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Abstract

This paper considers a specific. problem of visual per-
ception of motion, namely the problem of visual detection
of independent 3D motion. Most of the existing tech-
niques for solving this problem rely on restrictive assump-
tions about the environment, the observer’s motion, or
both. Moreover, they are based on the computation of a
dense optical flow field, which amounts to solving the ill-
posed correspondence problem. In this work, independent
motion detection is formulated as a problem of robust pa-
rameter estimation applied to the wvisual input acquired
by a rigidly moving observer. The proposed method au-
tomatically selects a planar surface in the scene and the
residual planar parallax normal flow field with respect to
the motion of this surface is computed at two successive
time instants. The two resulting normal flow fields are
then combined in a linear model. The parameters of this
model are related to the parameters of self-motion (ego-
motion) and their robust estimation leads to a segmenta-
tion of the scene based on 3D motion. The method avoids
a complete solution to the correspondence problem by se-
lectively matching subsets of image points and by employ-
ing normal flow fields. Experimental results demonstrate
the effectiveness of the proposed method in detecting in-
dependent motion in scenes with large depth variations
and unrestricted observer motion.

1 Introduction and Previous Work

The visual perception of motion has been the subject
of many research efforts due to its fundamental impor-
tance for many visually assisted tasks. Independent 3D
motion detection (IMD) is an important motion percep-
tion capability of a mobile seeing system. The problem
of IMD is particularly challenging, since the motion of
the observer causes every object in his field of view to
appear moving in a manner dependent on its relative mo-
tion with regard to the observer and the structure of the
viewed scene.

IMD has often been treated as a problem of segmenting
the 2D motion field that is computed from a temporal
sequence of images. A typical example of this approach
appears in [12]. The basic problem of such methods is
that they assume scenes where depth variations are small
compared to the distance from the observer. However, in
real scenes depth- variations can be large and, therefore,
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2D methods may detect discontinuities that are not only
due to motion, but also due to the structure of the scene.

Solutions to the problem of IMD have also been pro-
vided using 3D models. The employment of 3D mod-
els makes the problem more difficult because extra vari-
ables regarding the depths of scene points are introduced.
This in turn requires certain assumptions to be made in
order to provide additional constraints for the problem.
Most of the methods depend on the accurate computa-
tion of a dense optical flow field or on the computation
of a sparse map of feature correspondences [18]. Other
assumptions that are commonly made by existing meth-
ods are related to the motion of the observer, to the
structure of the viewed scene, or both. In [14] for exam-
ple, the IMD problem for an observer pursuing restricted
translational motion is considered. Adiv [1] performs seg-
mentation by assuming planar surfaces undergoing rigid
motion, thus introducing an environmental assumption.
Various principles for IMD, when certain aspects of the
egomotion or of the scene structure are known, are de-
rived in [16]. However, the practical exploitation of the
underlying principles is limited because of the assump-
tions they are based on and other open implementation
issues. Argyroset al [2, 3, 4] have proposed three methods
that combine depth and motion information extracted by
a binocular observer. Although all three methods avoid
any assumptions related to the egomotion or the scene
structure and do not require the correspondence problem
to be solved, their main disadvantage is that they assume
that normal flow can be computed from a pair of stereo
images, an assumption that is valid in special cases only.

In order to overcome the limitations of existing meth-
ods, this paper proposes a new method for IMD. This
method is based on two key observations. The first is
that, although an accurate solution to the correspondence
problem in the general case is very difficult, the problem
can be solved with satisfactory accuracy in special cases,
such as those involving corners or points belonging to a
planar surface. The second observation is that the resid-
ual parallar field that remains after the registration of-
the images of a planar surface in two frames is an epipo-
lar field. The proposed method exploits the information
contained in the normal residual field, the component of
residual motion in the direction of the image gradient.
This field is less informative compared to the full resid-
ual flow, but can be more accurately computed from a
temporal sequence of images. The combination of two
such residual normal flow fields allows the elimination of
the depth variables from the 3D motion equations, which
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in turn leads to the derivation of a model that is lin-
ear in the 3D motion parameters. IMD is then handled
by applying a robust estimator to solve for the param-
eters of the linear model. Points that conform to the
estimated model are labeled as moving due to the mo-
tion of the observer, while points that are characterized
as outliers during the estimation process are labeled as
independently moving. The proposed method assumes
an observer that moves rigidly with unrestricted trans-
lational and rotational egomotion. Independent motion
can be rigid or non-rigid and no calibration information
is necessary.

