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Abstract

In this paper, a method for inferring 3D structure infor-
mation based on both range and visual data is proposed.
Data fusion is achieved by validating assumptions formed
according to 2D range scans of the environment, through
the exploitation of visual information. The proposed method
is readily applicable to robot navigation tasks providing
significant advantages over existing methods.

1. Introduction

Laser scanners mounted on mobile robots have recently
become very popular for various indoor robot navigation
tasks. Their main advantage over vision sensors is that they
are capable of providing accurate range measurements in
large angular fields and at very fast rates. The acquired
range information is compact enough to be processed in real
time and encapsulates sufficient information (both in terms
of quality and quantity) to enable robots to perform quite
confidently a wide class of navigation tasks [3, 6, 13].

However, the quantity of information encapsulated in
such 2D profiles, may prove incomplete for specific de-
manding or crucial robotic tasks such as obstacle detection
[5, 9, 12, 14]. The main problem stems from the fact that the
profiles produced from laser scans are 2D representations
of the 3D space. Various objects common even in the sim-
plest indoor environments, (e.g. chairs, tables, shelves e.t.c)
are sometimes invisible to range scanners and thus, absent
from the resulting 2D profiles. The potential solution of 3D
laser scanners proves to be a quite expensive one. Moreover,
the integration of multiple 2D profiles acquired at different
heights in the environment is a relatively complex task and,
even more importantly, their acquisition requires that the

robot does not move for a substantial amount of time. Uti-
lization of other sources of information is required in tasks
that depend on real 3D information.

In this paper we propose a method for fusing range with
visual information in order to infer 3D structure informa-
tion. Simple 3D models of the environment, consisting of a
flat horizontal floor surrounded by vertical planar walls are
initially constructed according to 2D laser range data. Vi-
sion is then utilized in order (a) to validate the correctness of
the constructed model and (b) to qualitatively and quantita-
tively characterize inconsistencies between laser and visual
data wherever such inconsistencies are detected.

The proposed method employs a laser scanner and a
camera that is registered to the laser coordinate system,
through a calibration procedure. The method proceeds by
exploiting sensory information acquired in two consecutive
time instances, as the robot moves in space. At timet1, the
robot acquires a laser range scanR1 and an imageI1. Based
onR1 the robot builds a 3D model of the environment. The
same process is applied at timet2, resulting toR2 andI2.
By registering theR1 andR2 the robot is able to compute
its egomotion. Based on the 3D model derived at timet1
and the recovered motion, imageI1 is backprojected at the
reference frame of imageI2, resulting in imageI ′2. Im-
agesI ′2 and I2 should be identical in areas where the 3D
model is valid and should differ in areas where the model is
not valid. Comparison is performed by locally correlating
image intensity values. For providing additional depth in-
formation in regions with inconsistencies between laser and
visual data, image intensity matches along the epipolar line
are converted to real word coordinates and accumulated in
a 2D occupancy map.

The proposed method has been tested on both synthetic
and real data. The results presented in this paper demon-
strate its effectiveness.
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Figure 1. Block diagram of the proposed
method

2. Method Description

In this section, the proposed method for fusing laser and
visual data is described in detail. Figure 1 provides a block
diagram of the method.

2.1. Line Segment Extraction and 3D-model Gen-
eration

In order to build a 3D model of the environment, range
measurements have to be grouped into line segments. For
line segment extraction, a three-stage algorithm has been
implemented. Range measurements are initially grouped
to clusters of connected points according to their Sphere-
of-Influence graph [10]. Clusters are then further grouped
to line segments by utilizing the Iterative-End-Point-Fit
(IEPF) algorithm [4, 2]. Finally, after range points have
been segmented into groups of collinear points, line seg-
ment parameters are re-estimated by a line fitting procedure.

For generating the local 3D model of the environment,
an infinite horizontal plane (floor) is generated right below
the robot, at a known distance from the robot’s coordinate
system (the position of the range finding device). Then, line
segments defined in the previous step are extended to form
rectangular vertical surfaces of infinite height. More specif-
ically, for each line segment, the plane that is perpendicu-
lar to the floor and contains the line segment is inserted to
the 3D model. The coordinate system of the generated 3D

(a)

(b)

Figure 2. 3D Model definition process (a)
range data and line segments defined and (b)
resulting 3D model.

model is assumed to coincide with the coordinate system of
the robot. Figure 2(a) shows the line segments as extracted
by the algorithm for a simple artificial environment. Laser
measurements are also depicted in the image. A rendered
view of the corresponding 3D model is depicted in Fig.2(b).

