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Abstract 
A n  approach towards providing advanced naviga- 

tional support to  robotic wheelchair platforms is pre- 
sented in  this paper. Contemporary methods that are 
employed in  robotic wheelchairs are based on the infor- 
mation provided by range sensors and its appropriate 
exploitation b y  means of obstacle avoidance techniques. 
However, since range sensors cannot support a detailed 
environment representation, these methods fa i l  to pro- 
vide advanced navigational assistance, unless the envi- 
ronment is appropriately regulated (e.g. with the in- 
troduction of beacons). In  order to avoid any modifica- 
tions to the environment, we propose an alternative ap- 
proach that employs computer vision techniques which 
facilitate space perception and navigation. Computer 
vision has not been introduced todate  in  rehabilitation 
robotics, since the former is not mature enough to meet 
the needs of this sensitive application. However, in  the 
proposed approach, stable techniques are exploited that 
facilitate reliable, automatic navigation t o  any point in  
the visible environment. Preliminary results obtained 
f rom its implementation on a laboratory robotic plat- 
form indicate its usefulness and flexibility. 

1 Introduction 
Current advances in robotics have facilitated the in- 

troduction of related technologies in many application 
areas, such as surveillance systems, autonomous vehi- 
cles, delivery robots and cleaning machines [l]. A dis- 
tinctive and very important application sector is that of 
rehabilitation robotics [2]. The latter has been greatly 
advanced through the introduction of flexible manip- 
ulators, mobile platforms, fixed robotic workstations 
and sensors. The navigational capabilities offered by 
such hardware components are typically based on range 
and/or proximity sensor measurements [3]. 

In this work we are interested in providing naviga- 
tional assistance to robotic wheelchair users. More 
specifically, we aim at enhancing current robotic 
wheelchairs with the capability of automatic “targeted 

*This work was partially supported by EC Contract No 
ERBFMRX-CT96-0049 under the TMR Programme and the 
General Secretariat for Research and Technology, Greece, under 
Grant No. 6060. 

navigation” (move to that point Therefore, a robust 
and effective navi ation approac h. is required, that will 

mately providing assistive navigation in uncontrolled 
environments. In the remainder of this section, naviga- 
tional capabilities and related shortcomings of current 
robotic wheelchairs are shortIy presented, followed by 
a brief overview of the proposed approach. 

Most navigational approaches in current generation 
robotic wheelchairs are based on the measurements ob- 
tained by a ring of sonars 31. Sonars provide mea- 

avoidance tasks [4]. There are, however, certain lim- 
its to what can be achieved by using only local range 
measurements. Although they support reactivity to 
local environment features, they are inadequate for au- 
tonomous navigation since range information consti- 
tutes a very restricteA environment representation. 

To overcome the above roblem, environment maps 
are usually employed [5, 6 r  Maps are constructed ei- 
ther by exploiting a priori knowledge or by employing 
an initial learning phase and are constantly updated 
by the local sonar measurements. Motion planning 
methods [7, 8 are then employed to yield a path from 

lowing is performed by some sort of odometric (dead- 
reckoning) technique. A non-trivial problem, however, 
is that path following is not error-free [9]. Another ma- 
jor flaw inherent in these approaches, which also shares 
responsibility in the above, is the lack of any intermedi- 
ate localization information. Althou h there have been 
some efforts towards automatic 1ocaEzation (e.g. [lo]), 
they are expected to perform poorly in environments 
cluttered with obstacles. 

To deal with the localization problem radio bea- 
cons 111 or easily recognized patterns [12j are usually 

niques that take uncertainty into account [9, 131, fa- 
cilitate accurate localization and, therefore, path fol- 
lowing. Such environment modifications are, however, 
very restricting since they confine robot roving in a 
predefined space. This is more profound in the case 
of robotic wheelchair platforms, where the goal is to 
support user mobility in various environments. 