The rest of this paper is organized as follows. Section
2 presents the input used by the proposed method and
issues related to robust regression, which. constitutes a
basic building block of the proposed approach: Section
3 details a technique for identifying the dominant planar
surface in a scene. The estimation of the motion of the
dominant plane is outlined in Section 4. Section 5 dis-
cusses the decomposition of rigid image motion into the
motion of a planar surface and a residual parallax field.
The proposed method for IMD is presented in Section 6.
Experimental results from the application of the method
on real-world image sequences are presented in Section 7
and the paper is concluded in Section 8. A more detailed
version of the present paper can be found in [10].

2 Preliminaries

2.1 Visual Motion Representation

Consider a coordinate system OXY Z at the optical
center (nodal point) of a pinhole camera, such that the
axis OZ coincides with the optical axis. Assuming that
the camera is moving rigidly with respect to its 3D static
environment with translational motion (U, V, W) and ro-
tational motion (c, 3,7), the equations relating the 2D
velocity (u,v) of an image point p(z,y) to the 3D velocity
of the projected 3D point P(X,Y,Z) under perspective
projection are [6):
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Equations (1) describe a 2D motion vector field, which
relates the 3D motion of points to their 2D projected
motion on the image plane. The.motion field is a purely
geometrical concept and it is not necessarily identical to
the optical flow field [6], which describes the motion of
brightness patterns observed because of the relative mo-
tion between the imaging system and the viewed scene.
Even in the cases that these two fields are identical, the
computation of the optical flow field requires some form
of smoothness conditions to be satisfied in the neighbor-
hoods of points for a unique solution to exist. Such as-
sumptions, however, are not always satisfied because of
depth discontinuities, illumination changes, independent
3D motion, etc.

For the above reason, the proposed IMD method does
not rely on the computation of dense optical flow, but
rather on the combination of the optical flow of a planar
surface and the normal flow field for the whole image.
As it will be shown in Section 4, once a planar surface in

the scene has been identified, the problem of estimating
its optical flow is a well-posed problem. On the other
hand, the normal flow field is the projection of the optical
flow field in the direction of image gradients and can be
directly computed from the spatiotemporal derivatives of
image intensity. It can be shown that the normal flow
field is not necessarily identical to the normal motion
field (the projection of the motion field along the image
gradient), in the same way that the optical flow field is not
necessarily identical to the motion field [17]. However,
normal flow is a good approximation to normal motion
at points where the image gradient has a large magnitude
[17]. Normal flow vectors at such points can be used as
a robust input to 3D motion perception algorithms.

2.2 Robust Regression

Regression analysis, i.e. the problem of fitting a model
to noisy data, is a very important subfield of statistics.
The traditional approach to regression analysis employs
the least squares (LS) method, which is popular due to its
low computational complexity. LS involves the solution
of a linear minimization problem, and achieves optimal
performance if the underlying noise distribution is Gaus-
sian with zero mean. However, in cases where the noise is
not Gaussian, or in the presence of outliers, that is obser-
vations that deviate considerably from the model repre-
senting the rest of the observations, the LS estimator be-
comes highly unreliable. One criterion for characterizing
the tolerance of an estimator with respect to outliers is
its breakdown point, which may be defined as the smallest
amount of outlier contamination that may force the value
of the estimate outside an arbitrary range. As an exam-
ple, LS has a breakdown point of 0%, because a single
outlier may have a substantial impact on the estimated
parameters.