2.2. Coordinate System Registration

Camera positions (with respect to the 3D model) need
to be known at the time when the two images are captured.
Provided that the relative position of the camera with re-
spect to the laser range scanner is fixed and can be obtained
through calibration procedures, camera positions can be re-
covered if the motion of the robot is known or can be com-
puted.

For calculating the motion of the robot, an iterative, scan-
matching algorithm based on the Hausdorff distance metric
[1, 7] has been employed. The algorithm is applied directly
to the line segments extracted as described in the previous
section.

Given two sets of line segmentsL1, L2 corresponding to
range scans acquired at two different time instantst1 and
t2, the goal of the algorithm is to find the transformation
T = (dx, dy, df) (robot’s motion) that, when applied toL1,
produces a setL′

2 as similar toL2 as possible. As a measure

2
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of similarity, the directional Hausdorff distance, given as

H(L2, L
′
2) = max

l2∈L2
min
l′2∈L′

2

||l2 − l′2|| (1)

has been utilized.

2.3. Model Evaluation

Let M be the 3D model built as described in section 2.1,
according to range data acquired at the time instantt1, and
let I1 be an image acquired by a camerac1 at the same time
instant.

For each image pointp1 = (x1, y1) of I1, a 3D coordi-
nateP = (X,Y,Z) can be found by ray-tracing it to the
modelM . Let I2 be a second image, acquired by the same
camera at a different time instantt2. Since the coordinate
system ofc2 with respect to the coordinate system ofM is
also known, for each pointP = (X,Y,Z) in M , the pro-
jected pointp2 = (x2, y2) can also be calculated. By ray-
tracing points ofI1 to find 3D world coordinates and pro-
jecting them toI2, we are able to calculate analytically cor-
respondences betweenI1 andI2. If the assumptions made
in order to form the modelM are correct, corresponding im-
age points would actually be projections of the same world
object points and, thus, they will share the same attributes
(color, intensity values, intensity gradients etc). The nor-
malized cross correlation metric [4] is employed to evalu-
ate the correctness of the calculated point correspondences.
Low values of the calculated cross correlation correspond
to regions of the environment that do not conform with the
3D model constructed from laser data.

Figures 3(a) and 3(b) show two consecutive frames of a
synthetic scene captured at the positions corresponding to
the range data depicted in Fig.2(a). For convenience, wire-
frames of the 3D-model extracted according to the proce-
dure described in section 2.1, as well as range finder points,
are projected on the images. The scene contains two cubes;
one lying at approximately 1m above the floor (on the left
part of the image) while the other (on the right) is placed
directly on the floor. Figure 3(c) demonstrates the results
of the evaluation process. Regions with inconsistencies are
marked with “x”s. As it can be easily observed, the algo-
rithm succeeds in correctly detecting the cube on the left
of the image that is “invisible” to the range finder since
it is floating above its scanning plane. On the other hand,
the cube on the right of the image, does not yield any un-
matched areas because it is visible to the range scanner.

3. Extraction of Metric Information

In the previous section we utilized vision in order to
evaluate the correctness of 2D range information provided
by range scanners. Having identified regions of inaccurate

(a) (b)

(c)

Figure 3. Example of the 3D model evalua-
tion process. (a),(b) two frames of an artificial
scene containing two cubes. The 3D model
and the range finder points are also projected
on the images, (c) results of the evaluation
process, projected on the second image.

range information, vision is further employed to qualita-
tively and quantitatively characterize these inconsistencies.

Let’s assume the camera configuration depicted in Fig.
4. The 3D pointP lying on the modelM is projected to
the pointp1 on the left image (I1) and to the pointp2 on
the right image (I2). The epipolar planeπ created by point
P and the camera centersC1 andC2 intersects the image
planes in linesl1 andl2, the epipolar lines [8].

Suppose that the image coordinates of a pointp1 are
known, and that neither the location of the corresponding
3D point P nor the corresponding pointp2 in the second
image is known. It has already been shown that by ray-
tracing pointp1 to the 3D model we can compute the 3D
coordinates of pointP and by projecting the later to the
second camera plane we can define the corresponding point
p2 in the second image. Suppose that by locally correlat-
ing pixel intensity values at the positions ofp1 andp2, we
discover a dissimilarity and we conclude that the 3D model
M is inaccurate and hence the 3D coordinates of pointP
as implied by the model, are not correct. This raises the
question whether pointP actually lays behind the model
M (further to the camera than assumed) or in front of it; the
latter making it a potential obstacle invisible by the range
finder.

