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Abstract 

This paper considers a spec@ problem of visual percep- 
tion of motion, namely the problem of visual detection of 
independent 3 0  motion. Most of the existing techniques for 
solving this problem rely on restrictive assumptions about 
the environment, the observer’s motion, or both. Moreovel; 
they are based on the computation of optical jow, which 
amounts to solving the ill-posed correspondence problem. 
In this work, independent motion detection is formulated as 
robust parameter estimation applied to the visual input ac- 
quired by a binoculal; rigidly moving observer Depth and 
motion measurements are combined in a linear model. The 
parameters of this model are related to the parameters of 
self-motion (egomotion) and the parameters of the stereo- 
scopic configuration of the observer The robust estimation 
of this model leads to a segmentation of the scene based on 
3 0  motion. The method avoids the correspondence problem 
by employing only normaljow fields. Experimental results 
demonstrate the effectiveness of this method in detecting 
independent motion in scenes with large depth variations, 
without any constraints imposed on observer motion. 

1. Introduction 

The visual perception of motion has been the subject of 
many research efforts due to its fundamental importance for 
many visually assisted tasks. Independent 3D motion detec- 
tion (IMD) is an important motion perception capability of 
a seeing system. In a world where changes of state are often 
more important than the states themselves, the perception 
of independent motion provides a rich input to attention, 
informing a seeing system about dynamic changes in the 
environment. 

In the case of a static observer, the problem of indepen- 
dent motion detection can be treated as a problem of change 
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detection [SI. The situation is much more complicated when 
the observer moves relative to the environment. In this case, 
even the static parts of the scene appear to be moving in a 
way that depends on the motion of the observer and on the 
structure of the viewed scene. The case of a moving ob- 
server, is also of great interest because biological and some 
man-made visual systems are usually in constant motion. 

In the case of a moving observer, IMD has been often 
approached as a problem of segmenting the 2D motion that 
is computed from a temporal sequence of images. Wang 
and Adelson [ 161 estimate affine models for optical flow in 
image patches. Patches are then combined in larger mo- 
tion segments based on a Ic-means clustering scheme that 
merges two patches if the distance of their motion parame- 
ters is sufficiently small. Nordlund and Uhlin E1 11 estimate 
the parameters of an affine model of 2D motion, assuming 
that the estimation of the model parameters will not be af- 
fected considerably by the presence of small independently 
moving objects. IMD is then achieved by determining the 
points where the residual between the measured and the 
predicted flow is large. The basic problem of the methods 
that employ 2D models is that they assume scenes where 
depth variations are small compared to the distance from the 
observer. However, in real scenes depth variations may be 
large and, therefore, the discontinuities that are detected by 
the 2D methods are not only due to motion, but also due the 
structure of the scene. 

Solutions to the problem of IMD have also been provided 
using 3D models. Employing 3D models makes the prob- 
lem more difficult because extra variables are introduced 
regarding the depths of scene points. This in turn requires 
certain assumptions to be made made in order to provide 
additional constraints for the problem. Most of the methods 
depend on the accurate computation of a dense optical flow 
field or on the computation of a sparse map of feature cor- 
respondences. Wang and Duncan [ 171 present an iterative 
method for recovering the 3D motion and structure of in- 
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dependently moving objects from a sparse set of velocities 
obtained from a pair of calibrated, parallel cameras. Other 
assumptions that are commonly made by existing methods 
are related to the motion of the observer, to the structure of 
the scene in view, or both. Sharma and Aloimonos [13] and 
Clarke and Zisserman [4] have considered the IMD prob- 
lem for an observer pursuing restricted translational motion. 
Adiv [ 13 performs segmentation by assuming planar surfaces 
undergoing rigid motion, thus introducing an environmental 
assumption. Thompson and Pong [ 141 derive various princi- 
ples for detecting independent motion when certain aspects 
of the egomotion or of the scene structure are known. How- 
ever, the practical exploitation of the underlying principles 
is limited because of the assumptions they are based on and 
other open implementation issues. Argyros et a1 [2]  present 
a method that uses stereoscopic information to segment an 
image into depth layers, in an effort to decompose the 3D 
problem into a set of 2D ones. The method provides reliable 
results at each depth layer, but there are certain limitations 
regarding the integration of results from the various depth 
layers. In Argyros et al [3], qualitative functions of depth 
estimated from stereo and motion are extracted in image 
patches. Comparison of these functions leads to conclu- 
sions regarding the number of 3D motions in a patch. The 
method is reliable and computationally efficient, but the re- 
sulting map of independently moving objects is coarse. 