The Least Median of Squares (LMedS) estimator was
originally proposed by Rousseeuw [13] and is able to han-
dle data sets containing many outliers. LMedS involves
the solution of a nonlinear minimization problem that
aims at estimating a set of model parameters that best
fit the majority of the observations. In contrast, LS tries
to estimate a set of model parameters that best fit all
the observations. Thus, LMedS has a breakdown point
of 50%, a characteristic which makes it particularly at-
tractive for the purposes of this work.

3 Dominant Plane Extraction

The traditional approach for identifying planar regions
using two images of a scene has been to recover the depth
of each point in the field of view and then segment the
resulting depth map into planes. This process however,
involves computations that are numerically unstable and
requires difficult problems, such as point correspondence
and camera calibration, to be solved. Fortunately, sim-
pler methods that exploit results from projective geom-
etry have been proposed [11]. A well-known fact is that
groups of five corresponding coplanar points give rise to
two projective invariants. Another important concept is
the plane homography (also known as plane projectivity
or plane collineation) H, which relates two uncalibrated
views of a plane in three dimensions. Each 3D plane II
defines a nonsingular 3 x 3 matrix H which relates the
image of the plane in two views. More specifically, if m
is the projection in one view of a point belonging to II
and m’ is the corresponding projection in a second view,

then m’ = Hm. The plane homography can be estimated
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from four pairs of corresponding coplanar points in gen-
eral position (no three points collinear).

Based on the above results, Sinclair and Blake [15]
have proposed an iterative method for identifying copla-
nar sets of corresponding points. Briefly, this method
uses as input a set of matched corners, extracted from
a pair of images that have been acquired from consider-
ably different viewpoints in the 3D space. Such an im-
age pair can be captured either by the two cameras of
a binocular system, or by the single camera of a monoc-
ular system at two instants that are far apart in time.
Owing to the significant disparities defined by such im-
ages, accurate 3D structure information for the viewed
scene can be recovered. Initially, a random sample con-
sisting of five pairs from the set of matched corners is
formed. If the selected corners satisfy the plane invari-
ants, they are likely to belong to the same plane. Next,
the plane homography corresponding to the selected cor-
ners is estimated. To verify that the five selected points
lie on the same plane, the estimated plane homography
is used to find more coplanar points. For every corner
in one image, the plane homography can predict the lo-
cation of the corresponding corner in the second image.
If this location is sufficiently close to the true location of
the matching corner, the corner in question is assumed
to be coplanar with the corners in the selected sample.
If the number of coplanar points identified during this
step is above a threshold, the method concludes that a
plane has indeed been found. The corresponding plane
homography is then re-estimated using the whole set of
coplanar points and this set is removed from further con-
sideration. The sampling process iterates until either the
number of corners that have not been assigned to a plane
drops below a threshold or a predetermined number of
iterations is completed.

When the iterative algorithm terminates, a set of
planes along with their homographies have been com-
puted. Multiplication of each point in the first view with
a homography matrix, warps the second view with re-
spect to the first and registers the image of the corre-
sponding plane in the two views. Change detection be-
tween the first and the warped second view can label
image points as changing in the two views or not. Points
that remain unchanged belong to the plane under con-
sideration. To account for the fact that typical change
detection algorithms fail in uniform, textureless areas, a
pixel is assumed to belong to a plane when it is labeled as
not changing by the change detection algorithm and the
magnitude of its gradient is above some threshold. The
plane having the largest number of points is declared to
be the dominant one. It will become clear in the follow-
ing sections that the result of change detection does not
have to be very accurate, since the part of the proposed
method for IMD that makes use of the location of the
dominant plane is tolerant to errors.