Vision, being a more powerful sense, can be em- 

work synergistica s ly with motor impaired users, ulti- 

surements that can be readi i y interpreted for obstacle 

an initial con 1 guration to a desired one and path fol- 

intro 6 uced. Beacons, combined with planning tech- 
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ployed towards this end. Indeed, rich information re- 
garding the environment can be extracted from images. 
Moreover, it is fairly straightforward to assi n seman- 

computer vision techniques are not yet reliable enough 
for coping with the uncertainty and unpredictability of 
the real world. Thus, the proposed approach is semi- 
automatic, relying on the user for some decisions that 
are hard to make automatically, and trying to combine 
some of the advantages of range sensing and vision by 
fusing information acquired by a sonar ring and a cam- 
era. Computer vision techniques are involved for target 
tracking; sonar-based reactivity is employed for local, 
fine control of motion. More specifically, the camera 
“locks” on a user-selected target, while at the same 
time the sonars are checking for obstacles that may be 
in the wheelchair’s course. Whenever the wheelchair 
completes a detour for avoiding an obstacle, the cam- 
era instructs it to move in the direction of the target 
and approach the desired destination. The visual capa- 
bilities introduced facilitate an environment represen- 
tation that is quite appropriate for the task addressed. 
This is the crux of this work, which integrates exist- 
ing, robust methods for achieving accurate (targeted) 
navigation in uncontrolled environments. 

The rest of the paper is organized follows. Sec- 
tion 2 describes the proposed navigation approach and 
section 3 focuses particularly on its adaptation to 
wheelchair platforms. A prototype implementation and 
experimental results are presented in section 4. Section 
5 concludes the paper and gives directions for future 
work. 

2 Platform Navigation 
As already mentioned, current approaches to au- 

tomatic navigation employ beacons and environment 
maps [7, 111, which limits their usability. To com- 
pensate for that, in our approach we completely avoid 
space charting. Instead, we introduce a deictic, visual 
representation of the target pattern [14] which the user 
wants to reach. More specifically, we do not employ 
any kind of workspace maps but use visual images to 
represent the viewed scene. Since this representation 
is at the lowest possible (image) level, it does not in- 
troduce any errors as would be the case with higher 
level representations. On the other side, however, it 
can not support fuZly automatic navi ation since it is 
lacking a detailed environment mod& To overcome 
this handicap, target selection is entrusted to the op- 
erator. In other words, our approach circumvents the 
issue of platform localization and lets the user pick-up 
a desired environment pattern from an image of the 
viewed scene; the selected pattern constitutes the tar- 
get position of the system. 

In order to reach the selected target, we employ 
a visual fixataon capabality and a hierarchical motion- 
planner. Visual fixation is trig ered by the target se- 

tion process. The motion planner operates in two lev- 
els. At the higher level, the global planner consults the 
fixation module and commands the platform motion 
towards the direction pointed to b the vision system, 
i.e. the platform moves in a straigtt path towards the 
target. At a lower level, the tactzcal planner controls 
local, fine platform motion. To achieve this, it con- 
stantly checks for obstacles in the direction of motion, 
using the platform sonars. In case that an obstacle 

tic content to this information. On the ot P er hand, 

lection and is maintained throug a out the whole naviga- 

is encountered, the tactical lanner takes over control 
temporarily from the globay planner and performs a 
motion to avoid the obstacle. During this motion, the 
global planner is inhibited; visual fixation is, however, 
active by tracking the icon of the target. When obsta- 
cle detour is complete, the global planner resumes con- 
trol of the platform and redirects its motion towards 
the target. This procedure is performed in a closed 
loop until the target is reached, yielding assistive nav- 
igational capabilities to the platform. The above two 
level scheme can also be considered as a realization 
of the subsumption architecture proposed by Brooks 
[15]. According to the latter, a hierarchy of concurrent 
processes are pursuing a common goal, with processes 
higher in the hierarchy having more general subgoals 
and lower priority processes inhibiting higher level ones 
whenever dynamic changes occur in the environment. 
Figure 1 presents an algorithm in pseudocode that im- 
plements our approach; technical issues involved in that 
are elaborated in the following sections. 