In order to overcome the limitations of existing methods, 
this paper proposes a new method for IMD. The method 
relies on the computation of normal flow, the component 
of motion in the direction of the image gradient, which is 
less informative compared to optical flow but can be more 
accurately computed from a temporal sequence of images. 
Based on the choice of normal flow to represent visual mo- 
tion, the method exploits stereoscopic information in order 
to eliminate the depth variable from 3D motion equations. 
However, knowledge on the parameters of the stereo con- 
figuration (i.e. extrinsic calibration) is not required. The 
method assumes an observer that moves rigidly with unre- 
stricted translational and rotational egomotion. Independent 
motion can be rigid or non-rigid. 

The rest of this paper is organized as follows. Section 
2 presents the input used by the proposed method and is- 
sues related to robust regression, which constitutes a basic 
building block of the proposed method. Section 3 presents 
the method itself. Section 4 presents experimental results 
from applying the method to real-world image sequences. 
Finally, section 5 concludes the paper with an overview of 
its main contributions. 

2. Preliminaries 

Before proceeding with the description of the proposed 
method, issues related to motion representation are dis- 

cussed. In addition, a brief discussion on robust regression 
methods is provided, since they constitute a building block 
of the proposed IMD method. 

2.1. Visual motion representation 

Consider a coordinate system O X Y  Z at the optical cen- 
ter (nodal point) of a pinhole camera, such that the axis OZ 
coincides with the optical axis. Suppose that the camera 
is moving rigidly with respect to its 3D static environment 
with translational motion (U, VI W )  and rotational motion 
(a ,  p, y), as shown in Fig. 1. Under perspective projection, 

Figure 1. The camera coordinate system. 

the equations relating the 2D velocity (u ,w)  of an image 
point p(z ,  9)  to the 3D velocity of the projected 3D point 
P ( X ,  Y,  2)  are [9]: 

+ a - - @  - + f  + y y  c 1 ( - U f + z W )  zcy 

f U =  

Equations (1)  describe a 2D motion vector field, which re- 
lates the 3D motion of points to their 2D projected motion 
on the image plane. The motion field is a purely geometrical 
concept and it is not necessarily identical to the optical flow 
field [6], which describes the motion of brightness patterns 
observed because of the relative motion between the imag- 
ing system and the viewed scene. Even in the cases that 
these two fields are identical, the computation of the optical 
flow field requires special conditions (such as smoothness) 
to be satisfied for a unique solution to exist. This is because 
the computation of optical flow requires the recovery of two 
unknowns ( U ,  w) at a certain point, while, at each point, 
only one constraint can be derived without any smooth- 
ness assumptions. This constraint is the well known optical 
$ow constraint equation, originally developed by Horn and 
Schunk [7]: 

(2) I,. + IYtJ + I, = 0 
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In eq. (2 )  I,, I ,  and It are the two spatial and the temporal 
derivatives of the image intensity function. This equation 
gives only one local constraint on the flow values. In order to 
get a second constraint, the methods that aim at recovering 
optical flow typically assume a smooth flow field. How- 
ever, this assumption does not always hold because of depth 
discontinuities, independent 3D motion etc. 

For the above reason, the proposed IMD method does 
not rely on the computation of optical flow, but rather on 
the normal flow field, the projection of the optical flow field 
in the direction of image gradients. The normal flow field 
is not necessarily identical to the normal motion field (the 
projection of the motion field along the image gradient), in 
the same way that the optical flow is not necessarily iden- 
tical to the motion field [15]. It has been shown, however, 
that normal flows are reliable in points where the image gra- 
dient has a large magnitude. Normal flow vectors at such 
points can be used as a robust input to 3D motion perception 
algorithms. 

2.2. Robust regression 

The aim of robust regression methods [12] is to estimate 
the parameters of a linear model based on data sets contain- 
ing outliers, i.e. observations that deviate considerably from 
the model describing the rest of the observations. The main 
characteristic of robust estimators is their high breakdown 
point, which may be defined as the smallest amount of out- 
lier contamination that may force the value of the estimate 
outside an arbitrary range. 

