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Abstract

The present work considers corridor{following maneuvers for mobile robots with

nonholonomic constraints, guided by sensory data acquired by panoramic cameras.

The panoramic vision system provides information from an environment with tex-

tured walls to the motion control system, which drives the robot along a corridor.

Panoramic cameras have a 360� visual �eld, a capability that the proposed control

methods attempt to exploit. We consider two types of sensor{based controllers: one

is a path{following state feedback control law where the state of the robot inside the

corridor is reconstructed from the visual data; in the other, optical 
ow information

from several distinct \looking" directions in the �eld of view of the panoramic camera

is used directly in the control loop, without the need for state reconstruction. The in-

terest of the second type of controllers lies in the fact that this optical 
ow information

is not su�cient to reconstruct the state of the system, it is however su�cient for the

proposed control law to accomplish the desired task. Driving the robot along a corridor

amounts to the asymptotic stabilization of a subsystem of the robot's kinematics and

the proposed control schemes are shown to achieve this goal.
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1 Introduction

Corridor{following maneuvers for mobile robots with nonholonomic constraints are consid-
ered, which are guided by sensory data acquired by panoramic cameras. A vision system
with a 360� visual �eld provides information from an environment with textured walls to the
motion control system, which drives the robot along a corridor.

The main advantage of panoramic cameras is that they are not constrained by a lim-
ited �eld of view, like classical camera setups. Robotic tasks requiring movement in one
direction while observing environmental features in a di�erent one, can then be more easily
implemented.

In navigation tasks of mobile robots, the main alternatives to panoramic cameras are mov-
ing cameras (e.g. mounted on pan{and{tilt platforms or hand{eye systems) and multiple{
camera systems mounted on the robot. In the case of moving cameras, their precise po-
sitioning, especially when the mobile robot is also moving, may be a challenging control
problem [21]. Looking in a direction outside from the current �eld of view of the camera,
requires repositioning the sensor, which involves a delay that may be unacceptable when
the environment also changes. This problem becomes more severe when the direction where
the camera needs to look next is not known a{priori; time-consuming exploratory actions
are then necessary. In the case of multiple{camera systems, the lack of a common nodal
point of the cameras and the elaborate calibration required, complicate their use. The du-
plication of optical and electronic components increases the cost of the system. Moreover,
the system lacks 
exibility in observing an arbitrary direction of interest. In contrast to
the above, panoramic cameras o�er the capability of extracting information simultaneously
from all desired directions of their visual �eld. Neither moving parts, nor elaborate control
mechanisms or expensive hardware is required to achieve this capability.

A panoramic image generated by a camera with a paravoloid mirror (like the ones that
we consider in this work) can be thought of as a collection of images acquired by ordinary
perspective cameras that share a common nodal point. This property simpli�es signi�cantly
the derivation of the necessary information (Nayar and Baker [13], Svoboda, Pajdla and
Hlavac [19]). The advantages of sensors providing a panoramic image, with respect to the
solution of the 3D motion estimation problem, are also well known (Ferm�uller and Aloimonos
[7]). These advantages of wide �eld{of{view images signi�cantly bene�t navigation tasks;
in contrast, a narrow �eld{of{view image, corresponding e.g. to the human frontal eye
positioning, appears to bene�t the manipulation capabilities of the system.

Biological systems are known to exploit wide �eld{of{view images in controlling their
motion. The velocity of the perceived relative motion between the moving biological observer
and its environment (optical 
ow), inferred from such image sequences, can be used to control
the motion of the observer. Bees, for example, have laterally{pointing eyes, which amounts
to a wide f.o.v., and use optical 
ow from such images to infer distance 
own and control
their 
ight (Collett [5], Srinivasan, Zhang, Altwein and Tautz [18]).

Sensor{based control strategies for robotic systems are well developed for manipulator
arms; visual servoing, for instance, which consists in the direct use of visual information in a
system's control loop (Espiau, Chaumette and Rives [6], Hager and Hutchinson [9]), provides
relatively simple and robust solutions to various positioning and tracking tasks. Their exten-
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sion to the case of mobile robots is of signi�cant importance for practical applications (e.g.
in automating car driving maneuvers). However, it becomes complicated by the presence of
nonholonomic kinematic constraints in the motion of the mobile base, necessitating the use
of nonlinear control analysis and design tools (Tsakiris, Samson and Rives [20], [21]).

Vision{based path{following tasks, similar to ours and using wide f.o.v. sensor arrange-
ments are considered in Santos{Victor, Sandini, Curotto and Garibaldi [15], Argyros and
Bergholm [1] and Gaspar and Santos{Victor [8]. In [15], a two{camera system is considered,
which is mounted on a mobile robot, with the cameras facing opposite lateral directions.
The disparity between the average optical 
ow from the cameras is used in a PID loop
controlling the angular velocity of the robot, while this moves at constant speed along a
wall. In [1], the normal 
ow �eld (the component of optical 
ow along the image gradi-
ents) from a particular arrangement of three perspective cameras guides a path{following
task. An important di�erence of this work with the present one, which employs a panoramic
camera, is that processing of images is now signi�cantly simpli�ed by avoiding the need
for calibration of a multi{camera setup and by exploiting the properties of panoramic im-
ages. In [8], a landmark{based method for the reconstruction of the pose of a mobile robot
from panoramic images is presented. The reconstructed pose is, then, fed into the nonlin-
ear state{feedback path{following scheme developed in Samson [16], [17]. From the image
understanding viewpoint, this reconstruction is a relatively di�cult and error{prone proce-
dure, which we attempt to bypass in our scheme. These works do not attempt, in general,
a stability analysis of the resulting control scheme.