0. Select Visual-Target 
1. Continuously Fixate on Visual-Target 
2. Invoke Global-Planner 

2a. Initiate Robot-Motion Towards Visual-Target 
2b. While VisualTargetNotReached do 

Acquire Sensor-Measurements 
Check For-Obstacles 
If ObstacleFound 

Inhibit Global-Planner 
Use Tactical-Planner to Avoid-Obstacle 
Resume Robot-Motion Towards Visual-Target 

EndIf 
EndWhile 

3. End. 

Figure 1: Algorithmic implementation of the proposed 
approach for assistive navigation. 

2.1 Environment Representation 
Motivated by recent works on deictic representations 

[14], the proposed navigation approach employs them 
as an effective model for the external world. A deictic 
representation is initiated by a higher level process; for 
the sake of reliability and robustness, this is performed 
by the user, who selects a target in the viewed scene 
using appropriate man-machine interfaces. 

Upon selection of a visual target, a marker M is 
bound to it [14]; this binding is kept permanent for the 
period of a navigation session. Markers, a central con- 
cept in deictic representations around which perception 
and action revolve, can be thought of as pointers to en- 
vironment objects. When a marker is set to point to 
an object, it re isters the object’s features and initiates 
specific action&). Formally, we define a marker M as 

M ( F , A ) ,  F E S F ,  A E S A  

where, SF denotes the set of object feature values and 
SA denotes the set of associated actions. The issue 
of feature values is deferred until the next subsection 
where target tracking is discussed. In our model, SA 
has only one member; in other words, regardless of the 
target selection, the same action is always invoked. The 
latter consists of a two-step procedure, corresponding 
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exactly to the two steps 1 and 2 of the algorithm pre- 
sented in Fig 1. More specifically, SA is defined as 

SA = {Continuously Fixate  on Visual-Target ; 
Invoke GlobalPlanner) 

Intuitively, the above definition associates with each 
user selection one, twofold system action: (a) fixatiop 
on the target which is active at all times during a navi- 
gation session, and (b) invocation of the global planner 
which commands platform motion towards the target. 

The employed representation, although rudimen- 
tary, is quite adequate for the needs of the application 
addressed. Moreover, since it remains at the low, im- 
age level, it is robust and not susceptible to ambieuities 
introduced by object- or scene-based representations. 
2.2 Visual Target Fixation and Tracking 

The deictic representation of the target facilitates 
visual target fixation and trackin Since the camera 
is moving due to the motion of t fe  robotic platform, 
this is actually the case of a moving observer tracking 
a target that can be either stationary or moving. This 
problem has been studied by various researchers, using 
mainly predictive techniques [16]. However, these tech- 
niques have considerable computational requirements 
and are, therefore, inappropriate for our case where 
real time performance is required. Consequently, we 
have adopted a “template-based’’ approach, where a 
template is used to represent the target selected and 
tracking is achieved by a “template-pursuit” technique. 

More specifically, user pick-up of a target triggers 
the construction of a template, which covers an area 
of interest around the target. A region growing tech- 
nique is employed to delineate the area of interest. This 
starts with a small window which is used as a “seed” 
for subsequent growing; window expansion terminates 
according to a criterion based on the distribution of 
the color histogram. The contents of set SF,  intro- 
duced previously in section 2.1, can now be defined. 
For a particular object (template), they consist of a 
representation of the distribution of the object’s color 
histogram. In other words, the object features used for 
pattern matching refer to the latter distribution. As 
shown in 1171, color distributions can be used to index 
objects with a good accuracy and, they do not change 
significantly when computed in sub-parts of an object. 
Based on this observation, growing of the seed template 
is terminated when, at a certain point, the color his- 
togram change, with respect to the initial one, is above 
a predefined threshold. 

Following template construction, fixation of the vi- 
sion system to the selected target is performed. For the 
case of an intrinsically calibrated camera, this is easily 
achieved by pan and tilt motions with angles &, and 
$ t ,  respectively, given as 

X Y tan(pp = 7 , = - f 
J J 

where, f is the camera focal length and (x, y are the 

is illustrated in Fig 2. When f is not known, iterative 
fixation procedures can be employed for this task [18]. 