4" Robust Parametric Estimation of Op-

tical Flow

The problem of estimating 2D image velocity, or op-
tical flow, from image sequences is generally very dif-
ficult. This difficulty mainly stems from the fact that
transparencies, specular reflections, shadows, occlusions,
depth boundaries and independent motions give rise to
discontinuities in the optical flow field. This in turn im-
plies that an optical flow field is typically only piecewise
smooth [5]. Since the estimation of optical flow involves

the combination of constraints arising from an image re-
gion, no guarantee is given that the selected region will
contain only a single motion. In other words, the pri-
mary difficulty of most optical flow estimation techniques
is that they lack any information regarding the region of
support of a particular motion. This problem is referred
to in [5] as the generalized aperture problem.

In the case that an image region is known to corre-
spond to a plane in the scene, the optical flow within the
region can be accurately modeled as a function of eight
parameters and image coordinates [1]. This is known
as the quadratic model for optical flow, since it contains
terms that are of degree two in the image coordinates. At
this point, it should be noted that, if the camera is not
calibrated, the unknown intrinsic parameters (i.e. focal
length and location of principal point) are absorbed in
the eight flow parameters. By employing the quadratic
model, the estimation of optical flow amounts to the és-
timation of the eight parameters involved. The combi-
nation of the quadratic flow model with the optical flow
constraint equation [6], permits the derivation of an equa-
tion relating the eight planar flow parameters to the spa-
tiotemporal intensity derivatives. This equation is linear
in the parameters to be estimated and is overdetermined,
since each point of the plane contributes one constraint
regarding the eight unknown parameters. To account for
errors in the computation of derivatives, violations of the
intensity conservation assumption, errors in the determi-
nation of the region corresponding to the image of the
plane, etc, the LMedS estimator is again employed to
give a robust estimate of the parameters satisfying the
majority of the constraints. This “robustification” of the
optical flow estimation problem has already been sug-
gested by Black and Anandan [5], the major difference
being that they employed M-estimators which are less
robust compared to LMedS that is employed here.

5 Planar Parallax

Figure 1: Planar parallax.

Most motion analysis methods express rigid image mo-
tion as the sum of two displacement fields, namely a
translational and a rotational one. Recently, however,
it has been shown that if image motion is expressed in
terms of the motion of a parametric surface and a resid-
ual parallax field, important problems in motion analysis
become considerably simpler [9, 8]. In this section, the
equations describing the residual field are derived, assum-
ing that the employed parametric surface is a plane.

Let (u,v) be the displacement field between two im-
ages 7; and T4, acquired at time instants ¢ and ¢ + dt
respectively. Let also II be a 3D plane in the viewed scene
and let (ux,v,) be the 2D motion vector of a single point
belonging to II. As mentioned in Section 4, (ux, v, ) is de-
fined by a linear model with eight parameters. Warping
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1; towards Z; 4+ according to (ur,v,) will register Z; and
T;1at over regions of I, while regions not belonging to II
will be unregistered. According to Eq. (1), the residual
flow (u",v") between the warped Z; and Z;4 4 is [8]:

= (W -Uf)(1/Z -1/ Zx)
=W -V(/Z2-1/z,)

U= u—u.
v =

(2)

where 1/Z, is the depth of the 3D plane at pixel (z,y).
As can be seen from Eq. (2), the residual flow field is
purely translational. This is because the rotational com-
ponent of the motion does not depend on depth and is
thus canceled by the warping step. Consequently, all op-
tical flow vectors of the residual flow point towards the

U — Uy

FOE!. In a similar manner, the residual normal flow field ~

between the warped Z; and Z;44; is given by:
uny = {(@W = Uf)ne + YW = V)ny} (1/Z2 - 1/2z) (3)

where (n,,n,) is the unit vector in the direction of the
intensity gradient.

Figure 1 depicts geometrically the notion of planar
parallax. O and O’ are the camera focal points in the
two views, II a plane in the viewed scene and P, P are
two 3D points with P, belonging to II. Since P, and
P project to the same image point p in the first view,
their corresponding optical flow vectors share the same
rotational components.