The task that we attempt to accomplish amounts to the asymptotic stabilization of a
subsystem of the robot's kinematics. Optical 
ow information from several distinct viewing
directions is used. After being derotated, it provides an estimate of the scaled di�erence of
inverse depths in these directions. Our sensor{based control scheme employs this estimate
directly in the control loop, without reconstructing the state of the system. This is very much
in the spirit of visual servoing schemes. The resulting control law is shown, using Lyapunov's
indirect method, to possess the necessary asymptotic stability properties, in the cases that
the heading speed of the mobile robot varies with time, but remains strictly positive or
negative over the entire duration of the task, and in the case that it varies periodically.
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2 Preliminaries

This section summarizes some stability concepts and methods needed in the sequel. Further
details can be found in Khalil [12] and Vidyasagar [22].

De�nition 1 (Stability of Autonomous Systems)
Consider the autonomous system

_x(t) = f [x(t)] ; (1)

where f : IRn �! IRn is locally Lipschitz. Let x(t) be the solution of system 1 at time t;
corresponding to the initial condition x(0): Assume that x = 0 is an equilibrium of system
1, i.e. f(0) = 0: Then this equilibrium is:

� Stable, if for each � > 0; there is a � = �(�) such that, if jjx(0)jj < �; then jjx(t)jj <
�; 8 t � 0:

� Asymptotically Stable, if it is stable and there exists a c > 0 such that, if jjx(0)jj < c;
then limt!1 x(t) = 0:

� Unstable, if it is not stable.

Thus, when the nonlinear system 1 is stable, for any �{neighborhood of the origin there is
a �{neighborhood of it, such that a trajectory starting in the latter never leaves the former.

De�nition 2 (Stability of Non{autonomous Systems)
Consider the non{autonomous system

_x(t) = f [t; x(t)] ; (2)

where f : [0; 1) � IRn �! IRn is piecewise continuous in t and locally Lipschitz in
x on [0; 1) � IRn: Let x(t) be the solution of system 2 at time t; corresponding to the
initial condition x(0): Assume that x = 0 is an equilibrium of system 2 at time 0; i.e.
f(t; 0) = 0; 8 t � 0: Then this equilibrium is:

� Stable, if for any � > 0 and t0 � 0; there is a � = �(t0; �) > 0 such that, if jjx(t0)jj <
�(t0; �); then jjx(t)jj < �; 8 t � t0:

� Uniformly stable over [0; 1); if for any � > 0; there is a � = �(�) such that, if
jjx(t0)jj < �(�) for t0 � 0; then jjx(t)jj < �; 8 t � t0 � 0:

� Asymptotically stable, if it is stable and if, for any t0 � 0; there exists a � = �(t0) > 0
such that, if jjx(0)jj < �(t0); then limt!1 x(t) = 0:

� Uniformly asymptotically stable over [0; 1); if it is uniformly stable over [0; 1) and
there exists a � > 0; independent of t0; such that, if jjx(t0)jj < � for t0 � 0; then
limt!1 x(t) = 0 and the convergence is uniform in t0 (i.e. for any � > 0; there is a
T (�) < 1; independent of t0; such that, if jjx(t0)jj < �; then jjx(t)jj < �; whenever
t > t0 + T (�) ) .
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� Exponentially Stable, if there exist constants c > 0; k > 0 and 
 > 0; such that, if
jjx(t0)jj < � for t0 � 0; then jjx(t)jj � k jjx(t0)jj e�
(t�t0); 8 t � t0 � 0:

� Unstable, if it is not stable.

Proposition 1 (Lyapunov's indirect method) [22]
Consider the non{autonomous system

_x(t) = f [t; x(t)] ; (3)

where f(t; �) is continuously di�erentiable and f(t; 0) = 0:
De�ne

A(t)
def
=

�
@f

@x
(t; x)

�
x=0

;

f1(t; x)
def
= f(t; x)� A(t) x

(4)

and assume that A(�) is bounded and that

lim
jjxjj!0

sup
t�0

jjf1(t; x)jj
jjxjj = 0 : (5)

Then, if the equilibrium z = 0 of the system

_z(t) = A(t)z(t) (6)

is uniformly asymptotically stable over [0;1); the equilibrium x = 0 of the system 3 is also
uniformly asymptotically stable over [0;1):

The system 6 is called the linearization of the nonlinear system 3 around the equilibrium
x = 0:
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3 Modeling

3.1 Mobile Robot Modeling

We consider a mobile robot of the unicycle type moving on a planar surface inside a corridor
with straight parallel textured walls. We suppose that a panoramic camera is mounted on
the robot (�g. 1).
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Figure 1: Mobile Robot with Panoramic Camera

Consider an inertial coordinate system fFOg centered at a point O of the plane and
aligned with one of the walls, a moving coordinate system fFMg attached to the middle M
of the robot's wheel axis and another moving one fFCg attached to the nodal point C of
the camera. Let (x; y) be the position of the point M and � be the orientation of the mobile
robot with respect to the coordinate system fFOg: Let � be the distance of the point C from
M and � the width of the corridor.