Target fixation is maintained during the course of 
platform motion by tracking the template across sub- 
sequent frames. Template tracking is accomplished by 

image coordinates of the template center. T h e above 

consluctecl 
template 

Y 
image 
,enter 

Figure 2: Angles q5p and +i used in target fixation. 

minimizing a sum of squared differences criterion. In 
order to avoid template comparisons between distant 
(in time) image frames, the current (stored) template 
is continuously updated. This involves replacement of 
the template with the one that constitutes the best 
match in the next frame. 

Visual fixation on the target results in a direction 
D,, pointed to by the vision system. D, is completely 
determined by dP and q5t. This is subsequently utilized 
for guiding the motion of the robotic platform which is 
performed on the horizontal, 2D plane. Therefore, D, 
is simply computed on the horizontal plane, D, = ( p p .  
2.3 Navigation Approach 

Using the fixation capability described above, plat- 
form navigation is implemented in two levels. At 
the hiFher level, the global planner is responsible for 
achieving the navigation goal, i.e. reaching the se- 
lected target. Towards this end, it instructs a motion 
of the platform in a direction Dp, which coincides with 
D,. Due to motor drifts and inaccuracies of the target 
tracking module, Dp and D, may change slightly dur- 
ing the course of this motion. This is easily adjusted, 
however, by using a feedback loop between the output- 
input of the global planner, as shown in Fig 3(a). 

sensory I. information 

(a) (b) 

Figure 3: (a) Global planner, (b) tactical planner. 

The tactical planner operates at a lower level, bein 
the responsible module when fine, local motion contro 
is required. Towards this, it constantly checks for en- 
vironment obstacles using the platform sonars. In case 
that an obstacle is detected at a nearby distance, the 
tactical planner takes over control from the global plan- 
ner. It uses Dp and the sonar information to render the 
local platform direction Dpl, as shown in Fig 3(b). 

The latter is determined as illustrated in Fig 4(a). 
Let us denote with SO the sensor pointing in the dl- 
rection of the platform motion, Dp. Then, SI, 52,. . ., 
denote the sonars on the one side of SO, whereas 
~ - 1 ~ 5 - 2 ,  . . . , denote the sonars on the other side of SO. 
Let us also assume that all sonars between s-i and s j  
(included) indicate the presence of an obstacle. Then, 
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the platform local direction of motion Dpl is set in the 
direction pointed to by sj+l, if the angle between the 
latter direction and Dp is smaller than the angle be- 
tween Dp and the direction pointed to by s-(i+l) (see 
Fig 4(a)). Otherwise, it  is set in the direction pointed 
to by s - ( ~ + ~ ) .  In other words, the platform is set to 
avoid the obstacle in a way that its initial direction 
( D p )  is minimally modified. 

Visual 
Target 

visual & 
Target 

Obstacle 

visual U 
Target 

Obstacle 

Figure 4: Obstacle avoidance with simultaneous target 
tracking; see text for explanation. 

During this motion in the direction Dpl, the vision 
system maintains D,, by virtue of the target fixation 
capability. Therefore, the global planner determines 
a direction of motion, Dp 7 0,. The tactical plan- 
ner tries to minimize the difference between Dp and 
Dpl, taking into account the sonar information. Fig- 
ure 4(b) shows an intermediate snapshot of the motion 
commanded by the tactical planner, where this concept 
is illustrated. When matching between Dp and Dpl is 
made possible (Fig 4(c)), the tactical planner is deac- 
tivated and the global planner resumes control again; 
at this point the platform starts moving in a straight 
path towards the selected target. Upon reaching the 
desired target, the user either instructs the platform to 
stop or selects a new destination. 

3 Application to Robotic Wheelchairs 
In this section we focus particularly on robotic 

wheelchair platforms and consider the adaptation of 
the proposed navigation approach in this case. 
3.1 PlatformlWorkspace Configuration 

The proposed approach for assistive navigation of 
robotic wheelchairs presupposes a certain platform con- 
figuration. This is shown schematically in Fig 5 .  