A variety of robust estimators have been used in com- 
puter vision. The RANSCAC method [5] is probably the 
most popular one, but its reported breakdown point is small 
compared to other robust estimators. Meer et a1 [ 101 provide 
an interesting review of the use of robust regression methods 
in computer vision. 

The LMedS method, proposed by Rousseeuw [12], is a 
robust estimator with a breakdown point of 50%. Qualita- 
tively, LMedS tries to find a set of model parameters such 
that the model best fits the majority of the observations. 
Once LMedS has been applied to a set of observations, a 
standard deviation estimate can be derived, which enables 
the identification of model outliers. The high breakdown 
point of LMedS makes it suitable for the purposes of this 
work. 

, 

3. Proposed method 

Consider a stereoscopic observer that is moving with 
unrestricted motion in 3D space. Due to this motion, a 
reliable normal flow vector can be computed at each point 
where the image intensity gradient is large. Let (n,, nY)  be 

the unit vector in the gradient direction. The magnitude uM 
of the normal flow vector is given by: 

uM = un,+vn, (3) 

which, by substitution from eq. (l), yields: 

uM = -n,f- U - n f -  V + (m, + yn,) - W 
z y z  2 

+ { y n a : +  ( $ + f ) n , } a  (4) 

Equation (4) highlights some of the difficulties of the IMD 
problem when employing normal flow. Each image point 
(in fact, each point at which the intensity gradient has a 
significant magnitude and, therefore, a reliable normal flow 
vector can be computed) provides one constraint on the 3D 
motion parameters. For each 3D motion lc present in the 
scene (either egomotion or independent motion), one set 
of unknown motion parameters (Uk,  V k ,  W k ) ,  ( a k ,  P k ,  yk) 
is introduced. Furthermore, if no assumption is made re- 
garding the depth 2, each point introduces one independent 
depth variable. Thus, n computed normal flow vectors and 
m 3D motions result in n available constraints with n + 6m 
unknowns. Evidently, the problem cannot be solved without 
any additional information on depth. 

Consider now the geometry of a typical stereo configura- 
tion of a fixating pair of cameras. A pair of images captured 
with such a configuration contains information relevant to 
depth, that manifests itself in the form of disparities defined 
by the displacements of points between images. Since the 
stereoscopic pair of images can be acquired simultaneously, 
there is no dynamic change in the world that can be recorded 
by them. It can easily be observed that a stereo image pair 
is identical to the sequence that would result from a hypo- 
thetical (ego)motion that brings one camera to the position 
of the other'. This observation enables the analysis of a 
stereo pair based on motion analysis techniques. The hypo- 
thetical motion that transforms the position of one camera 
to the other is simpler than the one described by the gen- 
eral motion model of eq. (1). Fig. 2 shows the motion that 
maps the position of the left camera that of the right camera. 
Evidently, there is no rotation around the X and 2 axes, and 
no translation along the Y axis. Thus, the translational and 
rotational component of the imaginary motion can be writ- 
ten as (U,, 0, Ws) and (0, PS,  O), respectively. Furthermore, 
in most practical situations, the translation W, along the 2 
axis is negligible compared to the rest of the terms. W, is 
usually two orders of magnitude smaller than U,. In fact, for 

~ 

'Regardless of how a pair of images is captured, i.e. by a binocular sys- 
tem configuration or by a moving camera, these images can he considered 
as views of the same scene from different viewpoints. 

674 



F 

/ 
U. 

Figure 2. The parameters of the motion that 
transforms the position of the left camera to 
the position of the right camera (top view of 
the stereo configuration). 

special stereo configurations (e.g. a right angled one) it can 
be shown that W, is exactly equal to zero. Consequently, at 
each image point, a normal flow value us due to stereo may 
be computed as: 

In practical situations, the computation of normal flow 
from a stereoscopic pair of images needs further considera- 
tion. The computation of normal flow is based on the optical 
flow constraint equation, which does not hold if the two im- 
ages differ too much. Moreover, normal flow is computed 
from discrete images through spatial and temporal differen- 
tiation with small masks. Issues related to the computation 
of normal flow due to stereo are considered in Argyros et a1 
[21. 