We suppose that the wheels of the mobile platform roll without slipping on the plane
supporting the system. This induces a nonholonomic constraint on the motion of the mobile
robot, due to the fact that the instantaneous velocity lateral to the heading direction of the
mobile platform has to be zero. From this, we get the usual unicycle kinematic model for
the mobile platform

_x = v cos � ; _y = v sin � ; _� = ! ; (7)

where v
def
= _x cos �+ _y sin � is the heading speed and ! is the angular velocity of the unicycle.

3.2 Panoramic Camera Modeling

Consider a pinhole camera and a camera-centered coordinate system CXY Z positioned at
its optical center C; with the CZ axis coinciding with the optical axis. Assume that the
camera is moving rigidly with respect to its 3D static environment with translational velocity
(U; V;W ) and rotational velocity (�; �; 
); both expressed with respect to the camera coor-
dinate system. Under perspective projection, the relation between the 2D velocity (ux; uy)
of an image point p with image coordinates (x; y) and the 3D velocity of the corresponding
3D point P with coordinates (X; Y; Z) is given by the optical 
ow equations [11]
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Figure 2: Panoramic Image

ux =
�Uf + xW

Z
+�

xy

f
� �

 
x2

f
+ f

!
+ 
y ; uy =

�V f + yW

Z
+�

 
y2

f
+ f

!
� �

xy

f
� 
x ;

(8)
where f is the focal length of the pinhole camera. Consider a mobile robot of the type
described above, with a panoramic camera mounted on it, so that the symmetry axis of the
paravoloid mirror passes through the robot's axis of rotation (in the notation of �g. 1, this
corresponds to � = 0:)

The panoramic image can be \unfolded" giving rise to a cylindrical image. An example
of a panoramic image and the resulting cylindrical image is shown in �g. 2. Di�erent
columns of the resulting cylindrical image correspond to di�erent viewing directions in the
range [0; 2�]: We suppose that the heading direction of the robot is the one recorded on the
cylindrical image column that corresponds to �=2 (�g. 2.b).

The resulting cylindrical images can be approximated by a number of perspective images
that have no overlapping visual �elds and which are tangent to the cylindrical surface.
The approximation becomes more accurate as the number of images increases and their
corresponding visual �elds become smaller. In the extreme case, these images become one{
dimensional vertical arrays of pixels corresponding to the columns of the cylindrical image.

For these \virtual" perspective images we may employ equations 8 to analyze the 
ow
generated due to the robot's motion. More speci�cally, consider the column of the cylindrical
image which corresponds to the viewing direction �: Suppose that the part of the 3D scene
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projected on this column lies in depth d: The heading speed v of the robot results in two
components of translational velocity in the image coordinate system: W = v sin� and
U = v cos� (see �g. 2.b). Since we consider a robot that moves on a planar surface, the
vertical component V of the camera's translational velocity becomes zero. Regarding the
rotational velocity, only � = ! is non{zero. By taking into account the above considerations,
as well as the fact that x � 0 in the local coordinate systems of all \virtual" perspective
cameras, equations 8 become:

ux� = �v f cos�

d
� !f ; uy� =

y v sin�

d
: (9)

In the heading direction of the robot (� = �=2); the horizontal component of the optical

ow uxh is equal to �!f; i.e. it depends only on the rotational component of the robot's
motion.

Suppose now that we measure (cf. Hildreth [10], Horn [11], Barron, Fleet and Beauchemin
[2], and references therein) the horizontal component of the optical 
ow ux�1 and ux�2 in two
di�erent directions �1 and �2, respectively, with corresponding depths d1 and d2: De�ne the
following quantities:

L1
def
= ux�1 + ux�2 � 2 uxh ; L2

def
= ux�1 � ux�2 : (10)

It can be easily veri�ed that

L1 = �v f (
cos�1

d1
+

cos�2

d2
) ; L2 = �v f (

cos�1

d1
� cos�2

d2
) : (11)

The depths d1 and d2 can, then, be speci�ed from L1 and L2; which are measured from
visual data, provided that the heading speed v is known or can be estimated:

d1 = �2v f cos�1

L1 + L2
; d2 = �2v f cos�2

L1 � L2
: (12)

Notice that in the case that the directions �1 and �2 are arranged symmetrically about
the heading direction of robot, the quantity L1 allows the estimation of the scaled di�erence
of inverse depths. Indeed, let �1 =

�
2
+ � and �2 =

�
2
� �; with � 2 (0; �

2
): Then cos�1 =

� cos�2 = � sin�; and

L1 = v f sin� (
1

d1
� 1

d2
) ; L2 = v f sin� (

1

d1
+

1

d2
) : (13)

The quantity L1 is shown to be su�cient for controlling the robot during a corridor{following
behavior, without the need for full reconstruction of the robot's state.

A signi�cant advantage of using a panoramic camera for such a task is that the \looking
direction" �; which is used in computing the quantities L1 and L2 above, can be changed in
software in a simple way or can be made to vary over a range of values.

