the 3D data-
cube. We address these limitations by introducing an
efficient post-acquisition spectral resolution enhancement
scheme that synthesizes the full spectrum from only
few acquired spectral bands. To achieve this goal we
utilize a regularized sparse-based learning procedure
where the relations between high and low-spectral reso-
lution hyper-pixels are efficiently encoded via a coupled
dictionary learning scheme. Experimental results and
quantitative validation on data acquired by NASA’s EO-1
mission’s Hyperion sensor, demonstrate the potential of
the proposed approach for accurate spectral resolution
enhancement of hyperspectral imaging systems.

I. INTRODUCTION

Over the last decades Hyperspectral Imaging (HSI)
systems created an enormous outburst in the field
of earth observation. Multiple instrument on-board
imaging systems are currently available, providing a
large amount of hyperspectral imagery for various
applications, such as precision agriculture, geology
and oceanography. Despite the important advantages
hyperspectral imaging systems demonstrate, HSI acqui-
sition and processing stages usually introduce multiple
constraints. Slow acquisition time, limited spectral and
spatial resolution, low dynamic range, and restricted
field of view, are just a few of the limitations that hyper-
spectral sensors admit, and require further investigation.
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Enhancing the spectral quality of the acquired hy-
perspectral scenes is critical for both visualization and
subsequent analysis, including spectral unmixing, pixel
classification and region clustering. Additionally, high-
spectral resolution imaging systems are able to capture
and process a huge amount of data, including the 2D
spatial and the 1D spectral variations of an input scene
over time. Unfortunately, various factors can lead to
the introduction of imaging constraints such as the
case of Snapshot Spectral Imaging systems that directly
acquire the entire 3D data-cube through a convenient
combination of spectral filters and detector elements.
Despite the dramatic reduction these systems exhibit
with respect to acquisition time, they also reduce the
spectral resolution, for example, by associating each
pixel with a single spectral band in the Spectrally
Resolvable Detector Arrays. Another limitation arises
from remote sensing data, where for instance multi-
spectral sensors such as MODIS resolve a limited num-
ber of spectral bands with a known revisit frequency,
while tasked hyperspectral sensors such as NASA’s EO-
1 mission’s Hyperion sensor, acquire a huge number
of spectral bands with undefined revisit frequency. In
remote sensing community, the main challenge is to
combine high revisit frequency and high number of
acquired spectral bands.

In order to overcome the aforementioned limitations,
we propose a novel, post-acquisition spectral resolution
enhancement technique that recovers the full-spectrum
from a limited number of spectral observations, based
on the state-of-the-art mathematical frameworks of
Sparse Representations (SR) and joint dictionary learn-
ing (DL) [1]. Unlike state-of-the-art hyperspectral
super-resolution methods that utilize inherent correla-
tions to obtain high spatial resolution images, the pro-
posed algorithm aims at enhancing the spectral content
of the imagery. This goal is achieved by introducing the
assumption that each high spectral resolution “hyper-
pixel” is estimated from its low spectral resolution ver-
sion, identifying a sparse representation encoding that
directly generates the high-spectral resolution output.



The notion of sparsity has revolutionized modern
signal processing and machine learning applications,
and has lead to very impressive results in a variety of
imaging processing and computer vision tasks, includ-
ing image deblurring, super-resolution, denoising, clas-
sification etc. In this work, we enforce the sparsity con-
straint, learning a joint sparse coding dictionary from
multiple correspondent low and high spectral resolution
training pairs. To the best of our knowledge, only a
handful of techniques have been proposed in literature
that recover the full spectrum information of multi-
and hyperspectral imagery, from a limited number of
input, low spectral resolution bands. Specifically, in our
previous work, [2] we addressed the problem of spectral
resolution enhancement of hyperspectral imagery and
we applied on hyperspectral data acquired by a Ximea
camera equipped with IMEC’s 5 × 5 snapshot mosaic
hyperspectral sensors [3], [4]. These intelligent sensors
multiplex optically the 3D spatio-spectral information
on a two-dimensional CMOS detector array, where a
layer of Faby-Perot spectral filters is deposited on top
of the detector array. The hyperspectral data is initially
acquired in the form of 2D mosaic images. In order to
generate the 3D hypercubes, the spectral components
are properly rearranged into separate spectral bands.
In this work, we apply our proposed spectral super-
resolution scheme on remote sensing hyperspectral data
acquired by NASA’s EO-1 Hyperion sensor.