By solving eq. ( 5 )  for 2, we obtain: 

(6) 
-n,f U, z =  

us - [ ( y  + f )  n, + yny] pS 

The computation of normal flow involves the computation 
of the partial image derivatives I ,  and Iy , which define the 
normalized vector (nz ,  nY) in the gradient direction. If, 
for the computation of both stereo and motion normal flow 
fields, these derivatives are computed in the same reference 
frame, then n, and ny are the same for both eqs. (4) and (6). 
Therefore, the substitution of eq. (6) into eq. (4) results in 
the following equation: 

(7) 

Equation (7) is linear in the variables $1 = $, $2 = 
-a _ _  UPS V VP W WPS 

$7 = a, and $8 = y. These variables are expressions 
U, p, $3 = $4 = e> = $6 = - us ’ 

involving the 3D motion parameters and the stereo config- 
uration parameters. LMedS estimation can be applied to a 
set of observations of the model of eq. (7) as a means to 
estimate the parameters $i, 1 5 i _< 8. LMedS will provide 
estimates & of the parameters $i and a segmentation of the 
image points into model inliers and model outliers. Model 
inliers, which are compatible with the estimated parameters 
&, correspond to image points that move with a dominant 
set of 3D motion parameters. A point may belong to the set 
of outliers if at least one of the following holds: 

1. The quantities us and/or uM for this point have been 
computed erroneously. 

2. The 3D motion parameters for this point are different 
compared to the 3D motion parameters describing the 
majority of points. 

The points of the first class will, in principle, be few and 
sparsely distributed over the image plane. This is because 
only reliable normal flow values are considered. The second 
class of points is essentially the class of points that are not 
compatible with the dominant 3D motion parameters. Thus, 
in the case of two rigid motions in a scene, the inlier/outlier 
characterization of points achieved by LMedS is equivalent 
to a dominant/secondary 3D motion segmentation of the 
scene. In the case that more than two rigid motions are 
present in a scene, the correctness of 3D motion segmen- 
tation depends on the spatial extent of the 3D motions. If 
there is one dominant 3D motion (in the sense that at least 
SO% of the total number of points move with this motion), 
LMedS will be able to handle the situation successfully. 
This is because of the high breakdown point of LMedS, 
which tolerates an outlier percentage of up to 50% of the 
total number of points. The inliers will correspond to the 
dominant motion (egomotion) and the set of outliers will 
contain all secondary (independent) motions. A recursive 
application of LMedS to the set of outliers may further dis- 
criminate the rest of the motions. The recursive application 
of LMedS should be terminated when the remaining points 
become fewer than a certain threshold. There are two rea- 
sons for this. First, if the number of points becomes too 
small, then the number of constraints provided by eq. (7) 
becomes small and the discrimination between inliers and 
outliers is subject to errors. Second, at each recursive appli- 
cation of LMedS, the set of outliers does not contain only 
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points that correspond to a motion different than the domi- 
nant one, but also points where normal Bows have not been 
computed accurately. 

3.1. Postprocessing 

According to the proposed method for independent mo- 
tion detection, points are characterized as being indepen- 
dently moving or not based on their conformance to a general 
rigid 3D model of egomotion. The characterization is made 
at the point level, without requiring any environmental as- 
sumptions, such as smoothness, to hold in the neighborhood 
of each point. In order to further exploit information regard- 
ing independent motion, it is often considered preferable to 
refer to connected, independently moving areas rather than 
to isolated points. There are three main reasons why the 
points of a motion segment do not form connected regions. 
First, the normal flow field is usually a sparse field, because 
normal flow values are considered unreliable in certain cases 
(e.g. in points with a small gradient value). Second, there is 
always the possibility of errors in measurements of normal 
flow and, therefore, some points may become model inliers 
(or outliers) because of these errors and not due to their 3D 
motion parameters. Finally, normal flow is a projection of 
the optical flow onto a certain direction. Infinitely many 
other optical flow vectors have the same projection on this 
direction. Consequently, a normal flow vector may be com- 
patible with the parameters of two different 3D motions, and 
therefore a number of point misclassifications may arise. 

We overcome the problem of disconnected motion seg- 
ments by exploiting the fact that, in the above cases, misclas- 
sified points are sparsely distributed over the image plane. 
A simple majority voting scheme is used. At a first step, the 
number of inliers and outliers is computed in the neighbor- 
hood of each image point. The label of this point becomes 
the label of the majority in its neighborhood. This allows 
isolated points to be removed. In the resulting map, the label 
of the outliers is replicated in a small neighborhoodin order 
to group points of the same category into connected regions. 