3.3 Reconstruction of the state y and �

Consider the rays d1 and d2 in the \forward" directions � and �� and the rays d3 and d4 in
the \backwards" directions �(���) and �� �; with respect to the heading direction of the
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robot (�g. 1). We suppose that d1 and d4 intersect the left wall, while d2 and d3 intersect the
right wall of the corridor. The magnitudes of the rays (depths) are related to the parameters
of the system and to the state of the robot as follows:

d1 =
�� y � � sin �

sin(� + �)
; d2 = �y + � sin �

sin(� � �)
; d3 =

y + � sin �

sin(� + �)
; d4 = ��� y � � sin �

sin(� � �)
: (14)

We suppose that y 2 (0; �) and � 2 (��; �); with 0 < � < �
2
: Thus, sin(� + �) 6= 0 and

sin(���) 6= 0:When y = y?
def
= �

2
and � = �?

def
= 0; we have di = di;?

def
= �

2 sin�
; for i = 1; : : : ; 4:

The depths di; i = 1; : : : ; 4; can be speci�ed from optical 
ow using equations 11. By
measuring optical 
ow in the \forward" directions � and �� with respect to the heading
direction of robot (i.e. by setting �1 =

�
2
+ � and �2 =

�
2
� �), we get cos�1 = � cos �2 =

� sin�; thus

L1;2
1

def
= ux�1+ux�2�2 uxh = v f sin� (

1

d1
� 1

d2
) ; L1;2

2
def
= ux�1�ux�2 = v f sin� (

1

d1
+

1

d2
) : (15)

Then

d1 = �2v f cos�1

L1;2
1 + L1;2

2

= 2v f
sin�

L1;2
1 + L1;2

2

; d2 = �2v f cos�2

L1;2
1 � L1;2

2

= �2v f sin�

L1;2
1 � L1;2

2

:

(16)
By measuring optical 
ow in the \backwards" directions �(���) and ��� with respect

to the heading direction of robot (i.e. setting �3 = ��
2
+ � and �4 = ��

2
� �), we get

cos�3 = � cos�4 = sin�; thus

L3;4
1

def
= ux�3 + ux�4 � 2 uxh = �v f sin� (

1

d3
� 1

d4
) ; L3;4

2
def
= ux�3 � ux�4 = �v f sin� (

1

d3
+

1

d4
) :

(17)
Then

d3 = �2v f cos�3

L3;4
1 + L3;4

2

= �2v f sin�

L3;4
1 + L3;4

2

; d4 = �2v f cos �4

L3;4
1 � L3;4

2

= 2v f
sin�

L3;4
1 � L3;4

2

:

(18)
Given the depths di; i = 1; : : : ; 4; that can be speci�ed from optical 
ow as described

above, we want to �nd y and �:
We �rst consider reconstructing �: By \looking" in the forward direction (i.e. by using

the rays d1 and d2), we get from equations 14:

� = 2 arctan
�(d1 � d2) cos��

q
d21 + d22 � 2d1d2 cos(2�)� �2

� + (d1 + d2) sin�

�

= arcsin
�

�q
(d1 + d2)2 � 4d1d2 cos2 �

�
� arctan

�
d1 + d2
d1 � d2

tan�
�
:

(19)

As � 2 (��
2
; �
2
); the above expressions (19) provide two solutions �; one of which has to be

selected. Similar expressions are derived if we reconstruct � by \looking" backwards (i.e. by
using the rays d3 and d4).
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If we \look" sideways (i.e. use the rays d1 and d4 or d2 and d3 ), we get, in each case, a
single solution � from the equations 14:

� = arctan
�
d2 � d3
d2 + d3

tan�
�
= arctan

�
d4 � d1
d4 + d1

tan�
�
: (20)

As ��
2
< � < �

2
; each of the two functions in equation 20 returns a unique value in this

interval.
To increase robustness in the presence of noisy visual data, all possible pairs of rays can

be used to provide estimates of � and the median of these can be used as the �nal estimate.
Another method consists in reconstructing � from two di�erent \forward" directions �1

and �2

� = arctan
�
d1;2 sin�2 � d1;1 sin�1

d1;1 cos �1 � d1;2 cos�2

�
= arctan

�
d2;1 sin�1 � d2;2 sin�2

d2;1 cos�1 � d2;2 cos�2

�
; (21)

where d1;j; d2;j are depths in the \forward" direction �j:
Knowing �; we can estimate y from equation 14 in several ways, some of which are

indicated here:

y = �� sin � � d2 sin(� � �)

=
1

2

�
� 2� sin � + d3 sin(� + �)� d2 sin(� � �)

�

=
1

2

�
�� 2� sin � � d1 sin(� + �)� d2 sin(� � �)

�
:

(22)
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4 Motion Control

4.1 The Task: Corridor Following

The task of following a straight{line corridor consists of using the angular velocity of the
system to drive the lateral distance of the robot from the walls, as well as its orientation, to
desired values. This amounts to asymptotically stabilizing the state (y; �) of the subsystem

_y = v sin � ; _� = ! (23)

of the unicycle kinematics 7 to (y?; �?); using only the angular velocity ! as the control of
the system. The heading speed v(t) cannot be controlled, but we suppose that it is known
at all times (e.g. it is measured from odometry, vision, etc.).

4.2 Motion Control under Complete State Information

In the case that reconstruction of the state (y; �) from the panoramic camera data is possible,
a path-following control scheme similar to the one developed by Samson [16] (cf. also Ch. 9
of [4]) can be applied to the system. The heading speed v is allowed to vary with time, but
we suppose that it is bounded, that its time derivative _v is also bounded and that v does
not tend asymptotically to zero. Then, the angular velocity

! = �k1 ~y sin ~�
~�

v � k2 ~� jvj ; (24)

with ~� = ���? and ~y = y�y? and with positive k1; k2; which satisfy the stability requirements
for the corresponding linearized system, can be used to asymptotically stabilize the system
23 to (y?; �?): This can be shown by Lyapunov analysis (Samson [16], [4]).