The rest of this paper is structured as follows. Section
II provides an overview of the related work concerning
the spatial and spectral resolution enhancement of
hyperspectral imaging systems. Section III presents the
formulation of the spectral super-resolution scheme of
and hyperspectral imagery considered in this work,
whereas Section IV exposes our proposed solution.
Section V reports the experimental results, while con-
clusions and extensions of this work are presented in
Section VI.

II. RELATED WORK

The majority of hyperspectral resolution enhance-
ment approaches focus on the spatial resolution of HSI
imagery. Current spatial resolution enhancement ap-
proaches may be discriminated into two characteristic
categories: pan-sharpening and spatio-spectral fusion
techniques. Pan-sharpening techniques [5] combine
a low spatial resolution hyperspectral scene with the
correspondent high spatial resolution panchromatic im-
age to synthesize the high spatial 3D data cube. On
the other hand, spatio-spectral fusion approaches im-

prove the spatial resolution exploiting relations between
the spatial and the spectral variations of HSI scenes.
Specifically, the authors in [6] enhance the spatial
dimension of HSI, by performing a sparse spectral
unmixing technique and fusing the results with the
multispectral imagery. Similarly, in [7] is formulated
a joint super-resolution and unmixing approach, based
on a sparse representation in the spatial domain, and
a spectral unmixing in the spectral domain to achieve
the enhancement. In contrast, in [8] the authors propose
a spatial super-resolution technique, without using any
additional image with higher spatial resolution. Specif-
ically, they utilize a fully constrained least squares
spectral unmixing scheme, with a spatial regularization
based on modified binary particle swarm optimization.
Besides fusion-based approaches, over the last years
multiple techniques exploit the low-rank matrix com-
pletion and sparse representation frameworks to super-
resolve low spatial resolution HSI scenes. Specifically,
the authors in [9] propose a novel approach that esti-
mates high spatial and spectral resolution hypercubes
extending the traditional formulation of Matrix Com-
pletion by introducing non-negativity constraints during
the recovery process.

In contrast to the spatial super-resolution, enhancing
the spectral dimension of HSI scenes, has drawn little
attention. On that note, the authors in [10] utilize a
hardware solution to amplify the spectral dimension of
HSI imagery. Specifically, they propose a generaliza-
tion of the Coded Aperture Snapshot Spectral (CASSI)
imaging system, by using a pair of high resolution
coded apertures, able to encode both spatio-spectral
dimensions of hyperspectral scenes. Another spectral
resolution enhancement technique is demonstrated in
[11], where the authors consider geographically co-
located multispectral and hyperspectral oceanic water-
color images and they enhance the limited multispectral
measurements utilizing a sparsity based approach. First,
they use a spectral mixing formulation and they define
the measured spectrum for each pixel as the sum of
the weighted material spectra. The desired high-spectral
resolution spectra is expressed as a linear combination
between a blurring matrix and the measured spectra,
while this problem is solved via a sparse-based formu-
lation.

III. PROBLEM FORMULATION

This work proposes a novel scheme for synthesizing
high-spectral resolution hyperspectral scenes from few
acquired measurements. Formally, let S` be the low-



Fig. 1: Proposed Block Diagram: Our algorithm takes as input a hypercube acquired with a limited number of spectral bands
and reconstructs the full spectrum of the scene.

spectral resolution 3D data-cube acquired with M
spectral bands. Our task is to estimate the missing
bands, in order to generate the full spectrum composed
of N spectral bands.

A. Sparse Representations

The proposed approach synthesizes a high-spectral
resolution data-cube from its acquired low-spectral
resolution form, by capitalizing on the Sparse Rep-
resentations (SR) framework [1], [12]. According to
SR, features learnt from high or low spectral resolu-
tion “hyper-pixels” can be represented as sparse linear
combinations of elements with respect to their over-
complete dictionaries. Additionally, the theory of SR
suggests that the same sparse coding w ∈ RN can be
utilized among the two representations, provided that
proper dictionary matrices are jointly learned.