3.2. Egomotion estimation 

Besides the inlier/outlier characterization, LMedS pro- 
vides estimations & for the parameters q5i of the linear model 
of eq. (7). Each of the model parameters q5i corresponds to 
expressions involving the 3D motion parameters (U, V,  W )  
and (a,  p, y) of the observer and the stereo configuration 
parameters (Us ,  ps) .  Thus, the observer is able to relate 
his own motion parameters to the parameters of his stereo 
configuration, i.e. to parameters of his own body2. More- 
over, the estimated parameters & can also be used to provide 

2For example, 61 relates the horizontal component of the instantaneous 
translational 3D motion to the baseline length. 

quantitative knowledge regarding the 3D motion parameters 
of the observer. More specifically, the following relations 
hold: 

41 f 43 f 
45 4 5  

20 = -, yo = - 

where, 20 and yo are the coordinates of the FOE (i.e. the 
point where the direction of translation intersects the in- 
finitely large image plane). Similarly, an estimation of the 
vergence angle of the stereo configuration is possible: 

44  P* = - 43 

4. Experimental results 

The experimental evaluation of the proposed method has 
been based on real-world image sequences that have been ac- 
quired by TALOS, the mobile robotic platform of the Com- 
puter Vision and Robotics Laboratory (CVRL) of FORTH. 
Several experiments have been conducted to test the pro- 
posed method. It should be stressed that during the course 
of all the experiments the exact values for the intrinsic cam- 
era parameters and the stereo configuration parameters were 
unknown. 

A sample result refers to the “cart” image sequence. One 
frame of the “cart” sequence (right image of the stereo pair 
at time t )  is shown in Fig. 3. In this sequence, a binocular 

Figure 3. One frame of the “cart” sequence. 

observer with parallel cameras performs a translational mo- 
tion with U and W components as well as with a rotational 
p component. The horizontal translation is the motion that 
dominates. The scene contains a distant background and a 
foreground close to the observer. The background contains 
two independently moving objects: A cart that translates in 
the opposite direction of the observer (middle of the scene) 
and a small box (to the right of the scene) that translates in the 
same direction with the observer, but with different velocity. 
The foreground of the scene contains a table on which there 
is a toy car. Both objects are stationary. Figure 4 illustrates 
the results of 3D motion segmentation of the “cart” sequence 

676 



Figure 4. 3D motion segmentation for the 
“cart” sequence (a) before and, (b) after post- 
processing. 

by using the proposed method. Figure 4(a) shows the in- 
termediate segmentation results (after LMedS estimation). 
Black color corresponds to egomotion and white color cor- 
responds to independent motion. Gray color corresponds to 
points where no decision can be made, due to low values of 
image gradients and, therefore, lack of normal flow vectors. 
It can be observed that the largest concentration of white 
(i.e. independently moving) points is on the regions of the 
independently moving objects. The points that are not iden- 
tified as independently moving, although they belong to an 
independent motion, are mainly those belonging to horizon- 
tal edges. This is because the model of eq. (7) does not hold 
for n, = 0, which is the case of vertical gradients or, equiv- 
alently, horizontal edges ((n,, ny) = (0,l)). Figure 4(b) 
presents the results of Fig. 4(a) after postprocessing, which 
eliminates isolated outliers (inliers) in large populations of 
inliers (outliers) and, in the resulting map, dilates the label 
of remaining outliers in a small neighborhood. In Fig. 4(b), 
areas that are detected as independently moving appear with 
the intensities that they have in the original image, while all 
other areas are masked out. It can be seen that after this type 
of postprocessing the bodies of the cart and the box have 
been successfully identified as independently moving. 

5. Conclusions 

Artificial seeing systems should be able to operate in en- 
vironments that contain both stationary and moving objects. 
The perception of independent 3D motion is crucial because 
it provides useful information on where attention should be 
focused and, probably, maintained. In this paper, IMD was 
based on motion and structure information that an observer 
acquires while moving in 3D space. The proposed method 
employs 3D motion models and is able to perform satis- 
factorily even in scenes with considerable depth variations. 
The method relies on normal flow fields, thus avoiding the 
ill-posed correspondence problem. Unrestricted rigid ego- 
motion was assumed for the observer. Ongoing research 

aims at exploiting the proposed method in the general con- 
text of a robot navigating in 3D space, where the cooperation 
among various visually-guided behaviors and issues such as 
real-time performance are of central importance. 
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