4.3 Motion Control under Incomplete State Information

We saw previously that the quantities

L1;2
1 = ux1 + ux2 � 2uxh = v f sin� (

1

d1
� 1

d2
) (25)

and

L3;4
1 = ux3 + ux4 � 2uxh = �v f sin� (

1

d3
� 1

d4
) ; (26)

with � 2 (0; �
2
); can be directly extracted from the panoramic camera data by \looking"

at a total of �ve distinct directions (namely, by calculating optical 
ow in these directions).
At every time instant we calculate either L1;2

1 from \forward{looking" data or L3;4
1 from

\backwards{looking" data. Either one of these quantities is not su�cient for a full recon-
struction of the state (y; �): It is of interest however to consider whether they su�ce for the
accomplishment of the path following task described above.

In the case that v is time{varying, but strictly positive (v(t) > 0; 8t � 0); the angular
velocity control !1 = �k1 L1;2

1 ; with positive gain k1; can be shown to locally asymptotically
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stabilize the system 23 to (y?; �?): When v is piecewise continuous, bounded and positive
at all times, an input scaling procedure [17] can be used to reduce the linearization of the
closed{loop system around the desired equilibrium to a linear time{invariant system, whose
asymptotic stability can be established by classical results like the Routh{Hurwitz test.
Linear theory tools can also be employed to select the gain k1 (e.g. for critical damping of
the trajectory).

In the case that v is strictly negative, and even if it is constant, controlling the system 23
by !1 above, will lead to instability. Indeed, the linearization of the closed{loop system can
be shown to possess eigenvalues with positive real part and, by Lyapunov's indirect method,
the instability of the corresponding nonlinear system is deduced. Therefore, a di�erent
control law is required.

In the case that v is time{varying, but strictly negative (v(t) < 0; 8t � 0); the angular
velocity control !2 = �k2 L3;4

1 ; with positive gain k2; can be shown to locally asymptotically
stabilize the system 23 to (y?; �?): Also, if !2 above is applied to the system in the case
when v is strictly positive and constant, the system becomes unstable.

Proposition 2 (Asymptotic Stability when v(t) > 0)
Let the heading speed v of the unicycle 7 be time{varying and assume that it is strictly

positive at all times, piecewise continuous and bounded. Let d1 and d2 be the distances from
the panoramic camera to the walls of the corridor in directions � and �� with respect to the
heading of the unicycle. The angular velocity

!1 = �k1 L1;2
1 ; (27)

with gain k1 > 0; stabilizes locally asymptotically the subsystem 23 of the unicycle kinematics
to (y?; �?) = ( �

2
; 0):

Proof

The closed{loop system is

_y = v sin � ;

_� = !1 = �k1 v f sin� (
1

d1
� 1

d2
) = �k1 v f sin�

�
sin(� + �)

�� y � � sin �
+

sin(� � �)

y + � sin �

�
:

(28)

The linearization of the closed{loop system around (y?; �?) is

_z = A1(v) z
def
=
�

0 v
�k1v�1 �k1v�2

�
z ; (29)

where z
def
= (z2; z3)

def
= (y�y?; ���?); �1

def
= 8f sin2 �

�2
> 0 and �2

def
= 4f sin�

�2
(� cos�+2� sin�) >

0: (N.B. we suppose that � 2 (0; �
2
) ).

In 29 we replace di�erentiation with respect to time t by di�erentiation with respect to

the variable s de�ned by _s
def
= ds

dt
= jv(t)j: Since v is piecewise continuous, bounded and

positive at all times, s is strictly monotonic. Therefore, for a function f(t) :

df

dt
=

df

ds

ds

dt
=

df

ds
v : (30)

12



Di�erentiating z with respect to s; we get from 29 and 30:

dz

ds
= A2 z

def
=
�

0 1
�k1�1 �k1�2

�
z ; (31)

The time{varying linear system 29 is now transformed into a time{invariant one, whose
stability can be analyzed by the Routh{Hurwitz test. The corresponding characteristic
polynomial is

det(sII � A2) = s2 + k1�2s+ k1�1 ; (32)

where II is the 2 � 2 identity matrix. The elements of the �rst column of the Routh array
are 1; k1�2; k1�1; all of which are positive. Thus, all roots of the characteristic polynomial
are in the left half plane.

Therefore, from Lyapunov's indirect method, the system 28 is asymptotically stable
around (y?; �?):

Analysis of the second{order time{invariant linear system 31 shows that its natural un-
damped frequency is !n =

p
k1�1 and its damping ratio is � =

p
k1

�2
2
p
�1
: Critical damping

is achieved for � = 1; thus for

k1 =
4�1

�2
2

=
2�2

f(� cos�+ 2� sin�)2
: (33)

This can be used as a guideline in selecting the gain of the control !1:

Proposition 3 (Instability when v(t) > 0)
Assume that the heading speed v of the unicycle 7 is strictly negative and constant. The

angular velocity !1 of 27 makes the subsystem 23 of the unicycle kinematics unstable.

Proof

As in the previous proof, after linearization of the closed{loop system 28, we obtain the
linear system 29. However, since we now consider constant v; this is a time{invariant system.
Its characteristic polynomial is

det(sII � A1) = s2 + k1v�2s+ k1v
2�1 : (34)

The elements of the �rst column of the Routh array are 1; k1v�2 (< 0); k1v
2�1 (> 0):

There are two sign changes in these elements, thus there are two roots of the characteristic
polynomial with positive real parts. Therefore, from Lyapunov's indirect method, the system
28 is unstable.