6 Independent Motion Detection

Consider a rigid observer that is moving with unre-
stricted egomotion in 3D space. Due to this motion,
a reliable normal flow vector can be computed at each
point where the image intensity gradient is sufficiently
large. Let (ng,ny) be the unit vector in the gradient di-
rection. The magnitude u,, of the normal flow vector is
given by u, = un, + vn,, and as can be seen by sub-
stitution from Eq. (1), each image point introduces one
independent depth variable. Thus, n computed normal
flow vectors and m 3D motions result in n constraints re-
garding n+6m unknowns. Evidently, the problem cannot
be solved without any additional information on depth.

Let us now suppose that at least one of the surfaces
in the scene is planar or can be well approximated by
a plane. This assumption is often satisfied in practice,
especially in scenes containing man-made objects. Using
the technique described in Section 3, the dominant plane
in the scene can be extracted. Following this, the para-
metric model describing the motion of this plane can be
estimated as described in Section 4. The residual planar
parallax flow can then be computed from Eq. (2). Irani
and Anandan [7] have recently described a method for
IMD that computes the relative projective 3D structure
from this residual parallax flow. Their method, however,
requires the computation of a dense optical flow field, a
difficult problem in its own right. Noting that the resid-
ual flow field is translational, another approach to de-
tect independent motion is to locate the FOE and then,
similar to [14], label points that violate the epipolar con-
straint as independently moving. The major drawback of
this approach is that it depends critically on the correct-
ness of the estimated FOE. To avoid this problem, the
proposed method for IMD does.not attempt to estimate

1The FOE is the point (%,I-, %) on the image plane, which

defines the direction of translation.

the FOE. Instead, it combines the information from two
residual normal flow fields computed at consecutive time
nstants. )

Assume that three consecutive images Z;_4;, Z; and
T;4q¢ are captured at time instants ¢ — dt, t and ¢ + dt re-
spectively. Let 7y be a fourth “distant” image that along
with 7; permits the extraction of the dominant plane.
Also, let up, be the residual normal flow computed by
warping 7; towards ;4 4; using the motion of the domi-
nant plane. Similarly, let u',,, be the residual normal flow
computed by warping 7, towards 7;_4; using the domi-
gant plane. According to Eq. (2), un, and v, are given

y:

Uny = {@W = Uf)n, + W -V f)ny} 1/Zs
e = {@W = U g + GW' =V Iy} 1/ 25 (4)

where (U, V,W) and (U', V', W') are the translational ve-
locity vectors for the displacement between ¢ and t + dt
and ¢ and ¢ — dt respectively and 1/Z5 =1/Z - 1/Z,.

Both residual normal flow fields given by Egs. (4) are
defined in the same reference frame, namely Z;. This
implies that at each point (z,y) of Z;, having considerable
gradient magnitude, two normal flow vectors along the
same direction (ng,n,) can be computed. Solving the
first of Egs. (4) for 1/Z;5 and substituting into the second
results into the following equation

W(zng + yny)u'ny — Ufngu'ne — Vingu' n, —

W' (zng + yny)tny + U’ frgune + V' fogun, =0 (5)

in which the terms related to depth have been elimi-
nated. The above equation is linear in the variables
¢1 = W7 ¢2 = Ufa ¢3 = Vf7 ¢4 = W’a ¢5 :lefv
¢ = V' f. These variables involve the 3D motion param-
eters and the camera focal length. Assuming that the
dominant plane is not independently moving, violations
of Eq. (5) signal the presence of independently moving
objects. LMedS estimation can be applied to a set of ob-
servations of the model of Eq. (5) as a means to estimate
the parameters ¢;, 2 = 1,...,6. To avoid the trivial solu-
tion ¢; = 0, the solutions tried by LMedS are computed
with an eigenvector technique that imposes the constraint
||(¢11 ¢27 ¢3a ¢47 ¢57 ¢6)H2 =1L LMedS WIH pI'OVide esti-