Formally, each input low-spectral resolution “hyper-
pixel” s` ∈ RM , can be expressed as a linear com-
binations between a sparse code vector w ∈ RN ,
and a representation matrix, Dh ∈ RM×N , created by
training low-spectral resolution hyper-pixels, according
to:

sl = Dlw

IV. PROPOSED SOLUTION

Recovery of the sparse code vector w ∈ RN is
accomplished by solving the following minimization
problem:

min
w
||w||0 subject to ||s` −D`w||22 < ε, (1)

where ε denotes the approximation error modelling the
noise properties, and ||w||0 = #(i|wi 6= 0) stands
for the `0 pseudo-norm. Despite the `0-norm is a con-
venient choice, it makes the optimization intractable.
Fortunately, the `0-norm can be relaxed into a higher-
order norm minimization problem, such as the convex
`1-norm, `1 =

∑
i |wi|, leading to robust solutions.

Alternatively, the optimization problem is formulated
as:

min
w
||s` −D`w||22 + λ||w||1, (2)

where the parameter λ regularizes the fidely of the
solution. The joint training of the low and high spectral
resolution dictionaries, guarantees that approximately
the same sparse coding can be utilized among the
two representations. Proceeding to the decoding step,
the optimal sparse code w? from Eq. 2, is directly
projected onto the high-spectral resolution dictionary
Dh to synthesize the high-spectral resolution “hyper-
pixel”, as

sh = Dhw
?, (3)

The concatenation of all the recovered high-spectral
resolution “hyper-pixels”, synthesizes the high-spectral
resolution 3D data-cube. The main objective of this
work arises from the proper learning of the dictionary
matrices D`, and Dh in order to sparsify both the low
and the higher spectral resolution data. The following
subsection discusses thoroughly the proposed dictio-
nary learning scheme.



A. Joint Dictionary Learning

Coupled dictionary learning considers the problem
of learning jointly two dictionary matrices, DX ,DY ,
representing the coupled feature spaces X and Y, such
that both representations share approximately the same
sparse coding. In our formulation, we consider a set
composed of correspondent high and low spectral res-
olution hypercubes. We assume that these scenes are
realized by the same statistical process under differ-
ent spectral resolution conditions, and as such, they
share approximately the same sparse code with respect
to their corresponding dictionaries, Dh and D`. A
straightforward strategy to create these dictionaries is
to randomly sample multiple correspondent “hyper-
pixels” and use this random selection as the sparsifying
dictionary. However, such a strategy is not able to
guarantee that the same sparse code can be utilized
among the two different representations. In order to
overcome this limitation, we propose learning a com-
pact dictionary from such pairs of high and low-spectral
resolution data-cubes.

Consequently, the joint dictionary learning problem
is formulated as:
min
Dj ,X

||P−DjX||22+λ||X||1, s.t ||Dj(:, i)||22 ≤ 1 (4)

where Dj =

[
Dh

D`

]
∈ R(M+N)×L, M + N denotes

the concatenated number of spectral bands for both
high and low-spectrum scenarios, L is the number of

dictionary atoms, and P =

[
Sh
S`

]
corresponds to the set

of ”hyper-pixels” extracted from the training pairs of
high and low-spectral resolution hyperspectral images.

The problem in Eq. 4 can be efficiently solved
via the state-of-the-art K-SVD dictionary learning al-
gorithm [12], [13], alternating between two stages:
the sparse coding and the dictionary update. Fig. 1
presents the proposed system’s block diagram, where
we summarize the individual steps for our scheme in
recovering the full spectrum from a limited number of
acquired spectral bands.

V. EXPERIMENTAL RESULTS

This section demonstrates the performance of the
proposed sparse coding scheme when applied to the
spectral super-resolution of satellite hyperspectral im-
agery from perspectives of both the quality and the
fidelity of the high spectral resolution 3D data-cubes.
To evaluate the effectiveness of the proposed technique,
we conducted experiments on hyperspectral data ac-
quired by NASA’s EO-1 mission’s Hyperion hyper-

spectral instrument. Due to its high spectral coverage,
Hyperion scenes have been widely utilized for multiple
remote sensing applications, including classification
and spectral unmixing purposes among others. Specifi-
cally, Hyperion instrument resolves 220 spectral bands
covering the range from 0.4 to 2.5 µm. However, in our
simulations we considered only 39 spectral bands from
the visible and near-infrared (VNIR) region, with an
average wavelength between 437 − 833 nm (Bands:9-
48). In our simulations, band 9 corresponds to our
first spectral band, while band 48 stands for the 39th
spectral band. Concerning the testing phase, we utilized
several hyperspectral scenes depicting variant regions
of Hawaii island, acquired on August 30, 2015. The
ground truth 3D data-cubes are down-sampled by a
factor of 2,3 and 4 to generate the low and high spectral
resolution pairs for both training and evaluation.