Proposition 4 (Asymptotic Stability when v(t) < 0)
Let the heading speed v of the unicycle 7 be time{varying and assume that it is strictly

negative at all times, piecewise continuous and bounded. Let d3 and d4 be the distances from

13



the panoramic camera to the walls of the corridor in directions �(� � �) and (� � �) with
respect to the heading of the unicycle. If � cos �� 2� sin� > 0; the angular velocity

!2 = �k2 L3;4
1 ; (35)

with gain k2 > 0; stabilizes locally asymptotically the subsystem 23 of the unicycle kinematics
to (y?; �?):

Proof

The closed{loop system is

_y = v sin � ;

_� = !2 = k2 v f sin� (
1

d3
� 1

d4
) = k2 v f sin�

�
sin(� + �)

y + � sin �
+

sin(� � �)

�� y � � sin �

�
:

(36)

The linearization of the closed{loop system is

_z = A1(v) z
def
=
�

0 v
�k2v�3 k2v�4

�
z ; (37)

where z
def
= (z2; z3); �3

def
= 8f sin2 �

�2
> 0 and �4

def
= 4f sin�

�2
(� cos� � 2� sin�): Assume that

� cos�� 2� sin� > 0; thus �4 > 0 (this is true in particular when � = 0). (N.B. we suppose
that � 2 (0; �

2
) ).

In 37 we replace di�erentiation with respect to time t by di�erentiation with respect to

the variable s de�ned by _s
def
= ds

dt
= jv(t)j: Since v is piecewise continuous, bounded and

negative at all times, s is strictly monotonic. Therefore, for a function f(t) :

df

dt
=

df

ds

ds

dt
=

df

ds
jvj : (38)

Di�erentiating z with respect to s; we get from 37 and 38:

dz

ds
= A2 z

def
=
�

0 �1
k2�3 �k2�4

�
z ; (39)

The corresponding characteristic polynomial is

det(sII � A2) = s2 + k2�4s+ k2�3 : (40)

The elements of the �rst column of the Routh array are 1; k2�4; k2�3; all of which are
positive. Thus, all roots of the characteristic polynomial are in the left half plane.

Therefore, from Lyapunov's indirect method, the system 36 is asymptotically stable
around (y?; �?):

The natural undamped frequency of 39 is !n =
p
k2�3 and its damping ratio is � =p

k2
�4

2
p
�3
: Critical damping is achieved for � = 1; thus for

k2 =
4�3

�2
4

=
2�2

f(� cos�� 2� sin�)2
: (41)
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Proposition 5 (Instability when v(t) < 0)
Assume that the heading speed v of the unicycle 7 is strictly positive and constant. The

angular velocity !2 of 35 makes the subsystem 23 of the unicycle kinematics unstable.

Proof

As in the previous proof, after linearization of the closed{loop system 36, we obtain the
linear system 37. However, since we now consider constant v; this is a time{invariant system.
Its characteristic polynomial is

det(sII � A1) = s2 � k2v�4s+ k2v
2�3 : (42)

The elements of the �rst column of the Routh array are 1; �k2v�4 (< 0); k2v
2�3 (> 0):

There are two sign changes in these elements, thus there are two roots of the characteristic
polynomial with positive real parts. Therefore, from Lyapunov's indirect method, the system
36 is unstable.

Up to this point, we considered control laws for the case that the heading speed v is
time{varying, but either strictly positive or strictly negative. It is of interest to extend
these results to the case when v is allowed to cross zero. However, the previous input scaling
procedure cannot be used, in this case, to demonstrate asymptotic stability of the subsystem
23 of the unicycle kinematics.

The control law ! that we consider, when v(t) is allowed to cross zero, consists of applying
the angular velocity !1 of 27 when v(t) � 0 and switching to !2 of 35 when v(t) < 0: Choosing
k1 = k2 = k; the control law ! is

! =

( �k L1;2
1 ; if v(t) � 0;

�k L3;4
1 ; otherwise.

(43)

We �rst establish by Lyapunov's indirect method that, if the linearization of the closed{
loop system corresponding to the control 43 is uniformly asymptotically stable, then so is
the subsystem 23. However, the linearized system is now time{varying and no general results
exist for establishing its uniform asymptotical stability, except in special cases.

We consider, then, the case when v(t) is time{periodic. We establish that the linearization
of the closed{loop system corresponding to the control 43 is exponentially (thus uniformly
asymptotically) stable, provided that its solution varies slower than the periodic excitation
v(t): Therefore, in this case, the subsystem 23 is also uniformly asymptotically stable.