The platform is assumed to be equipped with a vi- 
sion system, consisting of a camera mounted on an ac- 
tive head. The head supports at least two degrees of 
freedom: pan and tilt. The whole system is placed at 

Visiom 

n 
Pointing Display n ?3/ 

Figure 5:  Robotic platform layout. 

an appropriate height on top of the platform, so that 
it overlooks the workspace, without any parts of the 
scene being occluded by other parts of the platform or 
by the user. It is also assumed that the head provides 
a 360’ pan capability. Finally, an image displa and a 
pointing device are assumed to be available on t K e plat- 
form. The display is simply connected to the output of 
the camera, whereas the pointing device facilitates tar- 
et selection in the viewed scene. At a relatively low E eight, a ring of sonars is attached on the platform. 

The whole configuration is completed with on-board 
processing power and mechanical motors that execute 
the platform-motion commands. 

Typical navi ation sessions are assumed to take 

ent limitation of the approach, current technology and 
the strict requirements of this sensitive application area 
suggest indoor environments as an ideal workspace. 

3.2 Autonomy vs. Reliability 
Various approaches for robotic platform navigation 

range considerably in the degree of autonomy they sup- 
port. In the one end, one may regard “manually- 
controlled” platform motion, whereas, in the other 
end, fully autonomous navigation in unstructured en- 
vironments is considered. For the case of robotic 
wheelchairs, the former approach has already led to 
market products. Regarding autonomous navigation 
approaches, they are currently far from being reliable 
in order to be introduced in this sector. However, there 
is a clear demand for technology that would increase 
the independence of people with special needs [19, 21. 

Towards this end, the proposed approach for as- 
sistive navigation presents a very good compromise 
regarding the autonomy/reliability trade-off. It re- 
lieves the user from the continuous operation of the 
wheelchair, involving him/her only in the target selec- 
tion process. On the other side, it does not support 
navigation in non-visible areas, neither recognition of 
the target objects. It is, however, of utmost importance 
that the enhanced navigation capabilities, compared to 
contemporary ones, are offered without compromising 
robustness and reliability in platform operation. This 
is due to the fact that no higher-level, cognitive proce- 
dures are involved in any of the steps employed. More- 
over, performance reliability has been verified experi- 
mentally, as will be presented in the next section. 

place indoors. A 7 though this is by no means an inher- 

4 Experimental Results 
A prototype of the proposed navigation approach 

has been implemented and tested in a laboratory envi- 
ronment. Preliminary results are reported here, which 
demonstrate its feasibility in real scenarios. 
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4.1 Implementation 
The mobile robotic platform available at the Com- 

puter Vision and Robotics Laboratory (CVRL) of ICs- 
FORTH, namely TALOS, has been used as a testbed in 
all our experiments. TALOS includes: 

0 A mobile platform (equipped with a 486 and a Py- 
TIUM processors running Linux, wireless communi- 
cations, sonar, infrared and tactile sensors). 

0 A binocular, active vision head (independent con- 
trol of pan, tilt, left and right vergence). 

The system is configured so that the PFWJXUM is respon- 
sible for vision processing and control of the head, while 
the 486 controls the motion of the robot as well as its 
sensors. Communication between the two processors is 
facilitated by the TCX package 20 . The prototype de- 

interface for target selection. Currently, this is done 
interactively by the system operator. 
4.2 Laboratory Experimentation 

Several experiments have been conducted to test 
the effectiveness of the proposed navigation approach. 
In these experiments we have considered various 
workspace environments and target objects. Moreover, 
obstacles have been artificially placed to obstruct the 
initial, strai ht path to the target. These experiments 
have verifief the appropriateness of this approach for 
assistive navigation. Results from a sample experiment 
are presented here for demonstration purposes. 