A. Evaluation Metrics

In order to assess the quality of the reconstructed
3D data-cubes, we employed the Peak Signal to Noise
Ratio (PSNR) [16] metric formulated as:

PSNR = 10 log10[L
2
max/MSE(x, y, λ)],

where L is the maximum pixel value of the scene, λ
denotes the spectral dimension, and MSE stands for the
mean square error, defined as:

MSE(x, y, λ) =

∑
x,y,λ

[
Sh(x,y,λ)

− S`(x,y,λ)

]2
nx, ny, λ

, (5)

where x and y denote the spatial dimensions of the
input and the synthesized images S` and Sh. Ad-
ditionally, each estimated spectral band is compared
against the corresponding ground truth spectral band
in terms of the Structural Similarity Index Metric [25],
a psychophysically modeled error metric defined as:

SSIM(x, y) =
(2µxµy + c1) · (2σxy + c2)

(µ2x + µ2y + c1) · (σ2x + σ2y + c2)
, (6)

where µ and σ stand for the mean value and the
standard deviation, respectively. The performance of
the proposed approach, is compared against the results
obtained through cubic interpolation among the spectral
bands.

B. Remote Sensing Data Recovery

Concerning the dictionary training phase, we utilized
multiple hyperspectral scenes acquired by the Hyperion
sensor. For the high spectral resolution dictionary, the
number of bands is set to 39, while for the low spectral
resolution dictionary the down-sampling factor was set
to 2, 3 and 4, resulting in 20, 13 and 10 input spectral



(a) 13th Band (ground truth) (b) 28th Band (ground truth) (c) 35th Band (ground truth) (d) 47th Band (ground truth)

(e) (x2) 13th recovered (SSIM
0.9942)

(f) (x2) 28th recovered (SSIM
0.9899)

(g) (x2) 35th recovered (SSIM
0.9960)

(h) (x2) 47th recovered (SSIM
0.9879)

Fig. 2: Hyperion spectral bands reconstruction: (Top row) Original spectral bands (13th, 28th, 35th, 47th). (Bottom row)
Proposed system’s reconstructed spectral bands. We observe that under real life conditions, the proposed scheme produces
significant quality improvement, operating in satellite hyperspectral imagery. The full spectrum is composed of 39 bands in
the VNIR region, while the sub-sampling factor is set to 2.

(a) (x2) Cubic Interpolation 47th Band,
PSNR: 46.57 dB

(b) (x2) K - SVD SSR Recovered 47th
Band, PSNR: 55.04 dB

(c) Spectral Signatures of the calibrated spec-
tral bands: Ground truth 47th band corre-
sponds to our 39th spectral band

Fig. 3: Hawaii scene II: Reconstruction of the full hypercube. In this simulation we investigate the performance of the
proposed system vs. the Cubic interpolation when is applied on the full hypercube of Hawaii test scene II. We recover 39
from 20 input spectral bands and simultaneously provide the spectral signatures of the comparable techniques. The proposed
system’s spectral signature depicts high similarity with the ground truth’s hypercube spectral signature. Additionally, in terms
of PSNR error, the proposed technique outperforms in comparison with the Cubic interpolation.

bands,respectively. Consequently, we learned three dic-
tionaries composed of 512 atoms, from 100K randomly
sampled “hyper-pixels”, each one corresponding to the
different sub-sampling factors. The number of selected
dictionary atoms balances between a proper represen-
tation of the high spectral resolution “hyper-cubes” and
a small run-time.

Fig. 2 demonstrates several recovered spectral bands
from the Hyperion sensor, along with their ground truth

results. In this simulation the sub-sampling factor is set
to 2, and we recovered the full-spectrum composed of
39 spectral bands, from only 20 spectral observations.
As we may observe, the recovered spectral bands depict
high similarity with the ground truth spectral slices,
both visually and quantitatively in terms of the similar-
ity index. In fig. 3 we compare the performance of our
proposed scheme with the state-of-the-art framework
of Cubic interpolation. Additionally, we observe that



(a) Ground Truth 12th Band (b) Ground Truth 18th Band (c) Ground Truth 34th Band

(d) (x2) Proposed, recovered 12th band
(SSIM: 0.9942)

(e) (x2) Proposed, recovered 18th band
(SSIM: 0.9975)

(f) (x2) Proposed, recovered 34th band
(SSIM: 0.9977)