Proposition 6 Let the heading speed v of the unicycle 7 be time{varying and assume that it
is continuous and bounded. Let (y; �) 2 (0; �)�(��

2
; �
2
): The linearization of the closed{loop

system under the switching control law 43 is

_x(t) = A(t) x(t) ; (44)

where x1
def
= y � y?; x2

def
= � � �? and A(t)

def
=

 
0 v

�k�1v �k(�2 v + �3 jvj)
!
; with �1

def
=

8f sin2 �
�2

> 0; �2
def
= 8f sin2 �

�2
� � 0; �3

def
= 4f sin� cos�

�
> 0: (N.B. we suppose that � 2 (0; �

2
)
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). This control law stabilizes uniformly asymptotically over [0;1) the subsystem 23 of the
unicycle kinematics to (y?; �?); provided that the corresponding linearized system 44 is also
uniformly asymptotically stable over [0; 1):

Proof

The controls !1 and !2 of 27 and 35 can be expressed as

!1 = �k1�1(y; �)v � k1�2(y; �)jvj ; when v � 0 ;

!2 = �k2�1(y; �)v � k2�2(y; �)jvj ; when v < 0 ;

(45)

with k1; k2 > 0 and with

�1(y; �)
def
=

1

2

�
1

d1
� 1

d2
� 1

d3
+

1

d4

�
=

f sin2 � cos �[2(y + � sin �)� �]

(�� y � � sin �)(y + � sin �)
;

�2(y; �)
def
=

1

2

�
1

d1
� 1

d2
+

1

d3
� 1

d4

�
=

f sin� cos� � sin �

(�� y � � sin �)(y + � sin �)
:

(46)

From this, and choosing k1 = k2 = k > 0; the switching control law ! of equation 43 can be
expressed as

! = �k �1(y; �) v � k �2(y; �) jvj ; (47)

with �1(y; �) and �2(y; �) as above.
The closed{loop system is then

_y = v sin � ;
_� = ! = �k �1(y; �) v � k �2(y; �) jvj :

(48)

Applying the coordinate transformation

x1
def
= y � y? = y � �

2
; x2

def
= � � �? = � ; (49)

the system equilibrium is moved to x = 0: The closed{loop system becomes

_x = f(t; x)
def
=

 
v(t) sinx2

�k �1(x) v(t)� k �2(x) jv(t)j
!

(50)

where

�1(x)
def
= �1

(x1 + � sin x2) cosx2
1� 4

�2
(x1 + � sinx2)2

; �2(x)
def
= �3

sinx2
1� 4

�2
(x1 + � sinx2)2

: (51)

Notice that f(t; 0) = 0 and that f(t; x) is continuously di�erentiable with respect to its
second argument.
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The Jacobian @f

@x
is

@f

@x
(t; x) =

 
0 v cos x2

�k[@�1
@x1

(x)v(t) + @�2
@x1

(x)jv(t)j] �k[@�1
@x2

(x)v(t) + @�2
@x2

(x)jv(t)j]
!
: (52)

De�ne

A(t)
def
=
�
@f

@x
(t; x)

�
x=0

=

 
0 v

�k�1v �k(�2 v + �3 jvj)
!
; (53)

where, for � 2 (0; �
2
) :

�1
def
=

@�1
@x1

(0) = 8f
sin2 �

�2
> 0 ; �2

def
=

@�1
@x2

(0) = 8f
sin2 �

�2
� � 0 ;

�3
def
=

@�2
@x2

(0) = 4f
sin� cos�

�
> 0 :

(54)

The linearization of the nonlinear system 48 is the time{varying linear system

_x(t) = A(t) x(t) ; (55)

for the matrix A(t) de�ned above.
Since v is bounded, v1 < v(t) < v2; for all t � 0 and for some v1; v2 2 IR: Then,

0 � jv(t)j < v3
def
= maxfv1; v2g: Thus, A(t) is also bounded.

De�ne

f1(t; x)
def
= f(t; x)� A(t) x =

 
v (sin x2 � x2)

�k [�1(x)� �1 x1 � �2 x2] v � k [�2(x)� �3 x2] jvj
!
:

(56)
It is easy to see that

sup
t�0

jjf1(t; x)jj
jjxjj = v3

�
(sinx2 � x2)

2 + k2(j�1(x)� �1 x1 � �2 x2j+ j�2(x)� �3 x2j)2
x21 + x22

� 1
2

:

By series expansion of the quantities �1(x)��1 x1��2 x2 and �2(x)��3 x2; it can be seen
that both contain only terms proportional to x31; x

2
1 x2; x1 x

2
2; x

3
2 and higher order terms in

x1 and x2: Since jx1j; jx2j � jjxjj; then j�1(x) � �1 x1 � �2 x2j � 
1jjxjj3 + (h:o:t: in jjxjj)
and j�2(x)� �3 x2j � 
2jjxjj3 + (h:o:t: in jjxjj); for some 
1; 
2 > 0: Then

sup
t�0

jjf1(t; x)jj
jjxjj � v3

� jjxjj6 + (h:o:t: in jjxjj)
jjxjj2

� 1

2

= v3jjxjj2
�
1 + (h:o:t: in jjxjj)

� 1
2

:

Therefore

lim
jjxjj!0

sup
t�0

jjf1(t; x)jj
jjxjj = 0 :

Thus, from Lyapunov's indirect method, the result follows.
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Proposition 7 (Periodic v)
Assume that the heading speed v is (i) time{periodic with period T > 0 (i.e. v(t +

T ) = v(t)), (ii) continuous, (iii) there exists a T1 2 [0; T ) such that jv(T1)j > 0 and (iv)R T
0 v(�)d� 6= 0: Assume further that �3 > �2; for the quantities de�ned in 54. Then, there
exists an �0 > 0; such that the zero solution of

_z(t) = A(� t) z(t) ; (57)

where A(t) is the matrix de�ned in 53, is uniformly asymptotically stable over [0;1); for all
� > �0:

Proof

The matrix A(t) is obviously time{periodic with period T: Consider

�A
def
=

1

T

Z T

0
A(�)d� =

 
0 vI

�k �1 vI �k (�2 vI + �3 vII)