Whatever the depth of pointP may be, its projection on

3
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Figure 4. Epipolar geometry for the two cam-
eras.

the second camera will comply to the epipolar constraint;
that is, it will lay on the epipolar linel2. The important ob-
servation is that the shortest the depth of pointP actually
is, the closer its projectionp2 to the epipolar pointe2 will
be. That is, if pointp1 actually corresponds to a 3D point
P ′ closer to the first camera than pointP , its projectionp2

′

on the second camera will lay on the epipolar linel2, be-
tween pointp2 and the epipolee2. If point P ′, lays further
to the first camera thanP , its projectionp2

′ will also lay
on l2 but this time outwards the direction ofe2. If the ex-
act location of pointp2

′ corresponding top1 were known,
computation of the intersection of the line passing through
pointsC1 andP with the line passing through pointsC2 and
p2

′ would yield the exact 3D location of pointP ′. However,
since exact computation ofp2

′ is not always possible, only
guesses about the position ofP ′ can be made. Relying on
the assumption that for robots that move on a planar surface,
the projection of the obstacles on the 2D surface of motion
suffices for navigation, we alleviate the problem of spurious
range evidence by accumulating range estimates in a 2D oc-
cupancy grid [11] in order to accumulate evidence about the
location ofP ′. The exact algorithm is as follows:

• Initialize accumulation occupancy grid

• For each unmatched point pairp1-p2 repeat:
For each pointp2

′ lying close top2 along the epipolar
line l2, repeat:

– compute the correlation of the intensity values
near in the vicinities ofp1 andp2

′

– If the correlation is above a threshold, compute
the location of pointP ′ as the intersection of the
linesC1-P andC2-p2

′ and add the correlation re-

Figure 5. Extraction of metric information by
utilization of visual data.

sult on the cell of the occupancy grid correspond-
ing to the position ofP ′

Figure 5 demonstrates the results of the procedure de-
scribed above for the synthetic data set used in the previ-
ous sections. As it can be easily observed, the location of
the left cube shown in Figs. 3, although not visible by the
range finder, is correctly identified on the resulting occu-
pancy grid.

4. Results

The proposed method has been implemented and as-
sessed on a robotic platform of our laboratory, namely an
iRobot-B21r, equipped with a SICK-PLS laser range finder
and a digital camera operating at a standard resolution of
640 x 480 pixels. The range finder is capable of scanning
180 degrees of the environment, with an angle resolution
of one measurement per degree and a range measuring ac-
curacy of 5cm. An internal calibration procedure has been
applied prior to testing our methodology, so that the relative
positions of the both sensors were known as well as their
intrinsic parameters. Extensive tests have been performed
with real and simulated data. In all cases the proposed
framework was verified to operate accurately, provided that
the outcome of the calibration procedure was also accurate.

Figure 6 demonstrates the operation of the proposed
method in a corridor structure outside our lab. A pair of im-
ages acquired sequentially by the robot’s camera are shown
in Figs. 6(a) and 6(b). Projections of range finder data as
well as of the resulting 3D model are also overlayed on the
images. The results of the evaluation process, projected on
the second image are shown in Fig. 6(c). Regions with in-
consistencies are marked with an “x”. As it can be verified,
various structures laying on the walls of the corridor, invisi-
ble by the range finder were correctly identified by the eval-
uation process. Results of the metric information extraction

4
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(a) (b)

(c)

(d)

Figure 6. Demonstration of the proposed
framework in a corridor environment

algorithm, in the form of an occupancy grid map, applied to
these areas of range data inconsistency, are depicted in Fig.
6(d). For convenience, line segments used for constructing
the 3D model are also overlayed.

5. Conclusions

In this paper a new method for fusion of range and vi-
sual data for the extraction of 3D structure has been pro-
posed. Visual information is used to detect regions where
vision and laser data are mutually inconsistent. Moreover,
vision is utilized to provide additional metric information
in such regions. Since pixel displacements are computed
analytically by rendering image points to the model, their
direct computation is not necessary. The proposed method
requires two views of the environment. These can be ac-
quired either by one moving camera at two different points
in time, or by a stereoscopic vision system that simultane-
ously acquires two views of a scene.

Besides its obvious applicability to obstacle detection,
the general idea presented in this paper can be utilized by
range based mapping and navigation algorithms in order

to make them more accurate and robust. We believe that
fusion of data provided by range and vision sensors consti-
tutes a proper framework for mobile robotic platforms to
perform demanding navigation tasks. It is in our intention
to further-investigate the applicability of the presented
methodology in this area.
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