Fig. 4: Hawaii Scene I: (Top row) Original spectral bands (12th, 18th, 34th). (Bottom row) Proposed system’s reconstructed
spectral bands. We observe that under real life conditions, the proposed scheme produces significant quality improvement,
operating in satellite hyperspectral imagery. The full spectrum is composed of 39 bands in the VNIR region, while the
sub-sampling factor is set to 2.

the proposed scheme’s spectral signature depicts high
similarity with the spectral signature of the ground
truth 3D data-cube, highlighting the high quality of our
reconstruction. Finally, the PSNR error for the whole
3D cube reconstruction is 55.04 dB, while the Cubic’s
interpolation PSNR is 46.57 dB.

In fig. 4 we illustrate another simulation applied on a
specific 203×204 region of the Hawaii I, 3D data-cube.
As we may observe the proposed spectral resolution
enhancement scheme reveals significant information
details among the different spectral bands, that pre-
serve accurate similarity with the ground truth spectral
bands, both visually and quantitatively in terms of the
SSIM metric. The comparison of Hawaii I scene with
the state-of-the-art approach of Cubic interpolation is
depicted in fig. 5, where we observe the high quality re-
construction of the proposed scheme when it is applied
on the 47th spectral band. Additionally, the proposed
system’s spectral signature matches accurately with the
ground truth’s hypercube. Finally, fig. 6 depicts the
reconstruction perfomance of the comparable methods
applied on Hawaii scene II. The magnification factor

in this case is set to 3. In contrast to the Cubic’s
Interpolation scheme that presents a slight blurring ef-
fect, the proposed system preserves accurate similarity
with the ground truth hypercube both quantitatively and
qualitatively.

VI. CONCLUSIONS

The proposed inverse spectral resolution enhance-
ment problem recovers high spectral information, cap-
italizing on the sparse representations framework as
prior-knowledge, effectively encoding the relationships
between high and low spectral representations. Ad-
ditionally, the proposed scheme can be extended to
handle large ranges of low-to-high resolution enhance-
ments by efficient modifications of the joint dictionary
learning process, as well as offering the capability of
addressing additional sources of HSI image degradation
such as blurring and noise.
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(a) (x4) Ground Truth 47th Band (b) (x4) Cubic Interpolation 47th Band,
PSNR: 28.03 dB

(c) (x4) K-SVD - SSR 47th Band, PSNR:
35.07 dB

(d) Spectral Signatures of the calibrated spectral bands: Ground
truth 47th band corresponds to our 39th spectral band

Fig. 5: Hawaii scene I: In this simulation we investigate the perfomance of the proposed system vs. the Cubic Interpolation
technique. The sub-sampling factor is set to 4. (Top row:) Comparable techniques illustrating the 47th spectral band. (Bottom
row:) Spectral signatures of the comparable methods. As we may observe, the proposed technique preserves an accurate
spectral signature with the ground truth 3D data-cube.

(a) (x3) Ground Truth 11th Band (b) (x3) Cubic Interpolation 11th Band,
PSNR: 20.53 dB

(c) (x3) K-SVD - SSR 11th Band, PSNR:
29 dB

Fig. 6: Hawaii scene II: Comparison with the state-of-the-art. In this simulation we set the sub-sampling factor to 3.
We observe that the proposed system depicts a smoother visual result in comparison with the Cubic’s interpolation result.
Additionally, in terms of quantitative evaluation for the reconstruction of the 3D data-cube the proposed system achieves
higher PSNR error compared to the Cubic’s interpolation scheme.



TABLE I: Hyperion’s hyperspectral scenes: Quantitative per-
formance evaluation of the proposed SSR- K-SVD scheme
with the state-of-the-art in terms of PSNR error (dB) with
magnification factors of 2,3 and 4.

Image Scale Cubic Proposed
Hawaii scene I 2 40.58 47.89
Hawaii scene II 2 33.18 44.32
Hawaii scene III 2 46.13 48.50
average 2 39.96 46.90
Image Scale Cubic Proposed
Hawaii scene I 3 26.55 31.63
Hawaii scene II 3 20.53 29.75
Hawaii scene III 3 22.39 36.21
average 3 23.15 32.53
Image Scale Cubic Proposed
Hawaii scene I 4 28.03 35.07
Hawaii scene II 4 20.71 29.61
Hawaii scene III 4 22.23 24.33
average 4 23.65 29.67

665044 within the H2020 Framework Program of the
European Commission.
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