!
; (58)

where vI
def
= 1

T

R T
0 v(�)d� and vII

def
= 1

T

R T
0 jv(�)jd�: The characteristic polynomial of �A is

det(sII � �A) = s2 + k (�2 vI + �3 vII)s + k�1v
2
I : (59)

When �3 > �2; we have �2 v(t) + �3 jv(t)j � 0; for all t 2 [0; T ): Since there exists
at least one T1 2 [0; T ) such that jv(T1)j > 0; then �2 v(T1) + �3 jv(T1)j > 0; thusR T
0 [�2 v(t)+�3 jv(t)j]dt > 0; therefore, �2 vI+�3 vII > 0: Also, vII > 0:When

R T
0 v(t)dt 6= 0;

then k �1 v2I > 0: Thus, all coe�cients of the characteristic polynomial of �A are strictly
positive and, from the Routh{Hurwitz test, all eigenvalues of �A have strictly negative real
part.

The exponential stability of 57 follows from a classical averaging result (Brockett [3],
Khalil [12]). For linear systems, exponential stability is equivalent to uniform asymptotic
stability.
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5 Simulation Results

Fig. 3 shows MATLAB simulations where the heading speed varies sinusoidally and the
control 24 with gains k1 = 1 and k2 = 1:4142 achieves stabilization of (y; �) to the desired
values (y? = 5; �? = 0) starting from the initial values (y = 4; � = 0:4): The model
parameters are � = 10; f = 1; � = 1; � = �

4
: The state (y; �) is being reconstructed at each

time instant from panoramic visual data.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

4

5

6
Corridor Following − State Reconstruction

Time t

S
ta

te
 x

, y
, t

he
ta

x    
y    
theta
v    

Figure 3: Corridor following with reconstruction of state

Figures 4 and 5 show MATLAB simulations, analogous to the ones in �g. 3, but using
the controls 27 and 35 with gains k1 = k2 = 1:4: The heading speed is time{varying, but,
respectively, strictly positive and strictly negative (e.g. in �g. 4, the heading speed is
v(t) = 1 + 0:4 sin t ). The model parameters are � = 10; f = 1; � = 1; � = �

4
: The state

(y; �) is not being reconstructed in this case.
Fig. 6 shows MATLAB simulations of the system, where the heading speed of the mobile

robot varies periodically with time (v(t) = 0:1 + sin t + sin t
2
). The model parameters are

� = 10; f = 1; � = 0; � = �
4
: The switching control 43 with gain k = 4 is used to achieve

stabilization of (y; �) to the desired values (5; 0) starting from the initial state (4; 0:4):
Fig. 7 shows the behavior of control 27 in a more complicated environment.
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Figure 4: Corridor following without reconstruction of state: Positive v
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Figure 5: Corridor following without reconstruction of state: Negative v
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Figure 7: Corridor following without reconstruction of state
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6 Experimental Results

Experiments evaluating the proposed techniques were performed at the Computer Vision and
Robotics lab of ICS{FORTH. The preliminary results contained in this report are based on
the use of laser as a sensory modality and aim at demonstrating the performance of controls
of the type of those in equations 27 and 25, i.e.

! = �k v sin� (
1

d1
� 1

d2
) (60)

when v > 0; in accomplishing the corridor{following task. The laser is used to measure
directly the distances d1 and d2 from the walls, a task that will become unnecessary when
panoramic vision is used.

(a) Mobile robot (b) Panoramic camera

Figure 8: Mobile robot with panoramic camera and laser

The experiments were performed with the RWI B21r robot of CVRL, which is equipped
with a SICK laser range �nder, covering 180 degrees of the robot's surroundings at an
angular resolution of 0.5 degrees and at a distance resolution of 0.5 cm. The robot is also
equipped with a panoramic camera, which will be used in subsequent experiments. In order
to support processing of sensory information, control of the platform and communication
with the external world, the robot is equipped with two PENTIUM III{based on-board
computers running at 800 MHz. Each of these computers is equipped with 256 Mbytes of
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RAM and operates under the LINUX operating system. To communicate with the rest of the
world, a 2.4 GHz four{port Ethernet radio pair with antennas (100mW) has been installed
providing a data rate of 3 Mbits/sec.

In this experiment, the robot moves in a straight corridor, approximately 3 m. wide, with
a heading speed of 0.12 m/sec. The gain k of the control 60 is 1:25: Fig. 9 shows the raw
laser data d1 and d2 taken at the directions � = ��

4
; with respect to the heading direction,

during the experiment. The data are taken at a rate of about 2 samples/sec. Notice that
after about 60 sec (120 samples), the two distances become equal, designating motion in the
middle of the corridor.
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Figure 9: Laser data during the experiment

The robot starts from the initial con�guration (y; �) = (0:44 m; 0:56 rad) and arrives
at the desired con�guration (y?; �?) = (1:5 m; 0:0 rad) after about 60 sec, as it can be seen
in �g. 10.b. This �gure shows the state of the robot, which is reconstructed from the laser
data. This reconstructed state is not used in the control of the robot however.

Fig. 10.a shows the evolution of the control ! during the experiment.
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Figure 10: Mobile robot control and state during the experiment

7 Conclusions

A framework was presented for the utilization of data from panoramic images to the task of
corridor following by a mobile robot. The visual servoing{type schemes derived were shown
to possess the required stability properties. Future work will focus on the experimental
evaluation of these techniques, which is currently in progress.
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