mates ¢; of the parameters ¢; and a segmentation of the
image points into model inliers and model outliers. Model
inliers correspond to image points that move with the
dominant 3D motion. The set of outliers is the union of
the set of points for which the quantities un, and/or u’p,
have been computed erroneously, with the set of points
that move with 3D velocities different from the 3D ve-
locity of the majority of the points. The points in the
first set will be few and sparsely distributed over the im-
age plane. This is because only reliable normal flow vec-
tors are considered. The second set contains points that
are incompatible with the dominant 3D motion parame-
ters. Thus, in the case of two rigid motions in a scene,
the inlier/outlier characterization of points achieved by
LMedS is equivalent to a dominant/secondary 3D motion
segmentation of the scene. In the case that more than two
rigid motions are present in a scene, the correctness of 3D
motion segmentation depends on the spatial extent of the
3D motions. If there is one dominant 3D motion?, the

2Dominant in the sense that at least 50% of the points under
consideration move with this motion.
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high breakdown point of LMedS ensures that LMedS will
handle the situation successfully. Inliers will correspond
to the dominant motion (egomotion) and the outliers will
coincide with all secondary (independept) motions. Re-
cursive application of LMedS to the set of outliers may
further discriminate the remaining motions.

When implementing the method presented in the
preceding paragraphs, the residual normal flow can be
computed without actually warping the first image to-
wards the second according to the estimated planar flow.
Knowledge of the eight parameters defining the planar
flow enables the prediction of the normal flow that would
result if the dominant plane covered the whole visual field.
The residual normal flow can then simply be estimated as
the difference between the normal flow computed directly
from the pair of input images and the predicted planar
normal flow.

6.1 Postprocessing

According to the proposed method for independent
motion detection, points are characterized as being in-
dependently moving or not based on their conformance
to a general rigid 3D model of egomotion. The character-
ization is made at the point level, without requiring any
conditions to hold in the neighborhood of each point. In
order to further exploit information regarding indepen-
dent motion, it is often considered preferable to refer to
connected, independently moving areas rather than to
isolated points. There are three reasons why the points of
a motion segment may not form connected regions. First,
the normal flow field is usually a sparse field, because nor-
mal flow values are considered unreliable in certain cases
(e.g. at points with a small gradient value). Second,
there is always the possibility of errors in measurements
of normal flow and, therefore, some points may become
model inliers (or outliers) because of these errors and not
due to their 3D motion parameters. Finally, normal flow
is a projection of the optical flow onto a certain direc-
tion. Infinitely many other optical flow vectors have the
same projection onto this direction. Consequently, a nor-
mal flow vector may be compatible with the parameters
of two different 3D motions, and therefore a number of
point misclassifications may arise.

We overcome the problem of disconnected motion seg-
ments by exploiting the fact that, in the above cases,
misclassified points are sparsely distributed over the im-
age plane. A simple majority voting scheme is used. At a
first step, the number of inliers and outliers is computed
in the neighborhood of each image point. The label of
this point becomes the label of the majority in its neigh-
borhood. This allows isolated points to be removed. In
the resulting map, the label of the outliers is replicated
in a small neighborhood in order to group points of the
same category into connected regions.

7 Experimental Results

The proposed method has been evaluated experimen-
tally with the aid of several real-world image sequences.
During the course of all experiments, quantitative infor-
mation regarding camera motion and calibration param-
eters was not available. Due to space limitations, only
two of the conducted experiments are reported here.

The first experiment is based on the well known “cal-
endar” image sequence. Frame 2 of this sequence is shown
in Fig. 2(a).

In this sequence, the camera is panning in a right to left
direction and the viewed scene consists of a planar back-

(a)f (b)

Figure 2: (a) Frame 2 of the “calendar” sequence, (b)
residual normal flow field for frames 2-3.

ground and a nonplanar foreground. The background
contains a stationary wall and a calendar that is indepen-
dently moving upwards. The foreground contains three
independently moving objects. A pair of spheres is rotat-
ing on the left side of the scene, while a ball followed by
a toy train are moving in a right to left direction. The
dominant plane was extracted using frames 2 and 30.