The workspace for this experiment is shown in 
Fig 6 a . It  consists of a room with various “objects” 
place 6 ’  in it. The platform’s initial position was at the 
one end of the room. More specifically, Fig 6(b) shows 
a top view of the workspace; the robotic platform is 
denoted with the filled circle, whereas its initial orien- 
tation is indicated with the corresponding arrow. Some 
objects (chair, table, box, cart with an amplifier on 
top of it) are placed in various spots in the room. An 
obstacle has been intentionally placed as indicated in 

veloped on TALOS does not inc Id U e any advanced user 

Fig 6(b). 

Figure 6: (a) Workspace for navigation experiments, 
(b) top view of the workspace. 

In this experiment we have simulated a navigation 
session to reach the amplifier box, lying on the cart at 
the far end corner of the room. The scene, as viewed 
by the robot’s camera is shown in Fig 7. The tar et 
selection, performed by the user, is deplcted in Fig $a) 
with an arrow. As can be observed, this selection corre- 
sponds to the amplifier box. The template constructed 
for this user selection is shown in Fig 7(b), as a window 
superimposed on the actual image. 

Figure 7: Scene viewed by the camera mounted on TA- 
LOS; (a) user selection, (b) constructed template. 

Following that, target fixation has been performed 
and platform navigation has been initiated in a straight 
line towards the selected target. This is shown in the 
first few images of Fig 8. Actually, FiG 8 shows a se- 
quence of snapshots of the whole navigation session, 
until the tar et was reached. After a short straight 

detected. The ima es in the second and third row of 

to avoid it. Durin this, fixation of the vision system 

of the obstacle avoidance motion, TALOS has again ini- 
tiated a motion in a straight line towards the target. 
This is shown in the images in the last row of Fig 8. 

The result presented here, although conducted in 
a laboratory workspace, demonstrates clearly our ap- 
proach for assistive navigation and serves as an indica- 
tion of its performance in indoor environments. 

motion, the o % stacle, cutting the robot’s way, has been 

Fig 8 illustrate the % etour performed by TALOS in order 

to the target has E een maintained. After completion 

Figure 8: Snapshots from a navigation session. 

5 Conclusions and Future Work 
In this paper we have presented an approach to- 

wards introducing assistive navigational capabilities 
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in robotic wheelchair platforms. Contemporary ap- 
proaches usually fail to support autonomous navigation 
and provide some low level functionalities; however, the 
motion of the platform is user controlled. This can be 
attributed to the fact that these approaches lack some 
kind of environment representation that would facili- 
tate execution of navigation goals. 

In our approach, we overcome this limitation by 
introducing visual representations of the selected tar- 
get. This is coupled with sonar-based obstacle avoid- 
ance techniques. The resulting approach exhibits a 
navigational behavior that may be useful for robotic 
wheelchairs. To the best of our knowledge, computer 
vision has not been employed before in this sensitive 
application area. This is mainly due to the fact that 
computer vision is still not reliable enough to be em- 
ployed in cases where safety and robustness are at a 
premium. By excluding, however, high level cognitive 
tasks from the vision system and relying on the user for 
performing them, we have been able to achieve robust 
system performance. 

The proposed approach concerns only user-selected 
tareets. Towards assisting the user in the target se- 
lection process, vision techniques that will suggest re- 
gions of interest can be employed. Such techniques 
will extract precategorical visual information that cor- 
responds to  potentially interesting features (e.g. color, 
symmetry) or dynamic events of the environment. The 
case of dynamic events is of particular importance, 
since they signal changes in the environment. For ex- 
ample, recent work on motion perception [21, 22, 231 
and tracking of moving objects [24, 181 can be used for 
enabling a robotic wheelchair to follow a person that 
moves in the static environment. 

Since the proposed approach does not make any lim- 
iting assumptions about the “robotic platform”, it can 
effectively be exploited by other robotic actuators, e.g. 
flexible manipulators, in tasks such as object manipu- 
lation. User selection of an object triggers fixation on 
that, which can then be easily manipulated (e.g. picked 
up). Such functionalities can be effectively integrated 
with the navigational functionalities presented above, 
resulting in robotic platforms with advanced naviga- 
tional and manipulation capabilities. 
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