Figure 3: Motion segmentation for the “calendar”-se-
quence (a) before and, (b) after postprocessing.

The pair of residual parallax normal flow fields was
computed between frames 2 - 3 and 2 - 1. The residual
parallax normal flow for frames 2 - 3 is shown in Fig-
ure 2(b). As can be seen from this figure, the residual
flow field is zero over the area corresponding to the dom-
inant plane, indicating that the dominant plane has been
successfully registered. Figure 3 illustrates the results of
motion segmentation on the “calendar” sequence. Figure
3(a) shows the intermediate segmentation results. Black
color corresponds to egomotion and white color corre-
sponds to independent motion. Gray color corresponds
to points where no decision can be made, due to low
image gradient and, therefore, lack of normal flow vec-
tors. It can be verified that the largest concentration of
white (i.e. independently moving) points is indeed over
the regions of the independently moving objects. Note
that independent motion was not detected along the ver-
tical edges of the calendar. This is because the inten-
sity gradient is perpendicular to the direction of motion
on these edges, which results in the corresponding nor-
mal flow vectors being equal to zero. The elongated ar-
eas below the calendar that are marked as independently
moving are actually shadows, cast by the calendar and
the rotating spheres, that are also moving. Figure 3(b)
presents the same result after postprocessing, which elim-
inates isolated outliers (inliers) in large populations of in-
liers (outliers) and, in the resulting map, dilates the label
of remaining outliers in a small neighborhood. It is clear
that after this step, the bodies of the four independently
moving objects have been successfully identified as such.

The second experiment concerns the “cars” image se-
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quence. Frame 5 of this sequence is shown in Fig. 4.

(o)t

Figure 4: (a) Frame 5 of the “cars” sequence, (b) residual
normal flow field for frames 5-6.

()i .

In this sequence, the camera is again panning in a
right to left direction. The two dark gray cars in the
foreground move independently while the white car on
the far left is stationary. A few trees in the background
form an approximately planar surface,. Frames 5 and 20
were used to extract the dominant plane.

Figure 5: Motion segmentation for the “cars” sequence
(a) before and, (b) after postprocessing.

Frames 5 - 6 and 5 - 4 are used to compute the pair of
residual parallax normal flow fields. Figure 4(b) shows
the residual parallax normal flow computed from frames
5 - 6. The results of motion segmentation on the “cars”
sequence before and after postprocessing are illustrated
in Figures 5(a) and 5(b) respectively. Black color cor-
responds to egomotion and white color corresponds to
independent motion. Gray color corresponds to points
with low intensity gradient, and thus without normal flow
vectors. As it can be seen from Fig. 5, the two cars are
correctly identified as independently moving. Moreover,
the independent motions of small parts of the tree foliage
are also detected.

8 Summary and Conclusions

Artificial seeing systems should operate in dynamic en-
vironments that consist of both stationary as well as mov-
ing objects. The perception of independent 3D motion
is crucial because it provides useful information regard-
ing dynamic changes in the environment, indicating areas
where attention should be focused and, possibly, main-
tained. In this paper, independent 3D motion detection
was based on a pair of residual parallax normal flow fields
that are computed by an observer that moves freely in 3D
space. The proposed method employs 3D motion models
and is able to perform satisfactorily even in scenes with
considerable depth variations. Both rigid and non-rigid
independent motion can be detected. Moreover, apart
from the requirement for the existence of a planar sur-
face in the viewed scene, no further assumptions regard-
ing the structure of the external world are made. The

method avoids a complete solution to the ill-posed cor-
respondence problem by matching only carefully selected
sets of image points. To guard against errors caused by

false matches, robust estimation techniques are employed.

Experimental results from the application of the proposed
method on real image sequences were also presented. Fu-
ture research will address the problem of estimating the
3D egomotion of the observer, based on the motion seg-
mentation results provided by the proposed method.
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